
Enumerating minimal subset feedback vertex sets∗

Fedor V. Fomin† Pinar Heggernes† Dieter Kratsch‡

Charis Papadopoulos§ Yngve Villanger†

Abstract

The Subset Feedback Vertex Set problem takes as input a
pair (G,S), where G = (V,E) is a graph with weights on its vertices,
and S ⊆ V . The task is to find a set of vertices of total minimum
weight to be removed from G, such that in the remaining graph no
cycle contains a vertex of S. We show that this problem can be solved
in time O(1.8638n), where n = |V |. This is a consequence of the main
result of this paper, namely that all minimal subset feedback vertex
sets of a graph can be enumerated in time O(1.8638n).

1 Introduction

Given a graph G = (V,E) and a set S ⊆ V , a subset feedback vertex set of
(G,S) is a set X ⊆ V such that no cycle in G[V \X] contains a vertex of S.
A subset feedback vertex set is minimal if no proper subset of it is a subset
feedback vertex set. Given a weighted graph G with positive real weights on
its vertices and S as input, the Subset Feedback Vertex Set problem
is the problem of finding a subset feedback vertex set X of (G,S) such that
the sum of weights of the vertices in X is minimized.

Subset Feedback Vertex is a generalization of several well-known
problems. When S = V , it is equivalent to the classical NP-hard Feedback
Vertex Set problem [13]. When |S| = 1, it generalizes theMultiway Cut
problem. Given a set T ⊆ V , called terminals, a multiway cut of (G,T) is

∗This work is supported by the Research Council of Norway. A preliminary version of
this work was presented at WADS 2011 [8].

†Department of Informatics, University of Bergen, Norway. Emails: {fedor.fomin,
pinar.heggernes, yngve.villanger}@ii.uib.no

‡LITA, Université Paul Verlaine – Metz, France. Email: kratsch@univ-metz.fr
§Department of Mathematics, University of Ioannina, Greece. Email:

charis@cs.uoi.gr

1

a set of vertices whose removal from G disconnects every pair of terminals.
Given a graph G = (V,E), with weights on its vertices, and T ⊆ V , the
Multiway Cut problem is the problem of computing a multiway cut of
total minimum weight. We will see in the last section that this is a special
case of Subset Feedback Vertex Set. The unweighted versions of the
three above mentioned problems are obtained when the weight of every
vertex of the input graph is 1. For further results on variants of Multiway
Cut see [1, 14], and for connections between variants of Subset Feedback
Vertex Set and variants of Multiway Cut see also [6].

Subset Feedback Vertex Set was first studied by Even et al. who
obtained a constant factor approximation algorithm [7]. In this paper we
are interested in the exact solution of Subset Feedback Vertex Set.
This does not seem to have been studied before, whereas there are a series
of exact results on Feedback Vertex Set. Razgon [17] gave the first
non-trivial exact algorithm for unweighted Feedback Vertex Set, which
was later improved by Fomin et. al. [9, 12]. Currently, a minimum feedback
vertex set in an unweighted graph can be computed in time O(1.7347n)
[12]. Furthermore, all minimal feedback vertex sets can be enumerated in
O(1.8638n) time [9], which implies that a minimum weight feedback vertex
set can be computed in time O(1.8638n). So far, this is the best known algo-
rithm for Feedback Vertex Set. We would also like to remark that the
unweighted version of Subset Feedback Vertex Set was only recently
shown to be fixed parameter tractable [6], whereas the unweighted version
of Feedback Vertex Set has long been known to be fixed parameter
tractable [2, 3, 5, 16, 20].

In this paper, we show that Subset Feedback Vertex Set can be
solved in time O(1.8638n). Prior to our result, no algorithm breaking the
trivial 2nnO(1)-time barrier has been known, even for the unweighted version
of the problem. As our main result, we give an algorithm that enumerates all
minimal subset feedback vertex sets of (G,S) and runs in time O(1.8638n).
Thus our running time matches the best known algorithm for enumerating
all minimal feedback vertex sets [9]. While the general branching approach
for enumerating the subset feedback vertex sets is similar to the one enumer-
ating the feedback vertex sets [9], we introduce and use here new ideas that
are needed for the subset variant of the problem. Our enumeration algo-
rithm can be trivially adapted to give an algorithm computing a minimum
weight subset feedback vertex set in time O(1.8638n). Furthermore, as we
explain in Section 5, our algorithm can be used to enumerate all minimal
multiway cuts within the same running time. As a consequence, we are also
able to solve Multiway Cut in time O(1.8638n). To our knowledge, this is

2

the first non-trivial exact algorithm for the solution of this latter problem,
even for its unweighted version.

Before we present the principal results of the paper in Sections 3 and
4, we show in the next section that Subset Feedback Vertex Set is
NP-hard when the input graph G is restricted to be a split graph, even for
the unweighted version of the problem. As split graphs form a subclass of
chordal graphs, this implies the hardness of the problem also on chordal
graphs. Hence we get an interesting contrast to the fact that Feedback
Vertex Set can be solved in polynomial time on chordal graphs [4, 19].

2 Preliminaries

All graphs in this paper are undirected and with weights on their vertices.
All graphs are simple unless explicitly mentioned; in particular input graphs
are always simple, but during the course of our algorithm, multiple edges
are introduced due to contraction of edges.

A graph is denoted by G = (V,E) with vertex set V and edge set E. We
use the convention that n = |V | and m = |E|. When a graph or subgraph
G is mentioned without specifying its vertex and edge sets, we use V (G)
and E(G) to denote these sets, respectively. Each vertex v ∈ V has a
weight that is a positive real number. For a vertex set X ⊆ V the weight
of X is the sum of the weights of all vertices in X, and the subgraph of G
induced by X is denoted by G[X]. The neighborhood of a vertex v of G is
N(v) = {x | {v, x} ∈ E}. For X ⊆ V , N(X) =

∪
x∈X N(x) \ X. In this

paper, we distinguish between paths (cycles) and induced paths (induced
cycles). A path (cycle) of G is induced if there are no edges in G between
non-consecutive vertices of the path (cycle). An edge of G is called a bridge
if its removal increases the number of connected components. A forest is a
graph that contains no cycles, and a tree is a forest that is connected. The
contraction of edge {u, v} removes u and v from the graph, and replaces
them with a new vertex that is incident with every edge that was incident
with u or v. If we say that edge {u, v} is contracted to u, then u takes the
role of the new vertex after the contraction. Note that multiple edges might
result from this operation.

Given a graph G and a vertex subset S of G, a subset feedback vertex
set of (G,S) is a vertex subset of G whose removal from G ensures that no
cycle in the remaining graph contains a vertex of S. Note that a minimum
weight (or simply minimum) subset feedback vertex set is dependent on the
weights of the vertices, whereas a minimal subset feedback vertex set is

3

only dependent on the vertices and not their weights. Clearly, both in the
weighted and the unweighted versions, a minimum subset feedback vertex
set must be minimal.

We conclude this section by providing an NP-hardness result for Subset
Feedback Vertex Set on split graphs. A graph G = (V,E) is a split
graph if V can be partitioned into a clique C and an independent set I,
where (C, I) is called a split partition of G. Split graphs form a subclass of
the larger and widely known graph class of chordal graphs, which are the
graphs that do not contain induced cycles of length 4 or more as induced
subgraphs. Interestingly, although Feedback Vertex Set is solvable in
polynomial time on chordal graphs [4, 19], a simple reduction from Vertex
Cover shows that Subset Feedback Vertex Set is NP-hard on chordal
graphs, even on their subclass split graphs.

The decision version of unweighted Subset Feedback Vertex Set
takes as input a graph G = (V,E), a set S ⊆ V , and an integer k, and asks
whether there is a subset feedback vertex set of (G,S) of size at most k.

Theorem 2.1. The decision version of Subset Feedback Vertex Set
is NP-complete on unweighted split graphs.

Proof. Given G = (V,E), S ⊆ V , and X ⊆ V , checking whether X is
a subset feedback vertex set of (G,S) amounts to checking whether every
edge incident to a vertex of S \X is a bridge in G[V \X]. As this can easily
be done in polynomial time, the problem is in NP. We will give a polynomial-
time reduction to it from the classical NP-complete problem [15] Vertex
Cover: given a graph G = (V,E) and an integer k, does G have a vertex
cover of size at most k, i.e, is there a set Y ⊆ V with |Y | ≤ k, such that
every edge in E has an endpoint in Y ?

Let (G, k) be an instance of Vertex Cover, where G = (V,E) is an
arbitrary graph with n vertices and m edges. We construct a split graph
H = (V ′, E′) with split partition (C, I) as follows. V ′ = C∪I contains n+m
vertices: for each vertex u ∈ V , there is a vertex u′ ∈ C, and for each edge
{v, w} ∈ E, there is a vertex uvw ∈ I. E′ is defined so that vertices in C
are pairwise adjacent, and each vertex uvw of I has exactly two neighbors:
vertices v′ and w′ in C. Consequently, C is a clique and I is an independent
set.

We claim that G has a vertex cover of size at most k if and only if (H, I)
has a subset feedback vertex set of size at most k. Assume that Y ⊆ V is a
vertex cover of G of size at most k. In H, let Y ′ ⊆ C such that u′ ∈ Y ′ if
and only if u ∈ Y . Now Y ′ is a subset feedback vertex set of (H, I), since

4

every vertex of I has degree at most 1 in H[V ′ \Y ′] and therefore cannot be
involved in any cycle. For the opposite direction, let X ′ be a subset feedback
vertex set of (H, I) of size at most k. Suppose X ′ contains a vertex uvw of
I. If X ′ contains one of the two neighbors v′ or w′ of uvw then X ′ is not
minimal, and X ′ \ {uvw} is also a subset feedback vertex set of (H, I). If
X ′ does not contain v′ or w′, then we can simply replace uvw with v′ and
obtain another subset feedback vertex set of (H, I) of the same size. Hence
we can assume that X ′ ⊆ C. Now, taking X ⊆ V such that u ∈ X if and
only if u′ ∈ X ′, we can see that X is a vertex cover of G since X contains
at least one endpoint of each edge in G.

In the next two sections we present our principal results: a branching
algorithm to enumerate all minimal subset feedback vertex sets of a given
graph, and the analysis of its running time combining induction and Measure
& Conquer.

3 Enumerating all minimal subset feedback vertex
sets

Let G = (V,E) be an arbitrary graph and let S ⊆ V . In this section we
give an algorithm that enumerates all minimal subset feedback vertex sets
of (G,S).

We define an S-forest of G to be a vertex set Y ⊆ V such that no cycle in
G[Y] contains a vertex of S. An S-forest Y is maximal if no proper superset
of Y is an S-forest. Observe that X is a minimal subset feedback vertex
set if and only if Y = V \ X is a maximal S-forest. Thus, the problem
of enumerating all minimal subset feedback vertex sets is equivalent to the
problem of enumerating all maximal S-forests. Consequently, we present an
algorithm for enumerating all maximal S-forests of the input graph G.

Our algorithm is a branching algorithm consisting of a sequence of re-
duction and branching rules. The running time of the algorithm is up to
a polynomial factor proportional to the number of generated subproblems,
or to the number of nodes of the branching tree. For more information on
branching algorithms and Measure & Conquer analysis of such algorithms
we refer to [11].

In our algorithm each subproblem corresponding to a leaf of the branch-
ing tree will define an S-forest, and every maximal S-forest will be defined
by one leaf of the branching tree. Each of the reduction and branching rules
will reduce the problem instance by making progress towards some S-forest.

5

To incorporate all information needed in the algorithm we use so-called
red-blue S-forests. Given a set B ⊆ V of blue vertices with B ∩ S = ∅ and
a set R ⊆ V of red vertices with R ⊆ S, a maximal red-blue S-forest of G
is a maximal S-forest Y of G such that R ∪ B ⊆ Y . If the set R ∪ B of
vertices has the property that no two red vertices, or no two blue vertices,
are adjacent, then we say that the red-blue coloring of these vertices is a
proper 2-coloring. Let RBF (G,S,R,B) be the set of all maximal red-blue S-
forests in G. Hence a maximal S-forest Y is an element of RBF (G,S,R,B)
if R ∪ B ⊆ Y . Observe that the problem of enumerating all maximal S-
forests of G is equivalent to enumerating all elements of RBF (G,S, ∅, ∅).
We refer to the vertices of V \ (R ∪ B) as non-colored. Before proceeding
with the description of the algorithm, we need the following observations
concerning the set RBF (G,S,R,B).

Observation 3.1. Let Y = R ∪ B be an S-forest of G that is an element
of RBF (G,S,R,B). Let G′ be the graph obtained from G[Y] by contracting
every edge whose endpoints have the same color, giving the resulting vertex
that same color, and removing self loops and multiple edges. Then G′ is a
forest. Moreover, red and blue vertices form a proper 2-coloring of G′.

Proof. Since Y is an S-forest in G and Y = R ∪ B, we have that any cycle
in G[Y] contains only blue vertices. Thus, each cycle is contracted to a blue
vertex in G′. Since no cycles remain in G′, G′ is a forest. If there is an
edge between two vertices of the same color, then this edge would have been
contracted, and thus the red-blue coloring of G′ is a proper 2-coloring.

Let Y be an S-forest of G and let u ∈ V \ Y . If G[Y ∪ {u}] contains an
induced cycle Cu that contains u and some vertex of S, then we say that Cu

is a witness cycle of u.

Observation 3.2. Let Y be a maximal S-forest of G. Then every vertex
u ∈ V \ Y has a witness cycle Cu.

Proof. Let Y be a maximal S-forest, and thus G[Y ∪ {u}] has a cycle C
containing u and some vertex v ∈ S. Note that u and v might be the same
vertex. Since C contains v, we have that v has at least two neighbors, x and
y that belong to C. Let P be a shortest x, y-path in G[V (C) \ {v}]. Then
G[V (P) ∪ {v}] contains an induced cycle C ′. This cycle contains v since P
is a shortest x, y-path. It also contains u since no such cycle exists in G[Y].
Thus C ′ = Cu is a witness cycle.

We are ready to proceed with the description of the enumeration algo-
rithm, which is given by a sequence of reduction and branching rules. We

6

always assume that the rules are performed in the order in which they are
given (numbered), such that a rule is only applied if none of the previous
rules can be applied.

Initially all vertices of G are non-colored. Vertices that are colored red
or blue have already been decided to be in every maximal S-forest that
is an element of RBF (G,S,R,B). For a non-colored vertex v, we branch
on two subproblems, and the cardinality of RBF (G,S,R,B) is the sum of
cardinalities of the sets of maximal S-forests that contain v and those that do
not. The first set is represented by coloring vertex v red or blue, and second
set is obtained by deleting v. This partitioning defines a naive branching,
where a leaf is reached when there is at most one maximal S-forest in the
set. We define the following two procedures, which take as input vertex v
and RBF (G,S,R,B).

Coloring of vertex v:

if v ∈ S then proceed with RBF (G,S,R ∪ {v}, B);

if v /∈ S then proceed with RBF (G,S,R,B ∪ {v}).

Deletion of vertex v:

proceed with RBF (G[V \ {v}], S \ {v}, R,B).

After the description of each of the Rules 1-12, we argue that the rule
is sound, which means that there is a one-to-one correspondence between
the maximal S-forests in the problem instance and the maximal S-forests in
the instances of the subproblem(s). We start to apply the rules on instance
RBF (G,S, ∅, ∅).

Rule 1. If G has a vertex of degree at most 1 then remove this vertex from
the graph.

Rule 1 is sound because a vertex of degree zero or one does not belong
to any cycle. Furthermore, when a vertex of degree zero or one is removed,
every vertex that previously belonged to a cycle still belongs to a cycle and
maintains degree at least two.

Note that removal of vertex v means v belongs to every element of
RBF (G,S,R,B). We emphasize that there is a crucial difference to Dele-
tion of vertex v which means that the non-colored vertex v belongs to no
element of RBF (G,S,R,B). Such a removal of a vertex belonging to every
element of RBF (G,S,R,B) is done in Rules 1, 4 and 5 and it necessitates
the backtracking part of our algorithm to be explained later.

7

Rule 2. If R = ∅, and S ̸= ∅ then select an arbitrary non-colored vertex
v ∈ S, and branch into two subproblems. One subproblem is obtained by
applying Deletion of v and the other by Coloring of v.

Rule 2 is sound for the following reason. Only vertices of S are colored
red. Thus if R = ∅, all vertices of S are non-colored vertices. For every
maximal S-forest Y , we have that either v ∈ Y (corresponding to Coloring
of v), or v ̸∈ Y (corresponding to Deletion of v).

After the application of Rule 2 there always exists a red vertex, unless
S = ∅ when we reached a leaf of the branching tree. For many of the
following rules we need to fix a particular vertex t of the S-forest R∪B. We
call it pivot vertex t. If no pivot vertex exists (at some step a pivot vertex
might be deleted), we apply the following rule to select a new one.

Rule 3. If there is no pivot vertex then select a red vertex as new pivot
vertex t.

The following reduction rule is to ensure (by making use of Observa-
tion 3.1) that the graph G[R ∪ B] induces a forest and that the current
red-blue coloring is a proper 2-coloring of this forest.

Rule 4. If there are two adjacent red vertices u, v, then contract edge {u, v}
to u to obtain a new graph G′. Let Z be the set of non-colored vertices that
are adjacent to u via multiple edges in G′. If v was the pivot then use u as
new pivot t. Proceed with problem instance RBF (G′ \ Z, S \ ({v} ∪ Z), R \
{v}, B).

Observe that Rule 4 corresponds to applying Deletion of w for every
vertex w of Z. Let us argue why this rule is sound. If a vertex w belongs
to Z, then because u, v ∈ S, we have that w cannot be in any S-forest
of G. Thus applying Deletion of this vertex does not change the set of
maximal S-forests. Finally, every induced cycle of length more than 3 in G
corresponds to a cycle of length at least 3 in the reduced instance.

Rule 5. If there are two adjacent blue vertices u, v, then contract edge {u, v}
to u to obtain a new graph G′. Let Z be the set of non-colored vertices of
S that are adjacent to u via multiple edges in G′. New problem instance is
RBF (G′ \ Z, S \ Z,R,B \ {v}).

Observe that Rule 5 corresponds to applying Deletion of w for every
vertex w of Z. No vertex of Z can be in an S-forest containing u and v.
Thus applying Deletion of the vertices of Z is sound. As with the previous
rule, every induced cycle of length more than 3 in G corresponds to a cycle

8

of length at least 3 in the reduced instance. We conclude that Rule 5 is
sound.

Rule 6. If a non-colored vertex v has at least two distinct neighbors w1, w2

in the same connected component of G[R ∪B], then apply Deletion of v.

Let us first argue that if none of Rules 1–6 can be applied to the current
instance then R ∪ B induces a properly 2-colored forest. If there were a
cycle in G[R ∪ B] then the last non-colored vertex of the cycle would have
two colored neighbors in the same connected component of G[R ∪B] which
is impossible by Rule 6. Moreover Rules 4 and 5 ensure that the red-blue
coloring is a proper 2-coloring of this forest. In the following we will call
such a forest (tree) a red-blue forest (tree). Observe that any colored path
is a red-blue path.

For the soundness of Rule 6 note that the connected component of G[R∪
B] that contains w1 and w2 is a red-blue tree T . Let w1, u1, . . . , up = w2,
p ≥ 1, be the unique induced path in T between w1 and w2. Then either
w1 or u1 is a red vertex, and thus belongs to S. Hence no element of
RBF (G,S,R,B) contains v. This shows that Rule 6 is sound.

Let Tt be the vertices of the connected component of G[R∪B] containing
the pivot vertex t. Consider a non-colored vertex v adjacent to a vertex of
the red-blue tree G[Tt]. Observe that v has exactly one neighbor w in Tt,
by Rule 6. By Observation 3.2, every vertex u, which is not in a maximal
S-forest Y , should have a witness cycle Cu such that all vertices of Cu except
u are in Y . Hence every vertex u ̸∈ Y has at least two neighbors in Y . Since
we cannot apply Rule 6 on the vertex v, this implies that if v is not in Y ,
at least one of the vertices from N(v) \ Tt is in Y .

For a non-colored vertex v adjacent to a vertex of Tt, we define vertex
set P (v) to be the set of non-colored vertices adjacent to v or reachable from
v via induced red-blue paths in G[V \ Tt]. Let w be the unique neighbor
of v in Tt. We define vertex set PW (v) to be the subset of P (v) consisting
of every vertex x of P (v) for which at least one of the following conditions
holds:

P1 {w, v, x} ∩ S ̸= ∅,

P2 x ̸∈ N(w), or

P3 there exists an induced red-blue path from x to v inG[V \Tt] containing
at least one red vertex.

9

a

v

c

d

b

w

t

Figure 1: Let S ∩ {a, b, c, d, v} = ∅ and set P (v) = {a, b, c, d}. Vertex
a ∈ PW (v) by (P2), d ∈ PW (v) by (P3). Vertices b and c do not belong to
PW (v).

See Fig. 1 for an example of sets P (v) and PW (v). The intuition behind
the definition of PW (v) is the following. If a vertex v does not belong to
any maximal S-forest Y of G, then there is a witness cycle Cv. This cycle
Cv may pass through some connected components of G[R ∪ B] and some
non-colored vertices. If we traverse Cv starting from v and avoiding Tt, then
the first non-colored vertex we meet will be a vertex of PW (v). Note that
the vertex set PW (v) can easily be computed in polynomial time.

Observation 3.3. For every vertex x ∈ PW (v)∩N(Tt), there is an induced
cycle containing x and v and at least one vertex of S. Furthermore this is a
cycle in the subgraph of G induced by the union of Tt∪{v, x} and the vertex
set of a red-blue path from v to x, and thus it contains only two non-colored
vertices, namely x and v.

Proof. The fact that x and v have neighbors in Tt, implies that the subgraph
of G induced by the union of Tt∪{v, x} and the vertex set of a red-blue path
from v to x, contains an induced cycle C. This cycle C contains v and the
neighbor w of v in Tt. By Rule 6, if there is an induced cycle containing non-
colored vertex v and a vertex of S, then this cycle should contain another
non-colored vertex. In the induced subgraph the only non-colored vertex
except v is x, and thus C contains x as well. Because x ∈ PW (v), at least
one the properties P1–P3 should hold. If one of the vertices w, v, x is in
S, we are done. If x ̸∈ N(w), then C contains more than one vertex from
Tt, and thus at least one red vertex from S. The only remaining case is
{v, w, x} ∩ S = ∅, x ∈ N(w), and there is a red-blue path P from v to x in
G[V \ Tt] containing a red vertex. But every red vertex is in S.

10

Observation 3.4. Let v be a non-colored vertex adjacent to a vertex of Tt.
If there is an induced cycle C in G that contains v and some vertex of S,
then C contains also at least one vertex of P (v).

Proof. First note that C does not have to pass through the vertices of Tt.
By Rule 6, C contains at least one non-colored vertex besides v. The vertex
v has two neighbors in C, let x be a neighbor of v on C not equal to w, the
neighbor of v in Tt. If x ∈ P (v), we are done. If x is a red or blue vertex
then x belongs to some red-blue tree T of G[B ∪ R]. Cycle C has to leave
T at some point, and thus to enter a vertex of P (v).

Lemma 3.5. A witness cycle Cv of a vertex v contains a vertex of PW (v).

Proof. Let us assume that v is not contained in a maximal S-forest Y , and
let Cv be a witness cycle for v. By Observation 3.4, Cv contains at least one
vertex x of P (v).

If x ∈ PW (v), we are done with the proof. Otherwise, let x ∈ P (v) \
PW (v). As a consequence, {v, w, x} ∩ S = ∅, x is adjacent to w, and every
induced red-blue path from v to x in G[V \ Tt] contains only blue vertices.

We will first show that Cv contains a vertex x′ ̸= x such that x′ ∈
P (v) \ PW (v). Let us trace the induced cycle Cv, starting from v on the
path to x using only blue vertices. By definition, no vertex on the path from
v to x is contained in S. Observation 3.2 and the definition of witness cycle
imply that Cv contains a vertex of S. Continue now in the same direction
along Cv until a vertex of S is reached. The cycle has to return to v without
passing through the vertex w; otherwise the edge {v, w} would be a chord
of Cv contradicting the fact that Cv is an induced cycle. The path along the
cycle Cv from x to v containing a vertex of S cannot be a red-blue path as
this contradicts the definition of x. As a consequence, Cv contains a second
vertex x′ of P (v) \ PW (v).

Let Y be a maximal S-forest. Since w is colored blue, Y contains w.
Further we have Cv \Y = {v} due to the maximality of Y . Denote by P the
path from x to x′ on Cv not containing v. Now we have a contradiction since
the graph G[P ∪ {w}] contains the edges {x,w} and {x′, w} and induces a
cycle containing a vertex of S.

The following rules depend on the cardinality of the set PW (v).

Rule 7. If PW (v) = ∅ then apply Coloring of v.

Rule 8. If PW (v) = {x} then branch into two subproblem instances: one
obtained by applying Deletion of v and then Coloring of x, and the other
obtained by applying Coloring of v.

11

Rules 7 and 8 are sound due to Lemma 3.5.

Rule 9. If |PW (v)| ≥ 2 and PW (v) ⊆ N(Tt) then branch into two subprob-
lem instances: one obtained by applying Coloring of v and then Deletion
of x for all vertices x ∈ PW (v), and the other obtained by Deletion of v.

To see that Rule 9 is sound, observe that vertex v is either colored,
or deleted. By Observation 3.3, for each vertex x ∈ PW (v) ∩ N(Tt) the
subgraph of G induced by x, v, Tt and the vertex set of a red-blue path from
x to v contains a cycle with a vertex of S and x and v as its only non-colored
vertices. Thus either x or v has to be deleted, for every x ∈ PW (v)∩N(Tt).
When Rule 9 can not be applied, at least one of the vertices in PW (v) is
not contained in N(Tt).

Rule 10. If PW (v) = {x1, x2} and x1 ̸∈ N(Tt) then branch into three
subproblem instances. The first one is obtained by applying Coloring of v.
The second by Deletion of v and then Coloring of x1. The third one by
applying Deletion of v and x1 and then Coloring of x2.

Let us remark that vertex v is either colored or deleted. If v is deleted
then by Lemma 3.5, either x1 or x2 is contained in the witness cycle Cv.
This shows that Rule 10 is sound.

Rule 11. If PW (v) = {x1, x2, x3} and x1 ̸∈ N(Tt) then branch into four
subproblem instances. The first instance is obtained by applying Coloring
of v. The second by Deletion of v and then Coloring of x1. The third by
Deletion of v and x1 and then Coloring of x2. The fourth by Deletion
of v, x1, x2 and Coloring of x3.

Again, the soundness of this rule follows by Lemma 3.5.

Rule 12. If |PW (v)| ≥ 4 then create two problem instances: one obtained
by applying Coloring of v, and the other obtained by applying Deletion of
v.

This rule is sound because v is either colored or deleted.
We call an instance non-reducible if none of Rules 1-12 can be applied

to it. Such an instance corresponds to a leaf of the branching tree of our
algorithm. The following property of non-reducible instances of the red-blue
S-forest problem is crucial for our arguments.

Lemma 3.6. Let (G,S,B,R) be an instance. If none of the Rules 1–12
can be applied then RBF (G,S,R,B) contains at most one maximal red-blue
S-forest. Moreover, this forest can be computed in polynomial time.

12

Proof. If S = ∅ then trivially the only maximal S-forest of G is V . Let us
assume that S ̸= ∅. With every rule we either remove a vertex, select a
pivot vertex, color a vertex, delete a vertex, or contract an edge. Rule 2
guarantees that the set of red vertices is not empty. Rule 3 ensures that a
pivot vertex t is selected. Rules 1, 2 and 4–12 can be applied as long as there
are non-colored neighbors of red-blue tree Tt. When the set N(Tt) becomes
empty then Tt is completely removed by Rule 1. Then the algorithm selects
a new pivot vertex t and component Tt by making use of Rule 3. Thus the
conditions that none of the rules can be applied and S ̸= ∅, yield that V =
R ∪B. But then the only possible maximal S-forest Y of RBF (G,S,R,B)
is Y = R ∪B which can easily be computed in polynomial time.

Let us note that a non-reducible instance does not necessarily correspond
to a maximal red-blue S-forest. This is mainly due to Rules 10 and 11 in
which we delete set of vertices in one branch. Such a deletion does not
necessarily preserve maximality. As a simple example consider the graph
G[{w, v, x1, x2}] that induces a clique without the edge {w, x1} and w colored
red. The application of Rule 10 results in a branch after the deletion of both
v and x1 that contains a red-blue S-forest which is not maximal.

We are finally in the position to describe the algorithm. The algorithm
enumerates all elements of RBF (G,S, ∅, ∅) by applying Rules 1–12 in pri-
ority of their numbering as long as possible. Let F be the set of all non-
reducible instances produced by the application of the rules. These are the
instances corresponding to the leaves of the branching tree. By Lemma 3.6,
for each non-reducible instance of F there is at most one red-blue S-forest
which can be computed in polynomial time. To enumerate all maximal S-
forests of the input graph, we have to add to each S-forest of an instance of
F all vertices which were possibly removed by applications of some of the
rules on the unique path from the root of the branching tree to the corre-
sponding leaf. This can be done in polynomial time by backtracking in the
branching tree.

The correctness of the algorithm follows by Lemma 3.6 and the fact that
each rule is sound. Thus each maximal S-forest of the input graph can
be mapped to a private element of F . In the next section we analyze the
running time.

13

4 Running time analysis of the enumeration algo-
rithm

With every rule we either remove a vertex, select a pivot vertex, color a ver-
tex, delete a vertex, or contract an edge. Thus the height of the branching
tree is O(|V |+ |E|). Hence, for every non-reducible instance, the backtrack-
ing part of the algorithm producing the corresponding maximal S-forest in
G can be performed in polynomial time. Therefore, the running time of
the algorithm, up to a polynomial multiplicative factor, is proportional to
the number of non-reducible instances produced by reduction and branching
rules.

In what follows, we upper bound the number of maximal S-forests of
the input graph enumerated by the algorithm, or equivalently, the number
of leaves in the corresponding branching tree. Rules 1, 3, 4, 5, 6, and 7
are reduction rules and generate only one problem instance. Thus they do
not increase the number of leaves in the branching tree. Therefore we may
restrict ourselves to the analyses of the branching Rules 2, 8, 9, 10, 11, and
12.

Our proof combines induction with Measure & Conquer [10]. Let us
first define a measure for any problem instance generated by the algorithm.
All colored vertices have weight 0, non-colored vertices contained in N(Tt)
have weight 1, and non-colored vertices not contained in N(Tt) have weight
1 + α. A problem instance RBF (G,S,R,B) will be defined to have weight
|N(Tt)| + (1 + α) |V \ (R ∪ B ∪ N(Tt))|. Define f(µ) to be the maximum
number of leaves in the branching tree for any instance RBF (G,S,R,B) of
weight µ where µ ≥ 0 is a real number.

The induction hypothesis is that f(µ) ≤ xµ for x = 1.49468. Note that
the number of possible measures of problem instances is finite, and thus
induction is over a finite set.

For the base case, let µ = 0. Since no vertex has weight greater than 0, we
have that all vertices are colored, and thus V is the unique maximal S-forest,
implying f(0) = 1. By the induction hypothesis we assume that f(k) ≤ xk

for k < µ, and we want to prove that f(µ) ≤ xµ. We prove this by showing
that each rule reduces a problem instance of weight µ to one or more problem
instances of weight µ1, . . . , µr where µi < µ such that f(µ) ≤

∑r
i=1 f(µi) ≤

xµ if f(µi) ≤ xµi for 1 ≤ i ≤ r. Before proceeding to the detailed analysis,
we mention that the instance RBF (G,S, ∅, ∅) has weight n(1 + α), and
the result will thus imply that f(n(1 + α)) ≤ 1.49468n(1+α) ≤ 1.8638n for
α = 0.5491.

14

Rule 2. Since R is empty, pivot vertex t is undefined, and N(Tt) is defined
to be the empty set. As a consequence all non-colored vertices have weight
1 + α. In both new instances the weight of v is reduced from 1 + α to zero.
In the case when v is colored (Rule 3), we use v as vertex t, and due to the
minimum degree 2 property by Rule 1, there are at least two neighbors with
weights reduced by α. The two subproblem instances are Deletion of v:
µ1 ≤ µ− 1− α and Coloring of v: µ2 ≤ µ− 1− 3α, and we get that

f(µ) ≤ f(µ− 1− α) + f(µ− 1− 3α) ≤ xµ−1−α + xµ−1−3α ≤ xµ.

Rule 8. In both cases the weight of the vertex v is reduced from 1 to zero.
If x is contained in N(Tt) then it has weight 1, otherwise x has weight
1 + α. Consider first the case x ∈ N(Tt). Since x ∈ PW (v), we have by
Observation 3.3 that the subgraph of G induced by x, v, Tt and the vertex
set of a red-blue path from x to v contains a cycle with a vertex of S and
x and v as its only non-colored vertices. Hence either v or x has to be
deleted. If v is colored, then x is deleted by Rule 6 in order to break the
abovementioned cycle, and if v is deleted, then x is colored since it has to
be in the witness cycle. We have for Deletion of v and Coloring of x:
µ1 ≤ µ− 2; for Deletion of x and Coloring of v: µ2 ≤ µ− 2. Thus

f(µ) ≤ f(µ− 2) + f(µ− 2) ≤ xµ−2 + xµ−2 ≤ xµ

If x ̸∈ N(Tt), then the weight of x is 1 + α, and we have for Deletion of v
and Coloring of x: µ1 ≤ µ − 2 − α; for Coloring of v: µ2 ≤ µ − 1 − α,
resulting in

f(µ) ≤ f(µ− 2− α) + f(µ− 1− α) ≤ xµ−2−α + xµ−1−α ≤ xµ.

Rule 9. All vertices in PW (v) have weight 1. Thus we have for Coloring
of v and Deletion of PW (v): µ1 ≤ µ − 1 − |PW (v)|; for Deletion of v:
µ2 ≤ µ− 1. Since |PW (v)| ≥ 2, we have that

f(µ) ≤ f(µ− 3) + f(µ− 1) ≤ xµ−3 + xµ−1 ≤ xµ.

Rule 10. The vertex v has weight 1, x1 has weight 1+α, and x2 has weight
1 or 1 + α. Consider first the case where x2 has weight 1, meaning that
x2 ∈ N(Tt). If v is colored, then x2 is deleted by Rule 6 and Observation
3.3. We have for Coloring of v: µ1 ≤ µ − 2 − α; Deletion of v and

15

Coloring of x1: µ2 ≤ µ − 2 − α; and Deletion of v, x1 and Coloring of
x2: µ3 ≤ µ− 3− α. Thus

f(µ) ≤ 2f(µ− 2− α) + f(µ− 3− α) ≤ 2xµ−2−α + xµ−3−α ≤ xµ.

If x2 ̸∈ N(Tt), then it has weight 1 + α. We have for Coloring of v:
µ1 ≤ µ − 1− 2α; Deletion of v and Coloring of x1: µ2 ≤ µ − 2 − α; and
Deletion of v, x1 and Coloring of x2: µ3 ≤ µ− 3− 2α. Therefore,

f(µ) ≤ f(µ− 1− 2α) + f(µ− 2− α) + f(µ− 3− 2α)

≤ xµ−1−2α + xµ−2−α + xµ−3−2α ≤ xµ.

Rule 11. Let i be the number of vertices in PW (v) \N(Tt) and assume that
xj ̸∈ N(Tt) for j ≤ i. The case i = 0 is covered by Rule 9. For i = 1, 2, we
have for Coloring of v: µ1 ≤ µ−4+ i− iα; Deletion of v and Coloring of
x1: µ2 ≤ µ− 2−α; Deletion of v, x1 and Coloring of x2: µ3 ≤ µ− 3− iα;
and Deletion of v, x1, x2 and Coloring of x3: µ4 ≤ µ− 4− iα. In total

f(µ) ≤ f(µ− 4 + i− iα) + f(µ− 2− α) + f(µ− 3− iα) + f(µ− 4− iα)

≤ xµ−4+i−iα + xµ−2−α + xµ−3−iα + xµ−4−iα ≤ xµ.

For i = 3, we have for Coloring of v: µ1 ≤ µ − 1 − 3α, for Deletion of
v and Coloring of x1: µ2 ≤ µ − 2 − α, Deletion of v, x1 and Coloring
of x2: µ3 ≤ µ − 3 − 2α, and Deletion of v, x1, x2 and Coloring of x3:
µ4 ≤ µ− 4− 3α, and we get that

f(µ) ≤ f(µ− 1− 3α) + f(µ− 2− α) + f(µ− 3− 2α) + f(µ− 4− 3α)

≤ xµ−1−3α + xµ−2−α + xµ−3−2α + xµ−4−3α ≤ xµ.

Rule 12. Let i be the number of vertices in PW (v) \ N(Tt) and assume
that xj ̸∈ N(Tt) for j ≤ i. The case where i = 0 is covered by Rule 9. For
i ≥ 1, we have for Coloring of v: µ1 ≤ µ− (1 + |PW (v)|) + i− iα; and for
Deletion of v: µ2 ≤ µ− 1. Since |PW (v)| ≥ 4, we notice that the value is
minimum when i = 4 and we get

f(µ) ≤ f(µ− 1− 4α) + f(µ− 1) ≤ xµ−1−4α + xµ−1 ≤ xµ.

We conclude the analysis of the running time of the algorithm with the
following theorem, which is the main result of this paper.

16

Theorem 4.1. Let G be a graph and let S be a set of vertices in G. The
maximum number of maximal S-forests of G is at most 1.8638n. All minimal
subset feedback vertex sets of (G,S) can be enumerated in time O(1.8638n).

Proof. Correctness and completeness follows from the arguments above.
The number of leaves in the branching tree is at most x(1+α)nnO(1) and
1.494681+0.5491 < 1.8638.

It is worth mentioning that the running time of our algorithm enumerat-
ing all minimal subset feedback vertex sets is the same as the running time
of the algorithm enumerating all minimal feedback vertex sets given in [9].

5 Conclusion

We start this section with two direct consequences of Theorem 4.1, before
we give a few remarks and open questions on the number of minimal subset
feedback vertex sets. Since we can check whether a given set X is a subset
feedback vertex set of (G,S) and determine its total weight in polynomial
time, the following result is an immediate consequence of Theorem 4.1.

Corollary 5.1. Subset Feedback Vertex Set can be solved in time
O(1.8638n).

In the introductory section, we mentioned that Multiway Cut is a
special case of Subset Feedback Vertex Set. This is explained in the
proof of the following result, which thus follows from Theorem 4.1 and the
above corollary.

Corollary 5.2. Let G be a graph and let T be a set of vertices (termi-
nals) in G. All minimal multiway cuts of (G,T) can be enumerated in time
O(1.8638n), and Multiway Cut can be solved in time O(1.8638n).

Proof. Let (G,T) be an instance of Multiway Cut. We construct a new
graph G′ by adding to G a new vertex s whose weight is larger than the
sum of the weights of all vertices in G, and by making s adjacent to all
terminals in T . Any cycle of G′ containing s corresponds to a path in G
connecting two terminals of T . Thus a vertex subset is a minimum weight
subset feedback set of (G′, {s}) if and only if it is a minimum weight multiway
cut of (G,T).

We would like to remark that the number of minimal feedback vertex
sets in a graph can be exponentially larger or smaller than the number of

17

minimal subset feedback vertex sets. For example, the graph consisting of
n/3 disjoint triangles, has 3n/3 minimal feedback vertex sets (every triangle
contains exactly one vertex from every such a set), whereas if S = ∅, the
only minimal subset feedback vertex set is ∅. The example of a graph with
polynomial number of minimal feedback vertex sets and exponential number
of minimal subset feedback vertex sets is the following split graph G on
n = 6k vertices. Graph G has a clique C of size 3k and an independent set
I of size 3k. The vertices of C and I are partitioned into k triples; clique
triples (ai, bi, ci) and independent set triples (xi, yi, zi), 1 ≤ i ≤ k. For each
i, we add edges between vertices of clique and independent set triples as
follows: xi is adjacent to ai, bi; yi to bi, ci; and zi to ai, ci. We let S = I.
Every minimal subset feedback vertex set contains exactly 2 vertices from
each clique triple, so there are 3 possible options for each triple, and the total
number of such sets is 3k. On the other hand, every minimal feedback vertex
set should contain at least 3k − 2 vertices from C, and thus the number of
such sets is O(k2).

We close with a couple of open questions. Fomin et al. [9] show that there
are graphs with 1.5926n minimal feedback vertex sets. However, no graph
with 1.5927n or more minimal feedback vertex sets is known. Are there
graphs having 1.5927n or more minimal feedback vertex sets or minimal
subset feedback vertex sets? Can it be that our enumeration algorithm
overestimates the maximum number of minimal subset feedback vertex sets,
and that this number is significantly smaller than 1.8638n, say O(1.6n)? It
is known that all minimal feedback vertex sets of a graph can be enumerated
by an output-sensitive algorithm of polynomial delay [18]. Are there output-
sensitive algorithms enumerating all subset feedback vertex sets of output-
polynomial running time or even of polynomial delay? As mentioned, our
enumeration algorithm can be used to solve Subset Feedback Vertex
Set in time O(1.8638n). It would be interesting to know whether a better
running time can be obtained for unweighted Subset Feedback Vertex
Set.

Acknowledgements

The authors would like to thank the anonymous referees whose valuable
suggestions helped improve the presentation of the paper.

18

References

[1] G. Calinescu. Multiway cut. In Encyclopedia of Algorithms. Springer,
12: 1–99, 2008.

[2] Y. Cao, J. Chen, and Y. Liu. On feedback vertex set new measure
and new structures. In Proceedings of SWAT 2010, LNCS 6139:93–104,
Springer, 2010.

[3] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved
algorithms for feedback vertex set problems. Journal of Computer and
System Sciences, 74(7):1188–1198, 2008.

[4] D. G. Corneil and J. Fonlupt. The complexity of generalized clique
covering. Discrete Applied Mathematics, 22(2):109–118, 1989.

[5] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij,
and J. O. Wojtaszczyk. Solving connectivity problems parameterized
by treewidth in single exponential time. In Proceedings of FOCS 2011,
150–159, IEEE, 2011.

[6] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. Sub-
set feedback vertex set is fixed parameter tractable. In Proceedings of
ICALP 2011, LNCS 6755:449–461, Springer, 2011.

[7] G. Even, J. Naor, and L. Zosin. An 8-approximation algorithm for
the subset feedback vertex set problem. SIAM Journal on Computing,
30(4):1231–1252, 2000.

[8] F. V. Fomin, P. Heggernes, D. Kratsch, C. Papadopoulos, and Y. Vil-
langer. Enumerating minimal subset feedback vertex sets. In Proceed-
ings of WADS 2011, LNCS 6844:399–410, Springer, 2011.

[9] F. V. Fomin, S. Gaspers, A. V. Pyatkin, and I. Razgon. On the mini-
mum feedback vertex set problem: Exact and enumeration algorithms.
Algorithmica, 52(2):293–307, 2008.

[10] F. V. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer
approach for the analysis of exact algorithms. Journal of the ACM,
56(5), Article 25, 2009.

[11] F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Texts in
Theoretical Computer Science. Springer, 2010.

19

[12] F. V. Fomin and Y. Villanger. Finding induced subgraphs via minimal
triangulations. In Proceedings of STACS 2010, 5: 383–394. Schloss
Dagstuhl—Leibniz-Zentrum fuer Informatik, 2010.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.
Freeman & Co., 1978.

[14] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in node
weighted graphs. Journal of Algorithms, 50(1):49–61, 2004.

[15] R. M. Karp. Reducibility among combinatorial problems. Complexity
of Computer Computations, 85–103, 1972.

[16] V. Raman, S. Saurabh, and C. R. Subramanian. Faster fixed parameter
tractable algorithms for finding feedback vertex sets. ACM Transactions
on Algorithms, 2(3):403–415, 2006.

[17] I. Razgon. Exact computation of maximum induced forest. In Proceed-
ings of SWAT 2006, LNCS 4059:160–171, Springer, 2006.

[18] B. Schwikowski, and E. Speckenmeyer. On enumerating all minimal
solutions of feedback problems. Discrete Applied Mathematics, 117:
253–265, 2002.

[19] J. P. Spinrad. Efficient graph representations. AMS, Fields Institute
Monograph Series, 19, 2003.

[20] S. Thomassé. A k2 kernel for feedback vertex set. ACM Transactions
on Algorithms, 6(2), Article 32, 2010.

20

