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Shared Kernel Models for Class Conditional Density
Estimation

Michalis K. Titsias and Aristidis C. Likas, Member, IEEE

Abstract—We present probabilistic models which are suitable
for class conditional density estimation and can be regarded as
shared kernel models where sharing means that each kernel may
contribute to the estimation of the conditional densities of all
classes. We first propose a model that constitutes an adaptation
of the classical radial basis function (RBF) network (with full
sharing of kernels among classes) where the outputs represent
class conditional densities. In the opposite direction is the ap-
proach of separate mixtures model where the density of each
class is estimated using a separate mixture density (no sharing of
kernels among classes). We present a general model that allows
for the expression of intermediate cases where the degree of kernel
sharing can be specified through an extra model parameter. This
general model encompasses both above mentioned models as
special cases. In all proposed models the training process is treated
as a maximum likelihood problem and expectation–maximization
(EM) algorithms have been derived for adjusting the model
parameters.

Index Terms—Classification, density estimation, expecta-
tion–maximization (EM) algorithm, mixture models, probabilistic
neural networks, radial basis function (RBF) network.

I. INTRODUCTION

PROBABILITY density estimation constitutes an unsuper-
vised method that attempts to model the underlying density

function from which a given set of unlabeled data have been gen-
erated. An important application of density estimation is that it
can be utilized for solving classification problems. A technique
for constructing such classifiers is based on the separate esti-
mation of the conditional density of each class [3],
which means that each density estimation is carried out consid-
ering only the patterns of the corresponding class. To classify
a new pattern , the conditional densities are combined with
prior probabilities through Bayes’ theorem and provide
the posterior probabilities

(1)

A density estimation approach that has been extensively used
in statistical pattern recognition is based onmixture density
models[6], [12]. For such models efficient training procedures
have been developed based on the expectation–maximization
(EM) algorithm [2]. In classification problems separate mixture
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models are employed to estimate the class conditional densities.
Throughout this paper, we will refer to that method as separate
mixtures. Nevertheless, we argue that more general models
for conditional density estimation can be derived in terms of
shared kernel functions where the class conditional densities
are represented by a set of kernels which may contribute to the
estimation of the conditional densities of all classes. This is
analogous to kernel sharing in a typical radial basis function
(RBF) network.

In this paper, we first propose a model which comprises a
special case of the RBF neural network in which the basis func-
tions are taken to be probability densities and the second layer
weights are constrained to represent prior probabilities. In this
way, the outputs of the RBF represent class conditional densi-
ties. This model is discussed in [1] where the basis functions
of the network are considered as a common pool of kernels
that represent all the class conditional densities. The discus-
sion in [1] aims at showing how the activation functions and the
second layer weights of an RBF could be defined so that the out-
puts to be precisely interpreted as posterior probabilities of class
membership. In our case, as mentioned above, we consider an
RBF model whose outputs directly represent conditional density
functions. This interpretation of the outputs has given the oppor-
tunity to treat RBF training as a maximum likelihood problem
and derive an one-stage EM algorithm for adjusting the model
parameters. This approach seems to be more sophisticated than
the unsupervised learning techniques typically used for finding
the basis function parameters [1]. Because of the similarity with
RBF network we call this model probabilistic RBF (PRBF) [11].
The PRBF model is presented in Section II.

Moreover, we have further extended the PRBF model and
developed a more general one, calledPRBF, that allows to
express intermediate models between PRBF and separate mix-
tures. This model is derived from PRBF by introducing a special
parameter (denoted by) which adds constraints to the model
parameters in order to adjust kernel sharing among classes. As
discussed in detail in Section III, the role of parameteris to
control the contribution of each kernel to the density estimation
of each class. For this model we have also developed an EM al-
gorithm for the adjustment of its parameters.

In Section IV we demonstrate the effectiveness of the pro-
posed methods using several data sets and provide comparative
results with other methods. Finally, Section V contains conclu-
sions and research directions for future enhancements.

II. THE PROBABILISTIC RBF MODEL

Consider a classification problem with classes and a
training set where is a
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-dimensional pattern and is an integer in the range
indicating the class of the pattern . The original set can be
easily partitioned into independent subsets so that each
subset contains only the data of the corresponding class. Let

denote the number of patterns of class, i.e., .
Assume that we have a number ofkernel functions, which

are probability densities, and we would like to utilize them for
estimating the conditional densities of all classes by considering
the kernels as a common pool. Thus, each class conditional den-
sity function is modeled as

(2)

where denotes the kernel function, while the mixing
coefficient represents the prior probability of the pattern

having been generated from kernel, given that it belongs
to class . The priors take positive values and satisfy the fol-
lowing constraint:

(3)

We will find it useful to introduce the posterior probabilities ex-
pressing our posterior belief that kernelgenerated a pattern
given its class . This probability is obtained using the Bayes’
theorem

(4)

Obviously, the posterior probabilities sum to unity

(5)

In the following, we assume that the kernel functions are Gaus-
sians of the general form

(6)

where is a vector representing the center of kernel,
while represents the corresponding covariance matrix.
The whole adjustable parameter vector of the model consists of
the priors and the kernel parameters (means and covariances)
and we denote it by.

It is apparent that the PRBF model (Fig. 1) is a special case
of the RBF network where the outputs correspond to probability
density functions and the second layer weights are constrained
to represent prior probabilities. Furthermore, the separate mix-
tures model can be derived as a special case of PRBF. This is il-
lustrated in Fig. 2. The PRBF kernels are partitioned intodis-
joint groups with each group corresponding to a specific class.
In this sense, each kernelis associated with only one class

Fig. 1. The architecture of the probabilistic RBF network.

Fig. 2. The separate mixtures model as a special case of the probabilistic RBF
network.

and the separate mixtures model is obtained by setting all
the prior probabilities of a kernel equal to zero, except for the
prior corresponding to class .

A. Derivation of the Log-Likelihood Function

Let , be the prior probabilities of the
classes. In order to use Bayes’ theorem (1) for unlabeled input
data first we have to specify appropriate values for both class
priors and the parameter vector. In our case, the maximum
likelihood procedure is proven to be directly applicable. As-
suming that all data have been independently drawn from an
underlying process, we write the likelihood function in the form

(7)

from which we obtain the log-likelihood function

(8)

Now, using that and also the fact
that the data set consists of independent subsets with
elements each, the above quantity takes the form

(9)
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Apparently, the two terms above can be maximized separately
as they do not contain common parameters. Maximization of the
first term yields

(10)

while the maximization of the second term is equivalent to
PRBF training. Consequently, the log-likelihood function
suitable for the training of the PRBF network is given by

(11)

To maximize it is possible to employ nonlinear optimiza-
tion techniques, however, it would be desirable to show that the
iterative EM algorithm is applicable in this case. In the following
we describe our approach to maximization of the above like-
lihood using the EM algorithm and we show that in the case
of Gaussian kernels each iteration of the EM algorithm is per-
formed analytically.

B. Applying EM for Training the PRBF Network

The EM algorithm [2] is defined as a very general technique
for maximum likelihood estimation. The algorithm is applicable
in cases where we seek maximum likelihood estimates in the
presence of unobserved variables. Several extensions and also
many applications of the EM algorithm are presented in [7].
Before presenting our EM approach for training PRBF, we will
briefly review the basic properties of the EM algorithm.

Assume that we have a setof observed data, called incom-
plete data, and a set of unobserved variableswhich along with
the observed data constitute the complete data .
Furthermore assume that and are the prob-
ability densities of the incomplete and complete data, respec-
tively, parameterized on. It follows that

(12)

The EM algorithm approaches the problem of maximizing the
incomplete data log-likelihood function in-
directly, in terms of the complete data log-likelihood function

. More specifically, the EM starts from
an initial parameter guess and proceeds iteratively performing
alternatively two steps: the -step in which the algorithm cal-
culates the expected value of the complete data log-likelihood
function (with respect to the unobserved variables) given the
current parameter vector and the incomplete data

(13)

and the -step, where the old parameter vector is replaced
by obtained by maximizing .

In order to apply the EM algorithm to maximize (11) we
must first express the unobserved variables. Similarly to the EM
framework for mixture models [9], the problem we have to over-
come is that each pattern is not followed by a label indicating
the kernel responsible for having generated it. To express this

missing information we introduce for each pattern a vari-
able which is a -dimensional vector indicating the kernel
that generated . More specifically, if was generated from
kernel , then , otherwise . The set of the un-
observed variables is , while the
complete data set is . The
log-likelihood function of the complete data is given by

(14)

At iteration the expected value of the (given ) is
equal to the posterior probability , where de-
notes that this probability has been computed using the current
parameters . It follows that the function takes the from

(15)

It can be shown that the maximization ofcan be carried out
analytically. If we write the function as where

(16)

and

(17)

then we can maximize separately the above quantities since they
do not contain common parameters. In order to maximizewe
must take account of the constraints involving priors (3). There-
fore, we introduce Lagrange multipliers and the quantity
to be maximized takes the form

(18)

Expressing the derivatives of with respect to priors , we
easily obtain , . Also the differenti-
ation of with respect to the kernel parameters leads to the
following update equations:

(19)

(20)
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(21)

where . Starting from an initial parameter vector,
we first calculate the posterior probabilities and then we update
the parameter values using the above s (19)–(21). We perform
these steps alternatively until convergence.

In the following, we summarize the training algorithm for the
PRBF network.

1) Specify the number of kernels and the initial parameter
values.

2) -step: For each training point com-
pute the posterior probabilities ,

, from (4) using the current parameters
.

3) -step: Find the new parameter vector from (19)
to (21), respectively.

4) Iterate going to Step 2) until a local maximum of the log-
likelihood (11) is reached.

When an RBF neural network is employed for classification
problems, the parameters of basis functions are typically spec-
ified by unsupervised techniques such as the-means clus-
tering algorithm or Gaussian mixture modeling with EM. After
the basis function parameters have been computed, the second
layer weights are optimized rapidly using supervised learning.
However, the determination of the basis functions parameters
using unsupervised learning techniques cannot be regarded as
an efficient approach, since it does not make use of class la-
bels and therefore it might lead to undesirable situations. For
example, after unsupervised training, it is possible for a kernel
to represent data of several classes, even if these classes are lin-
early discriminated and given that the number of kernels is large
enough to sufficiently represent the data. As it is shown in the
next section, the proposed EM algorithm for PRBF training gen-
erally does not adjust the kernel parameters similarly to unsu-
pervised learning methods, but there is an active competition
among classes concerning kernel allocation.

C. Adjustment of Kernel Parameters in PRBF Training

According to (19) and (20) the means and covariances of each
kernel are updated using data from all classes. This may cause
confusion concerning the operation characteristics of the algo-
rithm. At first glance, the algorithm seems to adjust the kernel
parameters estimating the distribution of all data, that is sim-
ilar to unsupervised techniques. However, as it is shown next
by writing the (19)–(20) in a suitable form, the algorithm works
quite differently giving emphasis to the classification problem.

The posterior probability that a patternbelongs to class ,
given that it has been generated from kernel, can be expressed
as

(22)

and is independent of. Apparently, . The
probability can also be interpreted as expressing the
degree at which kernelrepresents data of class .

Let us now assume that the algorithm is at iteration
and the -step has been completed. We introduce the variables

and , which rep-
resent means and covariances matrices, respectively, as follows:

(23)

(24)

Using these notations, we can express the EM update equations
in an appropriate form. If we let the parameter denote either
the mean or the covariance matrix , and, similarly, the
parameter denote either or , then we can write that

(25)

Using (10), (21), and (22), we finally find that

(26)

The above equation indicates that the parameters of kernelat
iteration constitute the expected values of the variables

and , , with the corresponding class
probabilities given by (22). Consequently, the new parameter
values of the kernel obtained from an EM iteration during
PRBF training can be interpreted as the mean values of the cor-
responding parameters that are obtained from underlying
iterative procedures. Each procedure corresponds to a specific
class and updates the parameters using only data of class

. This suggests that each class competes to “allocate” a
kernel (i.e., setting closer to ) and this competition is
expressed in terms of the values .

In the following we illustrate through an example how the al-
gorithm operates compared to unsupervised learning. We have
created a simple synthetic two-dimensional data set that is a



TITSIAS AND LIKAS: SHARED KERNAL MODELS FOR CLASS CONDITIONAL DENSITY ESTIMATION 991

Fig. 3. Illustrates the data of two classes and the location of the Gaussian
kernels (represented by circles where the radius is equal to standard deviation)
after (a) training a two-kernel PRBF with the EM algorithm and (b) training a
two-kernel mixture model with EM.

mixture of three Gaussian kernels. Two of the Gaussians corre-
spond to the first class and the third to the second class (Fig. 3).
We applied the EM algorithm for training PRBF (supervised
training) and also the EM for density estimation ignoring class
labels (unsupervised training). In both experiments, two kernels
were used with common parameter initialization. As Fig. 3 in-
dicates, the EM algorithm for training PRBF places one of the
kernels in a sensitive way so as to represent all data of the first
class, while the unsupervised training places the kernels so as to
approximate the density of all data. A serious implication of the
above remark is that the PRBF model is expected to have supe-
rior generalization performance compared with an RBF network
trained using a two-stage procedure where in the first-stage su-
pervised learning is applied.

D. Comparison between PRBF and Separate Mixtures

As stated previously, the training of the PRBF model fol-
lows different principles compared to unsupervised learning.

Fig. 4. Displays the data for a two-class problem and the final solution found
(a) using separate single kernels and (b) using a PRBF network with two kernels.
It is obvious that PRBF places the kernels in more sensible locations in the data
space.

The same holds when comparing PRBF with the separate mix-
tures approach. There exist cases where PRBF provides results
similar to separate mixtures. For example, such a case is the syn-
thetic data set illustrated in Fig. 3. If we utilize a separate single
kernel for estimating the conditional density of each class, we
will obtain almost the same representation with that obtained
from PRBF with two kernels. Nevertheless, in the following we
discuss two cases where in the first one the PRBF represents
the data more parsimoniously than separate mixtures, while in
the second the separate mixtures technique provides better rep-
resentation of data than PRBF. We assume that both PRBF and
separate mixtures utilize two kernels.

In the first example, assume that we have a two-class problem
and the data set is displayed in Fig. 4. The data are arranged
in two distinct regions, where in each region there exist many
patterns of one class and few patterns of the opposite class. If
we separately model each class conditional density by a single
Gaussian kernel, then [as shown in Fig. 4(a)] we do not obtain a
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Fig. 5. Displays the data for a two-class problem and the final solution found
(a) using two separate single kernels and (b) using a PRBF network with two
kernels. In this case the single kernels give better representation of data than
PRBF.

good representation of the actual densities. Obviously, this is
due to the fact that a single kernel is not adequate to model
the density of each class. On the other hand, the PRBF model
with two kernels adjusts the kernel parameters so that the con-
ditional densities are adequately modeled [Fig. 4(b)] and asso-
ciates each kernel with both classes by appropriately adjusting
the prior values. Note that in order to obtain the same repre-
sentation using separate mixtures we need four kernels, that is
two kernels for each mixture model. The above example implies
that in cases where the data of different classes are highly over-
lapped, the PRBF may utilize the kernels more efficiently than
the separate mixtures approach.

The data of the second example are displayed in Fig. 5 where
we can observe that the first class data arise from one kernel,
while the second class data arise from two distinct kernels. As
shown in Fig. 5(a), the single kernel functions provided by a sep-
arate mixtures model represent the data more adequately com-
pared to the PRBF solution. As illustrated in Fig. 5(b), PRBF

does not manage to find a solution similar to that of Fig. 3 be-
cause the two regions of the second class are widely separated.
This example shows that there exist cases where it is desirable
to have a separate set of kernels devoted to represent data of
each class. Finally, a general remark which can be drawn from
the previous examples is that by combining properties of shared
kernel models with those of separate mixtures, we can develop
more general and efficient models for class conditional density
estimation.

III. I NTERMEDIATE MODELS BETWEEN PRBFAND SEPARATE

MIXTURES

As pointed out in Section II, the separate mixtures model can
be considered as a constrained special case of the PRBF model.
In the same way, the EM updates used for separate mixtures
training can be obtained from the EM updates for training PRBF
simply by setting some prior probabilities to zero.

We have also shown in the previous section that, depending
on the data, the PRBF model may or may not provide better
results compared to separate mixtures. From this point of view,
it would be very interesting if we could express intermediate
models between PRBF and separate mixtures for conditional
density estimation. In this spirit, we have devised thePRBF
model described next.

The PRBF model is actually a PRBF model, i.e., once a
PRBF model has been trained for a specific value of, then

in normal operation it is used as a regular PRBF model. The
main difference lies in the training process where the parameter

plays an important role.
In the PRBF model there is an additional parameter(as-

suming values in [0, 1]), which is incorporated in the training
process to control the degree of sharing of each kernel. More
specifically, for a problem with classes, the kernels of a
PRBF model are partitioned into disjoint groups ,

, so that the group corresponds to class and
. We wish that the kernels of group

would fully contribute to the density estimation of class,
while they would contribute less (depending on the value of)
to the density estimation of the other classes. To express this
preference we introduce the following function:

(27)

where the expression denotes all kernels of the set
. It is important to note that the priors satisfy the

constraints (3), except for the case whenis zero, where by def-
inition it holds that

(28)

Obviously, the function is not a probability density,
(since ), except for the cases
when is one or zero. This function is only defined for training
purposes and must be distinguished from the class conditional
density provided as output of thePRBF model
(after training). The function is computed in the
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usual PRBF way (2), i.e., the parameteris not involved in the
normal operation of the model. The parameteris included in
the definition of just to denote its involvement is the
training procedure.

The role of is to specify ana priori (user defined) preference
that the model would be close to PRBF or to separate mixtures.
Letting obtain values from one to zero, we move from the case
of full sharing of kernels among classes (PRBF) to the case of
no sharing of kernels (separate mixtures). More specifically, if

is closer to zero, the kernels of group will be used more
for representing the conditional density of the classand less
for representing the densities of the other classes. In the oppo-
site case, when is closer to one, the kernels of have more
freedom to contribute to the estimation of all conditional densi-
ties. In other words, through the specification of, it is possible
to imposea priori constraints to the grouped kernels, which ex-
press how much each group is available to contribute to the con-
ditional density estimations of the other classes. In this sense,
can be considered as a special type of hyperparameter, since it
controls the adjustment of the rest of parameters.

Based on functions (27), we can introduce the posterior prob-
ability of a pattern of class having been generated from
kernel as follows:

if

if

(29)

which satisfy

(30)

The introduced notation serves as a means of making the
above definition and also the EM algorithm presented below
more easily understandable. It is apparent that the posterior
values are in general higher for the kernels of grouprather
than for the rest of kernels since in the latter case the posteriors
are not penalized by the parameter.

A. EM Algorithm for PRBF

The training of the PRBF model can be formulated as a max-
imization problem of the following function:

(31)

subject to the constraints (3) concerning the priors. The
above function can be regarded as apenalized formof the
corresponding likelihood defined by (11). However, it must
be noted that the penalties or parameter constraints are not
expressed through the introduction of an additive term (a prior

distribution) [5], [7], but are embedded in a novel way into the
functional form of the original likelihood.

The same EM framework presented in Section II-B can also
be applied in this case. The log-likelihood function of the com-
plete data is

(32)

and the function to be maximized in the -step is written as
follows:

(33)

The second term of (33) does not contain any adjustable param-
eter since is fixed parameter and therefore can be discarded.
Using (29) the -step requires the maximization of the func-
tion

(34)

Maximizing (34) is straightforward and it can be carried out
in a similar way to that presented in Section II-B. Finally, the
following update equations are obtained:

(35)



994 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

(36)

if

if

(37)

where , and abbreviates the expres-
sion . The above equations actu-
ally differ from the corresponding of Section II-B only in the
definition of the posterior probabilities which now are given by
(29). An interesting issue is that the penalty mechanism (real-
ized through ) affects only the -step of the algorithm. This
differs in principle from the case of other penalized EM pro-
cedures where the penalties (expressed through a separate prior
distribution) affect the -step, while the calculation of the func-
tion Q remains unchanged [5].

Finally, the EM algorithm for training PRBF is summarized
as follows.

1) Specify the number of kernels and the initial parameter
values.

2) Set the parameterto a fixed value and specify the groups
of kernels , .

3) -step: For each training point compute
the quantities , , from (29) using
the current parameter values.

4) -step: Find the new parameter vector from (35)
to (37), respectively.

5) Iterate going to Step 2) until a local maximum of the log-
likelihood (31) is reached.

It is straightforward to verify that for the above algo-
rithm reduces to independent EM procedures associated with
the separate mixtures case, where the conditional density of the
class is modeled by a mixture containing the kernels of group

. Also in this case the special constraints concerning priors
(28) are explicitly satisfied due to (30) and (37). In the opposite
extreme case where , the update equations reduce to those
corresponding to PRBF (Section II-B).

B. Averaging Over

From the previous presentation, it is obvious that the employ-
ment of the PRBF model requires the specification of the pa-
rameter . Nevertheless, it is not clear how we can find an op-
timal value for this parameter. Therefore, we have implemented
an alternative scheme that is based on a multinet approach that
combines the decisions of several models [10]. More specifi-
cally, we train several PRBF networks for different values.
To classify a new pattern we combine for each class (through
averaging) the density estimations provided by the
several models.

More specifically, we choose a set of values
for the parameter and obtain the corresponding

estimations of the class conditional densities
through training the PRBF model (for each value ). Then
the conditional density for a new pattern can be
computed as the following average:

(38)

In the next section, it is shown that performing averaging using
few values leads in some cases to significant improvement of
generalization performance.

IV. EXPERIMENTAL RESULTS

To assess the classification performance of the proposed
shared kernel models, we have conducted a series of exper-
iments on five well-known classification data sets. We have
implemented and tested thePRBF network for various choices
of the parameter . The form of kernel functions we used in
all experiments is that of spherical Gaussians, (i.e., )
defined as

(39)

Furthermore to illustrate the idea of averaging over the pa-
rameter , we also implemented the modular approach, where
simple averaging is performed as described in equation (38).
In addition, for typical comparison purposes, we have used
the implementation of two-stage training for classical RBF
networks available in the Netlab toolbox [8]. According to this
implementation, in the first stage the basis functions parameters
are determined by fitting a Gaussian mixture model using
EM, while in the second stage the basis functions are kept
fixed and the second-layer weights are computed by solving a
linear system. However, it must be stressed that our purpose is
mainly to test the PRBF network as tool for class conditional
Gaussian mixture modeling and not to perform comparisons
with classification models that are based on function approxi-
mation (as is the RBF model).

In our experiments we have considered five well-known data
sets: three from the ESPRIT Basic Research Project ELENA
(no. 6891) [4] (Clouds, Satimage, and Phoneme data sets) and
two from the UCI repository [13] (Pima Indians and Ionosphere
data sets). To assess the performance of the models for each
problem we have selected the five-fold cross-validation method.
For each problem the original set was divided into five inde-
pendent parts (holdouts), where each holdout was created using
randomly selected patterns from the original set. Moreover, care
was taken so that each part maintained the original proportions
among the data of different classes (i.e., the class priors). Using
these holdouts, five pairs of training and test sets were con-
structed by keeping one of them for testing and joining the other
four to form a training set. For each problem the results re-
ported in the tables correspond to the average test error for the
five pairs of training and test sets. We present results for sev-
eral numbers of kernel functions which in all cases are multi-
ples of the number of classes. We adopted this convention, be-
cause we would like the groups used byPRBF to contain an
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TABLE I
RESULTS ON THECLOUDS DATA SET

TABLE II
RESULTS ON THEIONOSPHEREDATA SET

TABLE III
RESULTS ON THEPIMA INDIANS DATA SET

equal number of kernels, since we assumed no prior informa-
tion concerning the complexity of the data of each class. The
kernels of group were initialized using training patterns of
the corresponding class , and all models were tested under
the same parameter initialization. Moreover, the bold numbers
in each table indicate the model that provided best average per-
formance for a specific number of kernels.

The Clouds data set [4] consists of 5000 two-dimensional pat-
terns of two classes with equal class proportions. Performance
results concerning the average generalization error and its stan-
dard deviation from the five-fold cross-validation experiment
are displayed in Table I. As Table I indicates, the RBF network
provides high generalization error, due to the improper way with
which unsupervised learning for hidden layer places the kernels
in the data space. On the other hand, the PRBF ( ) gives
the best generalization performance for almost all numbers of
kernels.

The Ionosphere data set [13] contains 351 34-dimensional
patterns belonging to two classes. Performance results are sum-
marized in Table II. Table III displays the corresponding perfor-
mance results for the Pima Indians data set [13] which contains
768 eight-dimensional patterns belonging to two classes.

The Satimage data set [4] contains 6435 36-dimensional
patterns belonging to six classes. The ELENA database
provides also a five-dimensional description of this data set
which was obtained using discriminant factorial analysis.
This five-dimensional data set is used in our experiments.
Performance results concerning average generalization error
and its standard deviation from the five-fold cross-validation
experiment are displayed in Table IV. Table V displays the
corresponding performance results for the Phoneme data set
[4] which contains 5404 five-dimensional patterns belonging
to two classes.

From the presented experimental results, it is clear that the
PRBF network is more effective than the classical RBF net-

work (except for the case of the Pima Indians dataset). More-
over, there is no clear conclusion that can be drawn concerning
the performance of the PRBF ( ) and the separate mixtures
model ( ). An important conclusion is that in many cases
better performance results are obtained for intermediate values
of and, also, that the multinet approach, although more com-
putationally expensive, constitutes a technique that on average
provides the best performance results.
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TABLE IV
RESULTS ON THEPHONEME DATA SET

TABLE V
RESULTS ON THESATIMAGE DATA SET

V. CONCLUSION AND FUTURE RESEARCH

We have presented probabilistic models for class conditional
density estimation, that are based on the idea of kernel sharing
among the classes, which is in direct analogy with the classical
RBF network. In this spirit we have presented the PRBF network
and developed an EM algorithm for fast and effective PRBF
training.

Moreover, we further extended the above idea and proposed
a more general model (thePRBF network) which allows for
controlling the degree of sharing of grouped kernels among the
classes. This general model constitutes a unifying framework
for treating mixture models for classification and encompasses
as special cases both the PRBF network (for ) and the
traditional separate mixtures approach (for ). We also de-
veloped an EM algorithm for efficient training of thePRBF
network. Since the performance of the model depends drasti-
cally on the value of (which is problem dependent and must
be specified by the user), we also proposed a multinet approach
where several models are constructed for different values of
and the network outputs are combined to classify a new pattern.

Current and future research is focused on two directions. The
first is the development of a more flexible model that will allow
for the separate specification of the degree with which the
kernel is allowed to contribute to the conditional density es-
timation of class . Besides, it is of significant importance to
develop training algorithms that will automatically adjust the
value of . The second research direction is related to the devel-
opment of algorithms that dynamically adjust the number of ker-
nels. Specifying the number of basis functions is an important
open research issue in RBF training and mixture modeling, and
our aim is to check the adaptation and applicability of the sev-
eral techniques proposed so far in the framework of the PRBF
network [14], [15].
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