Z-Fighting aware Depth Peeling

Andreas A. Vasilakis and Ioannis Fudos
{abasilak, fudos}@cs.uoi.gr
Dept. of Computer Science, University of Ioannina, Greece

1. Abstract

We introduce a methodology for handling Z-fighting in depth peeling techniques. Our method is compatible with commodity graphics hardware. We quantitatively and qualitatively compare the resulting depth peeling Z-aware variants with other depth peeling techniques that have been presented in the literature with respect to performance, robustness and scope. Finally, we provide visual results for a number of applications such as transparency and translucency and a demonstration video.

2. Depth Peeling

- An efficient process of capturing the entire topological and geometric information of a 3D scene peeling off one or more layers per pass.
- Applications: Transparency, Volume rendering and tests, CSG, Trimming, Collision detection
- Classification based on the #peeling layers/pass:
 1. One layer: \(O(n)\)
 2. K layers: \(O(n/k)\), extra memory, primitive pre-sorting

K-Buffer (KB) [2]: RMW hazards
Stencil Routed A-Buffer (SRAB) [3]: MSAA not supported
- None of these methods can correctly peel all fragments due to Z-fighting.

3. Z-fighting

- Two or more primitives have the same z-values.
- Manifests itself through:
 1. intersecting surfaces that result in intersecting triangles that belong to the same or different objects
 2. overlapping surfaces, i.e. surfaces containing one or more triangles that are coplanar and overlap.

4. Proposed Methods

- Need one extra rendering pass
- Compatible with commodity graphics hardware

F2B_ZF: Extending F2B algorithm

1. using max blending
 (a) If all fragments at this depth have been peeled extract next depth layer else stay at this layer.
 (b) Extract color of the fragment with the largest ID [4]

2. using add/max blending
 From the remaining, not peeled z-fighting fragments:
 (a) Calculate the sum of them
 (b) Find which of them has the largest ID.

F2BKZ_F: Combining F2B with KB
- Approximate method
- Faster for scenes with serious z-fighting artifacts

Algorithm

1. Extract next depth layer using the F2B.
2. Extract k fragments located at the current depth layer using a variation of KB.

5. Results

Following tables show a comparison in terms of peeling accuracy, performance and memory storage of the F2B, KB and SRAB methods and both of our proposed alternatives for a scene consisting of [1, 4, 8, 12] Bunnies (69,451 triangles) at a 1024x768 viewport on an nVidia Geforce GTX 480.

Order independent transparency of three differently rendered Bunnies placed at the same position.

6. Future Work

The idea can be easily extended to other popular depth peeling techniques such as:
- Dual depth peeling [5]
- Multi K-buffer [6]
- Bucket peeling [7]

7. References

8. Software