
1. Everitt, C., 2001. “Interactive Order-Independent Transparency”, Tech. Report,
NVIDIA Corporation.

2. Bavoil, L., Callahan, S. P., Lefohn, A., Comba, J. A. L. D., and Silva, C. T. 2007.
“Multi-fragment effects on the GPU using the k –buffer”. Proceedings of the
2007 Symposium on Interactive 3D graphics and games - I3D ’07.

3. Myers, K., and Bavoil, L. 2007. “Stencil Routed A-Buffer”, SIGGRAPH ’07: ACM
SIGGRAPH 2007 sketches.

4. Kessenich, J., 2009. The Opengl Shading Language version: 1.50, Document
revision: 11.

5. Bavoil, L., and Meyers, K. 2008. “Order independent transparency with dual
depth peeling”. Tech. Report, NVIDIA Corporation.

6. Liu, B., Wei, L.-Y., Xu, Y.-Q., and Wu, E. 2009. “Multi-layer depth peeling via
fragment sort”. 11th IEEE International Conference on CAD/Graphics.

7. Liu F., Huang M.-C., Liu X.-H., and Wu E.-H.. 2009. “Efficient depth peeling via
bucket sort”. In Proceedings of the Conference on High Performance Graphics.

7. References

2. Depth Peeling

• An efficient process of capturing the entire topological
and geometric information of a 3D scene peeling off
one or more layers per pass.

• Applications: Transparency, Volume rendering and
tests, CSG, Trimming, Collision detection

• Classification based on the #peeling layers/pass:

1. One layer: O(n)

Front to Back (F2B) [1]: Slow

2. K layers: O(n/k), extra memory, primitive pre-sorting

K-Buffer (KB) [2] : RMW hazards

Stencil Routed A-Buffer (SRAB) [3]: MSAA not supported

• None of these methods can correctly peel all fragments
due to Z-fighting.

8. Software

http://www.cs.uoi.gr/~fudos/siggraph2011.html

Z-Fighting aware Depth Peeling
Andreas A. Vasilakis and Ioannis Fudos

{abasilak, fudos}@cs.uoi.gr
Dept. of Computer Science, University of Ioannina, Greece

Multi-pass depth peeling with Z-fighting correction for
order independent transparency.

1st pass 2nd pass 3rd pass background

The difference of the translucency effect on two instances
(placed at the same position) of the Dragon model without
(left) and with (right) z-fighting correction.

Order independent transparency of three differently
rendered Bunnies placed at the same position.

5. Results

Following tables show a comparison in terms of peeling
accuracy, performance and memory storage of the F2B, KB and
SRAB methods and both of our proposed alternatives for a
scene consisting of [1, 4, 8, 12] Bunnies (69,451 triangles) at a
1024×768 viewport on an nVidia Geforce GTX 480.

Figure 2

Figure 3

Figure 4

1. Abstract
We introduce a methodology for handling Z-fighting in depth peeling techniques. Our method is compatible with commodity graphics hardware. We quantitatively and qualitatively compare
the resulting depth peeling Z-aware variants with other depth peeling techniques that have been presented in the literature with respect to performance, robustness and scope. Finally, we
provide visual results for a number of applications such as transparency and translucency and a demonstration video.

6. Future Work
The idea can be easily extended to other popular depth
peeling techniques such as:
• Dual depth peeling [5]
• Multi K-buffer [6]
• Bucket peeling [7]

3. Z-fighting

• Two or more primitives have the same z- values.

• Manifests itself through:

1. intersecting surfaces that result in intersecting
triangles that belong to the same or different objects

2. overlapping surfaces, i.e. surfaces containing one or
more triangles that are coplanar and overlap.

The effect of Z-fighting after one step of depth peeling using
F2B and our F2B_ZF.

• Need one extra rendering pass
• Compatible with commodity graphics hardware

4. Proposed Methods

• Approximate method
• Faster for scenes with serious z-fighting artifacts

Algorithm

1. Extract next depth layer using the F2B.
2. Extract k fragments located at the current depth layer

using a variation of KB.

F2BKB_ZF: Combining F2B with KB

Algorithm

1. using max blending

(a) If all fragments at this depth have been peeled extract
next depth layer else stay at this layer.

(b) Extract color of the fragment with the largest ID [4]

2. using add/max blending

From the remaining, not peeled z-fighting fragments:
(a) Calculate the sum of them
(b) Find which of them has the largest ID.

F2B_ZF: Extending F2B

Figure 1

