
PARTICLE SWARM OPTIMIZER IN NOISY ANDCONTINUOUSLY CHANGING ENVIRONMENTSK.E. PARSOPOULOSDepartment of MathematicsUPAIRC, University of PatrasGR{26110 Patras, Greeceemail: kostasp@math.upatras.gr M.N. VRAHATISDepartment of MathematicsUPAIRC, University of PatrasGR{26110 Patras, Greeceemail: vrahatis@math.upatras.grABSTRACTIn this paper we study the performance of the re-cently proposed Particle Swarm optimization methodin the presence of noisy and continuously changing en-vironments. Experimental results for well known andwidely used optimization test functions are given anddiscussed. Conclusions for its ability to cope with suchenvironments as well as real{life applications are alsoderived.KEY WORDSParticle Swarm, Evolutionary Methods, Noisy Func-tions1. INTRODUCTIONOptimization techniques are of undisputed importancein science and technology. They can be used for manypurposes: optimal design of systems, optimal opera-tion of systems, determination of performance limita-tions of systems, or simply the solution of sets of equa-tions. Many recent advances in science, economics andengineering rely on numerical techniques for comput-ing globally optimal solutions to corresponding opti-mization problems [8]. Due to the existence of multiplelocal and global optima all these problems cannot besolved by classical nonlinear programming techniques.During the past three decades, however, manynew algorithms have been evolved and new approacheshave been implemented, resulting to powerful opti-mization algorithms such as the Evolutionary Algo-rithms [11]. Di�erently from other adaptive algo-rithms, evolutionary techniques work on a set of poten-tial solutions, which is called population, and �nd theoptimal solution through cooperation and competitionamong the potential solutions. These techniques canoften �nd optima in complicated optimization prob-lems more quickly than traditional optimization meth-ods. The most commonly used population{based evo-lutionary computation techniques, such as Genetic Al-gorithms and Arti�cial Life methods, are motivatedfrom the evolution of nature and the social behaviorof humans and insects.

It is worth noticing that, in general, Global Op-timization (GO) strategies possess strong theoreticalconvergence properties, and, at least in principle, arestraightforward to implement and apply. Issues relatedto their numerical e�ciency are considered by equip-ping GO algorithms with a \traditional" local opti-mization phase. Global convergence, however, needsto be guaranteed by the global{scope algorithm com-ponent which, theoretically, should be used in a com-plete, \exhaustive" fashion. These remarks indicatethe inherent computational demand of the GO algo-rithms, which increases non{polynomially, as a func-tion of problem{size, even in the simplest cases.In practical applications, most of the above{mentioned methods can detect just sub{optimal solu-tions of the objective function. In many cases thesesub{optimal solutions are acceptable but there are ap-plications where an optimal solution is not only desir-able but also indispensable. Moreover, in many appli-cations there are imprecise values for the input data aswell as for the function values. Therefore, the develop-ment of robust and e�cient GO methods for dynamicenvironments such as the aforementioned, is a subjectof considerable ongoing research [22].Recently, Eberhart and Kennedy (1995) proposedthe Particle Swarm Optimization (PSO) algorithm [9]:a new, simple evolutionary algorithm, which di�ersfrom other evolution{motivated evolutionary compu-tation techniques in that it is motivated from the sim-ulation of birds' social behavior. Although, in gen-eral, PSO results in global solutions even in high{dimensional and multimodal spaces [15, 16, 17], thereare not many results about its behavior in the pres-ence of noise, i.e. the performance of the method whennoise is inserted into the function values and/or thelandscape is continuously changing.The remaining of the paper is organized as fol-lows: in Section 2 we give a discussion of optimiza-tion of noisy functions as well as a simulation of theinuence of noise (proportional to a Gaussian dis-tributed random number with zero mean and variousvariances). In Section 3 a brief overview of the PSOmethod is presented, while in Section 4 numerical re-



sults are presented. Finally, in Section 5, we give someconcluding remarks.2. OPTIMIZATION OF NOISYFUNCTIONSSeveral methods for �nding the extrema of a func-tion f :D � Rn ! R, where D is open and bounded,have been proposed, with many applications in di�er-ent scienti�c �elds (mathematics, physics, engineering,computer science etc.). Most of them require precisefunction and gradient values. In many applicationsthough, precise values are either impossible or timeconsuming to obtain. For example, when the functionand gradient values depend on the results of numer-ical simulations, then it may be di�cult or impossi-ble to get very precise values. Or, in other cases, itmay be necessary to integrate numerically a systemof di�erential equations in order to obtain a functionvalue, so that the precision of the computed value islimited. Furthermore, in many problems the accuratevalues of the function to be minimized are computa-tionally expensive. Such problems are common in reallife applications as in the optimization of parametersin chemical experiments or �nite element calculations.With such applications in mind, robust methods areneeded, which make good progress with the fewest pos-sible number of function evaluations.The problem of optimization of noisy or impre-cise (not exactly known) functions occurs in variousapplications, as, for instance, in the task of experi-mental optimization. Also, the problem of locatinglocal maxima and minima of a function from approx-imate measurement results is vital for many physicalapplications. In spectral analysis, chemical species areidenti�ed by locating local maxima of the spectra. Inradioastronomy, sources of celestial radio emission andtheir subcomponents are identi�ed by locating localmaxima of the measured brightness of the radio sky.Elementary particles are identi�ed by locating localmaxima of the experimental curves.The theory of local optimization provides a largevariety of e�cient and e�ective methods for the com-putation of an optimizer of a smooth function f . Forexample, Newton{type and quasi{Newton methodsshow superlinear convergence in the vicinity of a non-degenerate optimizer. However, these methods requirethe Hessian or the gradient, respectively, in contrastto other optimization procedures, like the simplexmethod [13], the direction set method of Powell [7],or some other recently proposed methods [5, 6, 23].In some applications, however, the function to beminimized is only known within some (often unknownand low) precision. This might be due to the factthat evaluation of the function means measuring somephysical or chemical quantity or performing a �nite el-

ement calculation in order to solve partial di�erentialequations. The function values obtained are corruptedby noise, namely stochastic measurement errors or dis-cretization errors. This means that, although the un-derlying function is smooth, the function values avail-able show a discontinuous behavior. Moreover, no gra-dient information is available. For small variances ina neighborhood of a point the corresponding functionvalues reect the local behavior of the noise ratherthan that of the function. Thus, a �nite{di�erenceprocedure to estimate the gradient fails [5].The traditional method for optimizing noisy func-tions is the simplex or polytope method by Nelder andMead [7, 13, 14, 19]. This method surpasses otherwell{known optimization methods when dealing withthe large noise case. However, this is not valid in thenoiseless case. The ability of this method to copewith noise is due to the fact that it proceeds solelyby comparing the relative size of the function values,as the proposed method does. The Simplex methoddoes not use a local model of the function f and workswithout the assumption of continuity. Although thismethod has poor convergence properties (for a conver-gence proof of a modi�ed version see [21]), it has beena useful method in many sequential applications, butit is di�cult and ine�cient to implement in parallel.The method can be de�cient when the current simplexis very \at". This can be avoided by suitable variants(see for example [21]). More sophisticated methods inthis direction are discussed by Powell [20].To study the inuence of the imprecise informa-tion (regarding the values of the objective function),we simulate imprecisions with the following approach.Information about f(x) is obtained in the form off�(x), where f�(x) is an approximation to the truefunction value f(x), contaminated by a small amountof noise �. Speci�cally, the function values are ob-tained as [6]:f�(x) = f(x)(1 + �); � � N(0; �2); (1)where � � N(0; �2) denotes a Gaussian distributedrandom variable with zero mean and variance �2, i.e.,relative stochastic errors are used for the test prob-lems. To obtain �, we apply the method of Box andMuller [2], using various values of the variance �2.3. THE PARTICLE SWARM OPTI-MIZERAs already mentioned, PSO is di�erent from other evo-lutionary algorithms. Indeed, in PSO the populationdynamics simulates a \bird ock's" behavior where so-cial sharing of information takes place and individualscan pro�t from the discoveries and previous experienceof all other companions during the search for food.Thus, each companion, called particle, in the popula-tion, which is now called swarm, is assumed to \y"



over the search space in order to �nd promising regionsof the landscape. For example, in the minimizationcase, such regions possess lower function values thanother visited previously. In this context, each particleis treated as a point in a D{dimensional space whichadjusts its own \ying" according to its ying experi-ence as well as the ying experience of other particles(companions).There are many variants of the PSO proposedso far, after Eberhart and Kennedy introduced thistechnique [4, 9]. In our experiments we used a newversion of this algorithm, which is derived by adding anew inertia weight to the original PSO dynamics [3].This version is described in the following paragraphs.First let us de�ne the notation adopted in thispaper: the i-th particle of the swarm is represented bythe D{dimensional vector Xi = (xi1; xi2; : : : ; xiD) andthe best particle in the swarm, i.e. the particle withthe smallest function value, is denoted by the indexg. The best previous position (the position giving thebest function value) of the i-th particle is recordedand represented as Pi = (pi1; pi2; : : : ; piD), and theposition change (velocity) of the i-th particle is Vi =(vi1; vi2; : : : ; viD).The particles are manipulated according to theequationsvid = wvid + c1r1(pid � xid) + c2r2(pgd � xid); (2)xid = xid + vid; (3)where d = 1; 2; : : : ; D; i = 1; 2; : : : ; N and N is the sizeof the population; w is the inertia weight; c1 and c2are two positive constants; r1 and r2 are two randomvalues into the range [0; 1].The �rst equation is used to calculate i-th par-ticle's new velocity by taking into consideration threeterms: the particle's previous velocity, the distance be-tween the particle's best previous and current position,and, �nally, the distance between swarm's best expe-rience (the position of the best particle in the swarm)and i-th particle's current position. Then, followingthe second equation, the i-th particle ies toward anew position. In general, the performance of each par-ticle is measured according to a prede�ned �tness func-tion, which is problem{dependent.The role of the inertia weight w is considered veryimportant in PSO convergence behavior. The inertiaweight is employed to control the impact of the previ-ous history of velocities on the current velocity. In thisway, the parameter w regulates the trade{o� betweenthe global (wide{ranging) and local (nearby) explo-ration abilities of the swarm. A large inertia weightfacilitates global exploration (searching new areas),while a small one tends to facilitate local exploration,i.e. �ne{tuning the current search area. A suitablevalue for the inertia weight w usually provides balancebetween global and local exploration abilities and con-sequently a reduction on the number of iterations re-

quired to locate the optimum solution. A general ruleof thumb suggests that it is better to initially set theinertia to a large value, in order to make better globalexploration of the search space, and gradually decreaseit to get more re�ned solutions, thus a time decreas-ing inertia weight value is used. The initial popula-tion can be generated either randomly or by using aSobol sequence generator which ensures that the D-dimensional vectors will be uniformly distributed intothe search space [18].From the above discussion it is obvious that PSO,to some extent, resembles evolutionary programming.However, in PSO, instead of using genetic operators,each individual (particle) updates its own positionbased on its own search experience and other individ-uals (companions) experience and discoveries. Addingthe velocity term to the current position, in order togenerate the next position, resembles the mutation op-eration in evolutionary programming. Note that inPSO, however, the \mutation" operator is guided bythe particle's own \ying" experience and bene�ts bythe swarm's \ying" experience. In another words,PSO is considered as performing mutation with a \con-science", as pointed out by Eberhart and Shi [3].4. EXPERIMENTAL RESULTS OFTHE PSO METHOD IN CHANG-ING SEARCH SPACESWe consider three simple and well-known optimizationtest problems [12] to check the performance of the PSOmethod. During the evolution of the swarm we addnoise in terms of multiplying the population by a rota-tion matrix (and thus rotating the whole search spaceincluding the global minimizer) and adding a Gaus-sian distributed random term to the function values,according to Relation (1). The rotation angle is takenrandomly between 0 and 360 degrees, and the standarddeviation � of the random term added to the functionvalues increases from 0 to 0:9. For each test function, apopulation of size 20 and default values for the param-eters c1 and c2 of PSO have been used: c1 = c2 = 0:5.There have been done 100 runs for each di�erent valueof the noise's standard deviation. A time decreasinginertia weight value, i.e. starting from 1 and graduallydecreasing towards 0:4, has been found to work betterthan using a constant value. This is because large in-ertia weights help to �nd good seeds at the beginningof the search, while, later, small inertia weights facil-itate a �ner search. The desired accuracy for �ndingthe global minimum has been 10�3.The �rst test function considered is the Rosen-brock function which is de�ned by the formula [12]:f(x1; x2) = (104x1x2 � 1)2 + (1� x1)2; (4)and has the global minimizer x� = (1; 1) with function



value f(x�) = 0. The initial population has been takeninto the interval [0; 2]2 for each run and the resultsare given in Table 1. Each row of the Table containsNoise's St. Dev. � Success Rate Mean Cycles0 100% 406.900.1 76% 2222.840.2 88% 2159.950.3 88% 2064.810.4 76% 1623.210.5 60% 2136.860.7 40% 2030.400.9 76% 1684.57Table 1. Analysis of the results for the minimizationof the Rosenbrock function.the success rate and the mean number of PSO cyclesneeded to detect the global minimizer of the functionfor the corresponding values of noise standard devia-tion �. The zero value of standard deviation in the�rst row of Table 1, denotes the plain PSO perfor-mance (without noise addition and rotation). The restcolumns refer to results obtained by adding noise withstandard deviation values between 0:1 and 0:9, whilesimultaneously rotating the search space by a randomangle. It is clear that increasing the noise standard de-viation causes no serious instability to the method anddoes not decrease signi�cantly the success rate, exceptfor some values of the variance between 0:5 and 0:7,where a remarkable decrease at the success rate is ob-served. Failures denote that PSO has not been able to�nd the global minimizer into the maximum numberof iterations (cycles of the method) which has been setto 5000. From these results one suspects that PSO isa well noise tolerant method.The same good behaviour is observed for the LevyNo.5 function, which is given by the formula [10]:f(x) = 5Xi=1 i cos[(i+ 1)x1 + i]� 5Xj=1 j cos[(j + 1)x2 + j] ++(x1 + 1:42513)2 + (x2 + 0:80032)2 ; (5)where �10 � xi � 10; i = 1; 2. There areabout 760 local minimizers and one global minimizerx� = (�1:3068;�1:4248) with function value f(x�) =�176:1375. The large number of local optimizersmakes extremely di�cult for various methods to locatethe global minimizer. The results for this function aregiven in Table 2. The initial population has been takeninto the interval [�2; 2]2 for each run. As can be seen,addition of noise even of large standard deviation doesnot a�ect the success rate of the method signi�cantlyand in some cases it helps avoiding local minima of theobjective function.Proportional results are obtained in the third ex-periment. The test function considered here is the

Noise's St. Dev. � Success Rate Mean Cycles0 100% 624.030.1 100% 992.000.2 100% 1393.600.3 96% 894.790.4 100% 984.640.5 96% 1255.830.7 100% 1204.200.9 96% 1498.33Table 2. Analysis of the results for the minimizationof the Levy No.5 function.Beale function [12]:f(x1; x2) = [y1 � x1(1� x2)]2 + [y2 � x1(1� x22)]2 ++[y3 � x1(1� x32)]2; (6)where y1 = 1:5; y2 = 2:25 and y3 = 2:625. This func-tion has a global minimizer x� = (3; 0:5) with functionvalue f(x�) = 0. The results for this function are ex-hibited in Table 3.Noise's St. Dev. � Success Rate Mean Cycles0 90% 1807.920.1 96% 1963.290.2 96% 1543.040.3 88% 2125.310.4 88% 2153.000.5 68% 1960.880.7 56% 2453.000.9 80% 2037.80Table 3. Analysis of the results for the minimizationof the Beale function.If we decrease, now, the desired accuracy to 10�6,we observe that the swarm moves closely to the globalminimizer of each test function but it cannot �nd itwith the desired accuracy. This is more clear if weadd an o�set to the original global minimizer's posi-tion, at each iteration, as performed by Angeline [1].The mean function values of the swarm for each itera-tion, after 100 runs, for the aforementioned test prob-lems, are exhibited in Figs. 1, 2 and 3. Di�erent linestyles in the �gures correspond to di�erent values ofthe o�set. For all runs, a value of the noise varianceequal to 0:01 was used. The vertical axis of each plot islogarithmically scaled to facilitate visual comparison.In Figs. 1 and 3 the logarithm log10 of the swarm'smean function value for 100 runs is exhibited, while inFig. 2 the logarithm log10 of the swarm's mean abso-lute error is exhibited, due to the negative values ofthe Levy No.5 function.It is clear now that noise addition causes no cru-cial instability to the PSO algorithm. Even in very
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Figure 1. Mean �tness value for the Rosenbrock func-tion.scattered landscapes and multimodal functions the re-sults are very promising. Thus, it would be very in-teresting to check the performance of PSO in real{lifeapplications where noise to the input data and to thefunction values is almost always present.5. CONCLUSIONSA study of the ability of the Particle Swarm opti-mization method to cope with continuously changingenvironments has been given. The experimental re-sults indicate that in the presence of noise and whenthe landscape is continuously changing PSO methodis very stable and e�cient. In fact, in many cases,the presence of noise seems to help PSO to avoid localminima of the objective function and locate the globalone. Even in the cases where the standard deviationof the noise was large and a �xed o�set was added tothe global minimizer's position at each iteration, PSOwas able to move closely to the global minimizer's po-sition. Thus, preliminary results indicate that PSOhas the ability to cope with noisy and continuouslychanging environments. Further work shall be doneto check the performance of PSO in other dynamicenvironments and real{life applications.References[1] P. Angeline, Tracking extrema in dynamic en-vironments, Proc. Int. Conf. Evol. Progr., Indi-anapolis, Indiana, USA, 1997.[2] G.E.P. Box, M.E. Muller, A note on the gen-eration of random normal deviates, Ann. Math.Statistics, 29, 1958, 610{611.
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Figure 2. Mean �tness value for the Levy No.5 func-tion.
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