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Abstract

A hybrid intelligent system is presented for the identification of microcalcification clusters in

digital mammograms. The proposed method is based on a three-step procedure: (a) preprocessing and

segmentation, (b) regions of interest (ROI) specification, and (c) feature extraction and classification.

The reduction of false positive cases is performed using an intelligent system containing two sub-

systems: a rule-based and a neural network sub-system. In the first step of the classification schema 22

features are automatically computed which refer either to individual microcalcifications or to groups

of them. Further reduction in the number of features is achieved through principal component

analysis (PCA). The proposed methodology is tested using the Nijmegen and the Mammographic

Image Analysis Society (MIAS) mammographic databases. Results are presented as the receiver

operating characteristic (ROC) performance and are quantified by the area under the ROC curve (Az).

In particular, the Az value for the Nijmegen dataset is 0.91 and for the MIAS is 0.92. The detection

specificity of the two sets is 1.80 and 1.15 false positive clusters per image, at the sensitivity level

higher than 0.90, respectively. # 2002 Elsevier Science B.V. All rights reserved.

Keywords: Microcalcification detection; Hybrid neural network; Computer-aided detection (CAD); Mammo-

graphy

1. Introduction

Breast cancer is currently one of the leading causes of death among women worldwide.

Regular mammographic screening programs for women of certain age or high-risk groups

are taking place in a number of countries on a nation-wide basis or as projects organized

from several institutes [1,15,30,31,48]. Although some researchers doubt about the real
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effectiveness of population screening programs [17] the majority of them contribute to the

mortality reduction [19,40,49]. Early detection is the key for improving breast cancer

prognosis [44]. Mammography is the most common procedure for detecting non-palpable

cancers. It is an inexpensive practice being highly effective even when the size of the breast

abnormality is minimal [42,62]. One of the early signs of breast cancer is the presence of

microcalcification clusters at the mammogram of asymptomatic women. However, a

number of such findings especially the microcalcifications that have small size and low

contrast could be missed or misinterpreted by doctors. Thus, the task of the radiologist is

tedious in the case where a significant number of mammograms require fast and accurate

interpretation. For this reason, a reliable automated computer-aided diagnosis system

(CAD) could be very useful, providing a valuable ‘‘second opinion’’ to a radiologist,

especially to a non-expert one [34,41]. Nevertheless, the application of CAD systems in

clinical use should be done after extensively high assessments of their effectiveness in

terms of sensitivity and reduction of false positive rate.

In the literature, several techniques have been proposed to detect the presence of

microcalcifications using various methodologies. Concerning image segmentation and

specification of regions of interest (ROIs), several methods have been proposed such as

classical image filtering and local thresholding [9,12,39,45], techniques based on math-

ematical morphology [13,60], stochastic fractal models [25,26], wavelet analysis

[3,7,22,23,46,52,56,57] and multiscale analysis based on a specialized Gaussian and

Peitgen [32]. Furthermore, various classification methodologies have been reported for

the characterization of ROI such as, rule-based systems [9,12], fuzzy logic systems [11],

statistical methods based on Markov random fields [20] and support vector machines [3].

Nevertheless, the most work reported in the literature employs neural networks for cluster

characterization [10,27,33,37,51,54,55,58,59,61]. Typically, a neural network accepts as

input features computed for a specific region of interest and provides as output a

characterization of the region as true microcalcification cluster or not. Recently, neural

networks have also been used to characterize a microcalcification as malignant or benign

[6,24,42,50].

In this paper, we present an intelligent system (Fig. 1) for the identification of

microcalcification clusters in digitized mammographic images. The system, as it is

described in Section 2, consists of three modules: the preprocessing and segmentation,

(ROI) specification and the feature extraction and the classification module. The latter is a

hybrid classification schema composed of a rule-based and a neural network sub-system.

The proposed system is fast and accurate in the detection of ROIs. We employ an additional

feature for ROI characterization that is related with the existence of a small ROI in the

neighborhood of a large one. In addition, we have found that performance is improved in

the case where principal component analysis (PCA) is used to reduce the number of

features. The method provides satisfactory results in two well-known datasets: the

Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic

databases as described in Section 3. It must be noted that the proposed hybrid system

performs better compared to the case where either the rule-based or the neural network

subsystem are solely employed for classification. The proposed methodology could be

an essential part of an integrated CAD technique, which could assist radiologists in

mammogram analysis and diagnostic decision making. The system successfully combines
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intelligent methods and image processing techniques which contribute to the enhancement

of mammographic diagnosis sensitivity and reduction of negative biopsies.

2. Material and methods

2.1. Image datasets

For the development and evaluation of the proposed system we used the Nijmegen [20]

and the MIAS [47] databases. The first contains 40 mammograms of both craniocaudal and

oblique views from 21 patients. Digitization has been carried out using an Eikonix 1412

CCD camera with 0.1 mm pixel size and 12 bit grey depth. The size of each image is

2048 � 2048 pixels. For each image a lookup table is provided for conversion-rescaling

from 12 to 8 bit format based on noise characteristics [20]. One or more microcalcification

clusters are annotated in each mammogram by expert radiologists using a circle enclosing

the abnormality. The total number of annotated clusters in the database is 105. It must be

noted that the Nijmegen dataset digitization characteristics are different from the MIAS

dataset and we resampled the Nijmegen images to change the pixel size from 100 to 50 mm,

Fig. 1. The microcalcification cluster detection system.
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because our software originally was developed to handle 50 mm images. The resampling

technique was actually a magnification process in which each one of the initial pixels was

divided to four keeping the same intensity value.

The second dataset contains 20 images and has been developed by the MIAS (c) [47].

Each mammographic image is obtained from the medio-lateral oblique view and is

digitized with spatial resolution 50 mm and 8 bit grey depth. A circle enclosing the

abnormality indicates each cluster area. The database contains 25 annotated clusters.

The proposed system is implemented in three stages. The first is related to image

segmentation, the second with the identification of candidate ROIs, and the third with the

characterisation of each ROI as cluster of microcalcifications or not.

2.2. Preprocessing and segmentation module

In a typical mammogram several different areas are present such as the image back-

ground, the tissue area, and informative marks. At the beginning of preprocessing it is

necessary to locate the breast region. For this reason we apply a skin-line segmentation

procedure by setting equal to zero the image pixels with intensity less than 20 (for 0–

255 Gy levels). Most of those pixels belong to the background area, although a small

number exists belonging to the tissue area close to the breast surface. This thresholding

procedure results in a binary image of white objects on a black background. Neighbouring

white pixels with connectivity of eight are grouped together to form objects corresponding

either to the breast region or to marks and film artifacts. The largest object corresponds to

the breast region (Fig. 2) and close to the breast outline a number of very small objects

appear. These are actually part of the breast region but, due to thresholding, they appear as

distinct objects. To deal with this problem, we apply morphological dilation with a

structure element radius of 30 pixels (�1.5 mm) [16]. This results in an expansion of breast

Fig. 2. (a) An original mammogram, (b) the different objects appearing in the binary image and (c) a zoom view

in the area of the breast skinline.
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region outline, which includes all the nearby located objects. All the pixels that do not

belong to the expanded breast area are set to zero, resulting in the removal of background,

marks and artifacts. The artifacts located at the boundary of the breast region, at the chest

side, forming a thick line are eliminated too. The minimum rectangle containing the breast

region is automatically drawn and it is used in the subsequent processing stages.

At first, the mammogram is considered as a three-dimensional plot with the third axis (z)

corresponding to the intensity of each pixel (Fig. 3a). The whole image is split into 30 � 30

sub-regions and, using bicubic interpolation, a second plot is obtained representing the

intensity level of the local background (Fig. 3b). The interpolated image is subtracted from

the original mammogram producing a third image with each pixel value providing the

difference between the original and local background pixel values. The pixels with positive

Fig. 3. (a) Three-dimensional intensity representation of a 300 � 300 pixel area, (b) calculated object’s

background intensity of the same area.
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values are identified and a percentage of them (5%) with the highest values is selected

producing a binary image and also specifying a threshold value (the lowest value among

the selected pixels). The reason for the above selection is that the objects of interest

(microcalcifications) are characterized by higher intensity compared to their background.

In a typical image, the number of selected pixels is quite large and in subsequent processing

a fraction of them will be removed. If the amount of the selected pixels is lower than 10% of

the total number of pixels of the cropped mammogram, the pixels with intensity higher than

half of the previously specified threshold are added. In such a way an adequate number of

pixels are included in the obtained binary image (A). This case occurs when the

mammogram exhibits very low contrast usually due to erroneous exposure conditions.

Next a contrast enhancement filter is applied with 9 � 9 kernel having central element

equal to 80 and all the other elements equal to �1 [38,43]. Five percent of the pixels having

the highest intensity are selected, producing a second binary image (B). The outcome of the

segmentation module is an image produced by the logical summation (AND) of the two

binary images A and B. It contains the pixels that have high intensity values and, at the

same time, quite high intensity values in comparison with the background intensity of their

local neighbourhood (Fig. 4).

2.3. Regions of interest specification

In the segmented image obtained in the previous stage, neighbouring pixels with

connectivity of eight are grouped together to create possible microcalcification objects.

Objects containing one or two pixels are rejected since they are considered as artifacts [10].

Since the diagnostic information is based on the existence of groups of objects, individual

objects (possibly artifacts) should be removed. The elimination of these artifacts is

achieved through the use of morphological operators. The application of the erosion

operator (with structure element a 3 � 3 kernel of unit value) results in the removal of all

objects apart from those that have at least one innermost pixel that is not part of their

boundary. In this way, only inner pixels that belong to large objects remain. These pixels

correspond to the centres of ROIs, which are generated using the dilation operator with a

3 � 3 structure element of unit value. The dilation is repeated 50 times in order to produce a

ROI with sufficient area around the object.

The smallest possible size of ROI is 101 � 101 pixels and appears when the central pixel

of an object is isolated and no other central pixel is located at a distance smaller than 100

pixels (which is the maximum allowed distance in order for two distinct objects to belong

in the same ROI). This selection takes into account the mean distance among micro-

calcifications in a cluster [4]. A ROI that is not of minimum size is considered as having

been generated from a group of objects located in the same neighbourhood. In such case,

two or more ROIs will be combined and a new enlarged ROI will be generated containing

more than two of the original objects. Based on the above methodology, several ROIs are

identified in the mammogram and each of them is a candidate for being a true cluster of

microcalcifications.

The set of ROIs is partitionned in two groups depending on their area. The first group

contains those ROIs with areas lower than 20,000 pixels (2 � 100 � 100), which is a

reliable threshold value discriminating ROIs that are generated from individual objects.
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The second group contains the remaining ROIs which contain at least two nearby objects. This

discrimination of ROIs defines a novel feature that will be used at the classification stage.

The existence of an individual object close to a ROI might be a problem in some cases.

To resolve it a second dilation process is applied on the previous image, but only to the set

of larger ROIs, using a 3 � 3 structure element in a 50-cycles repeated procedure. The

resulting image contains usually one or two ROIs that consisting of at least one large ROI

and perhaps some small ROIs (of the previous image) that are close to the large one.

The above procedure constitutes an attempt to identify groups of objects that are

candidates for microcalcification clusters. The medical definition of clustered microcal-

cifications is the presence of more than three microcalcifications in 1 cm2 area [21]. The

minimum area of a ROI is 101 � 101 pixels or 0.25 cm2 or a quarter of the area that is

reported at the medical rule. Keeping a relative proportion, the criterion is altered to two or

more. Since this rule can be used for the reduction of false positive detected ROIs, all the

regions that include less than two objects are eliminated. Using the above morphological

analysis, a number of ROIs is specified.

Fig. 4. (a) A part of a mammogram (original image), (b) the output of the segmentation component and (c) the

binary image after small object elimination.
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2.4. Classification module

The objective of the classification module is to categorize the specified ROIs as true

microcalcification clusters or not. The large number of false positive clusters that are

identified by the segmentation process makes the characterization task difficult. In order to

specify the features that will be used as inputs to the classification system, at first 54

features are identified and computed characterizing either an individual microcalcification

(object) or a group of them in a specific ROI. Those features fall into three categories

related with the intensity, shape and texture properties of each object. It should be noted

that does not exit any particular feature indicating the relation of each ROI with the

mammographic image of origin since each area is treated separately. The group features are

computed as the mean value of the five largest objects included in a ROI. The term largest

refers to the number of pixels each object is composed, in the binary-segmented image. The

selection of the five largest microcalcifications is made since a very small microcalcifica-

tion does not have enough pixels for reliable feature value computation [4].

An important feature that contributes significantly to the classification accuracy of the

proposed system is whether a given ROI lies in the same neighbourhood with a larger ROI.

Despite the fact that this feature is not related with some established medical rule, the

discrimination performance of this feature is high. The latter is a consequence of the how

that the ROIs are generated. The existence of a small ROI near a large one introduces

increased possibility for it either to be a true cluster or part of the large one. In either case,

the inclusion of this feature increases the detection performance of the system.

Since the number of the computed features is quite large and their discriminative power

varies, a feature validation together with feature selection procedure is applied. The

receiver operating characteristic (ROC) curve is plotted for each feature and the area Az

under the ROC curve is computed. Features with the highest Az are selected, resulting in a

set of 22 features (Table 1). It must be noted that most of the selected features correspond to

the mammographic characteristics that radiologists examine during a diagnostic procedure

such as shape, density, size, distribution of the examined group or individual objects

(Table 1) [53].

In the next step of the classification module the selected features are fed into a hybrid

intelligent classification system, which consists of two components (Fig. 5): a rule-based

and a neural network component. The rule construction procedure consists of the feature

identification step as well as the selection of the particular threshold value for each feature.

First, visualization of all the calculated features in two-dimensional plots, in pairs, has been

employed for the selection of suitable feature threshold values that lead to the categoriza-

tion of a remarkable number of ROIs. For every feature, several threshold values are

examined in the range of values corresponding to that feature. For each threshold value, the

number of ROIs below and above the threshold value is recorded. The ratio of the number

of ROIs that belong to a specific class (normal or pathological) over the total number of the

ROIs that belong to the same class should be more than 6%. In addition, the number of the

false negative ROIs must be equal or less than one.

In the Nijmegen database the rule-based sub-system contains three rules employing a

single feature and one rule with two features. The employed features are the standard

deviation of the microcalcifications’ intensity in a cluster, the mean eccentricity value in a
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cluster, the entropy of a cluster and the standard deviation of the distances of microcalcifica-

tions from the cluster centre and the average microcalcifications’ area in a cluster. All the

rules, other than the cluster entropy, contribute to the removal of false positive clusters.

In the MIAS database four rules have been obtained each one employing one feature.

The features with the higher discriminative capability are the area of a cluster, the average

background intensity in each cluster, the highest entropy value of the clusters in each image

(relative entropy value) and the existence of large area clusters in the neighbourhood of a

cluster. All the features, apart from the second one, contribute to the classification of

abnormal cases. It must be noted that the cluster entropy is a common feature in both

datasets, something that underlines the importance of this particular feature.

The ROIs that have been classified by the rule-based system are easily identified regions

that are subsequently removed from the set that is used for training and testing of the neural

network component. The remaining ROIs constitute the dataset that will be used for the

construction of the neural network. The input feature vector of the latter contains the total

number of features (22 features per ROI) and includes those features used by the rule-based

system. The two components (rule-based and neural network) are sequentially applied in

the classification scheme. Only if a ROI remains uncharacterized by the rule-based system,

it is subsequently fed to the neural network module for characterization.

The neural network (Fig. 6) that is used for ROI characterisation is a feedforward neural

network with sigmoid hidden nodes (Multiplayer Perceptron—MLP). In order to select an

appropriate architecture (number of hidden layers and hidden nodes per layer) several

Table 1

Main features for cluster categorization

Microcalcification (MC) cluster classification features Radiologists characterization features

Number of MCs in cluster Cluster elements (separable/countable)

Cluster area Cluster size

Mean MC area MCs size

STD of MCs area Shape of elements within cluster

Mean MC compactness Shape of elements within cluster

Mean MC elongation Shape of elements within cluster

STD of MC elongation Shape of elements within cluster

STD of MC intensity Density of calcifications

Mean MC background intensity Density of calcifications

Mean contrast Contrast of calcifications

Cluster eccentricity Shape of cluster

Mean distance from cluster centroid Calcification distribution

Neighbouring with a larger cluster Cluster distribution

Cluster entropy Calcification’s distribution

Spreading of MCs in cluster Calcification’s distribution

Cluster elongation Cluster’s shape

Mean local MC background Density of calcifications

Mean MCs intensity Density of calcifications

STD of MC compactness Shape of elements within cluster

STD of distances from cluster centroid Calcification’s distribution

Area of the cluster convex hull Shape of cluster

The length of the cluster convex hull Shape of cluster
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networks were tested with one or two hidden layers and different number of hidden nodes

[36]. In order to reduce the dimensionality of the input vector, a PCA was applied to

eliminate the features that contribute less than 3% to the total variation of the data set. The

PCA procedure transforms each 22-dimensional feature vector into a 9-dimensional

feature vector that will constitute the input to the neural network. The components of

each new feature vector are normalized to zero mean and unit variance.

Several training algorithms were implemented and tested: gradient descent methods,

resilient backpropagation, conjugate gradient methods, and quasi Newton methods [5].

The best results are obtained using a quasi-Newton method, and more specifically, the one-

step secant (OSS) algorithm [2].

To assess the performance of several architectures and training algorithms the two-fold

cross validation method was employed. According to this procedure, the dataset is

randomly divided into two subsets where the number of positive and negative cases in

each subset is approximately equal. In a first experiment the training set corresponds to the

first subset and the test set to the second one. In a second experiment the first subset

corresponds to the test set and the second to the training set. The performance is calculated

as the average test set performance in the two experiments.

Fig. 5. The hybrid classification system.
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To train a neural network we assume that positive (true) ROIs correspond to unit output

while negative ones to zero output. Training is terminated either when the training error is

less than a very small given value (10�5) or when 2000 iterations have been performed.

During testing a threshold value is needed to classify an input case as true or false cluster

based on the output value which ranges from 0 to 1. As the threshold value decreases from 1

to 0, a larger number of true positive cases is correctly characterised with an obvious

increase of false positive cases. The network performance is measured using the area Az

under a ROC curve generated by plotting the true positive fraction (sensitivity) against the

false positive fraction (1-specificity) of the cases for various threshold values [29].

Alternatively, the free receiver operating characteristic (FROC) curve may be used which

considers the number of false positive clusters per image instead of the specificity value [8].

The finally selected network (the one with the best cross-validation performance) for the

Nijmegen database has an input layer with nine nodes, two hidden layers with 20 and 10

sigmoid nodes, respectively, and an output layer with one sigmoid node. For the MIAS

database, the same neural network architecture has also been used since its performance to

the particular dataset was at the highest level, using the cross-validation model for training

and testing.

3. Results

3.1. Nijmegen database

The segmentation process results in 446 candidate ROIs from which 115 are true. The

difference is due to the fact that our system in some cases identifies two or more ROIs

Fig. 6. The neural network sub-system.
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contained in a single annotated ROI. Using the rule-based sub-system 215 ROIs are

classified. Most of them are normal ROIs corresponding to artifacts and blood vessel type

objects.The 41 ROIs are true positive (TP), 167 are true negative (TN), 5 are false positive

(FP) and 2 are false negative (FN) cases. Using the rule-based sub-system, 48% of the cases

are characterised corresponding to 39% of abnormal and 49% of normal cases. Concerning

the relative contribution of the rules used by the rule-based sub-system, the first rule

characterizes the 26.5%, the second 9.7%, the third 21.4% and the forth 42.3% of the total

number of ROIs that have been classified by the rule-based system.

The performance of the hybrid system using two-fold cross-validation at the sensitivity

level 0.90 is 1.8 false positive clusters per image. The use of the neural network results in

54 TP, 89 TN, 9 FN and 70 FP cases and the hybrid system results in 95 TP, 256 TN, 11 FN

and 75 FP cases. The Az value of the hybrid system is 0.912 (Fig. 7). The performance is

high for a wide range of sensitivity. At the sensitivity level 0.79, the specificity is 0.86 (or

1.15 false positive clusters per image) and at the sensitivity level 0.96 the number of false

positive clusters per image is 3.28 (Table 2).

It is also common in the related literature to report performance results where the

complete dataset (including both the training and the test set) is used as a test set (for

measuring the performance of the method), due to the limited number of available cases. In

such case, as expected, the system performance is greatly improved. More specifically, at

the specificity level of 1.18 false positive clusters per image, the sensitivity value obtained

is 0.96 (Table 2). The Az value is equal to 0.956 (Fig. 7).

In order to assess the performance benefits from the use of the hybrid system, we have

conducted experiments to compare the method against the case where a single neural

network is used a classification component instead of the hybrid system. More specifically

Fig. 7. ROC curves obtained with the neural network and hybrid intelligent system using the Nijmegen database

with complete dataset and cross validation.

160 A. Papadopoulos et al. / Artificial Intelligence in Medicine 25 (2002) 149–167



the same network architecture was used but the rule-based component was left out. The

performance of this system at a sensitivity level of 0.90 was 4.25 false positive clusters per

image (Table 2). The total number of ROIs has been classified as 102 TP, 163 TN, 170 FP

and 11 FN cases. The Az area under ROC curve area is 0.825 (Fig. 7). Obviously these

results are inferior to those obtained with the proposed hybrid classification system.

3.2. The MIAS database

The MIAS database contains 20 digitized films that include microcalcification clusters.

The total number of annotated clusters is 25. The segmentation process results in 193

candidate ROIs from which 34 are true. The rule-based sub-system characterises 116 ROIs

corresponding to 25 TP, 79 TN, 12 FP, and zero FN cases. The percentage of ROIs

classified by the rule-based sub-system is 73% of the abnormal and 50% of the normal

cases. Concerning the relative contribution of the rules used by the rule-based sub-system,

the first rule characterizes the 21.5%, the second 68.1%, the third 4.3% and the forth 6.0%

of the total number of ROIs that have been classified by the rule-based system.

The performance of the hybrid system using two-fold cross-validation at the sensitivity

level 0.91 is 1.15 false positive clusters per image. The use of neural network at the

Table 2

Performance of the proposed hybrid intelligent system tested for both source databases using different training

schemes (cross validation/complete set)a

Source database Network training and

evaluation procedures

Sensitivity Specificity False positive

clusters/image

Nijmegen Cross validation 0.79 0.86 1.15

0.84 0.82 1.45

0.90 0.77 1.80

0.96 0.60 3.28

Complete set 0.89 0.92 0.68

0.93 0.89 0.95

0.96 0.86 1.18

No rules employment—complete set 0.83 0.68 2.70

0.90 0.49 4.25

0.96 0.36 5.90

MIAS Cross validation 0.84 0.90 0.80

0.91 0.86 1.15

0.94 0.66 2.70

0.97 0.55 3.55

Complete set 0.91 0.92 0.65

0.94 0.92 0.65

0.97 0.88 0.95

No rules employment—complete set 0.82 0.68 2.50

0.91 0.62 3.00

0.97 0.58 3.30

a The performance of a single network without rules employment is presented as well.
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remaining cases results in 4 TP, 57 TN, 3 FN and 11 FP cases and the entire hybrid system

results in 29 TP, 136 TN, 3 FN and 23 FP cases. The Az value of the hybrid system is 0.921

(Fig. 8). At sensitivity level 0.84, the specificity value is 0.90 (or 0.8 false positive clusters

per image) and at the sensitivity level 0.94 the specificity is 2.70 false positive clusters per

image (Table 2).

If the performance of the hybrid neural network is measured in the complete data set

(training and testing) the sensitivity improves to 0.94 at the specificity level of 0.92 or 0.65

false positive clusters per image (Table 2). The area Az in this case is 0.968 (Fig. 8). When a

single neural network is solely used instead of the hybrid system, the performance

deteriorates significantly: at sensitivity level 0.91, the specificity is 3.0 false positive

clusters per image (Table 2). The total number of ROIs has been classified as 31 TP, 99 TN,

60 FP and 3 FN cases. The Az value is 0.866 (Fig. 8).

4. Discussion

The proposed system exhibits high performance in the detection of microcalcification

clusters since it is able to identify more that 90% of the total number of clusters with a

rather small number of false positive findings. The utilization of a hybrid intelligent

classification component improves the performance of the system. A reduction of the false

positive clusters cases is achieved without any cost for the sensitivity of the system. The

absence of user adjustable parameters in the segmentation process ensures that it is straight

forward to apply the method to other mammographic datasets.

Several techniques have been reported in the literature for the detection of micro-

calcification clusters using various methodologies. The performance of the proposed

Fig. 8. ROC curves obtained with the neural network and hybrid intelligent system using the MIAS database

with complete dataset and cross validation.
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method is comparable with the reported results. For the Nijmegen dataset, Meersman et al.

[28] using a neural network approach reported a sensitivity level 0.84 and two false positive

clusters per image. Using an adaptive filtering method Gurgan et al. [18] achieved a

sensitivity 1.0 with 2.3 false clusters per image. Yu [58] obtained a sensitivity 0.9 with 0.5

false clusters per image and Bazzani et al. [3] obtained a sensitivity 0.94 with 0.6 false

clusters per image using an evaluation procedure that incorporated the training set. Netsch

and Peitgen [32] reported sensitivity 0.84 with one false positive cluster per image.

Kassemeijer [20] obtained sensitivity 0.90 with 0.8 false positive clusters per image using

an extended Nijmegen dataset (containing 25 additional images).

For the MIAS dataset, Diahi et al. [14] proposed a neural network system that is fed with

predefined ROIs providing a detection performance of 0.95 for the whole dataset.

Norhayati et al. [35], using triple-ring filter analysis, reported a sensitivity of 0.96 with

1.8 false positive clusters per image using an extended dataset containing 24 additional

images without findings.

Concerning our methodology several comments can be made. First, the cluster detection

procedure is greatly accelerated compared to methodologies to which a specific rule is

applied to every pixel of the whole image in order for a specific region to be selected.

Instead of using sliding windows and applying a medical rule in each of them (as happens

in several other systems), our methodology detects the center of each ROI and then a

window is drawn around it. Therefore, search for clusters based on the application of the

medical rule is performed for a limited number of windows. In addition, ROIs are detected

more accurately including a larger number of microcalcifications, which are described

better since each one is consisted of more pixels.

At the feature extraction step, 54 features are initially computed. Some of them are

extracted from individual microcalcifications and others (group features) are the average

values of the microcalcification cluster features. The 22 features are kept after ROC

analysis for each feature. Most of these features are also taken into account by radiologists

during the visual mammogram interpretation. In addition, we introduce a new significant

feature consisting of the existence of large ROIs in the neighborhood of a given ROI. The

employed number of features is further reduced using PCA whose threshold has been

experimentally specified. The use of PCA in conjunction with the hybrid intelligent system

constitutes a novel characteristic of the method.

The hybrid system performs better than the single schemes. The limited classification

ability of a rule-based system is expected since the microcalcifications defined feature

space has no absolute class borders. The neural network classifier exhibits significantly

better performance than the rule-based scheme. But, even with the use of neural network

classifier, the performance score is lower than the proposed hybrids’ methodology. This is

due to the network inability to characterize some ‘‘unusual’’ cases. Those cases probably

appear as atypical combinations in the feature space. The neural network does not easily

simulate such behaviors. Their removal by the rule-based system, contribute to the

performance improvement of the neural network component.

The proposed method detects microcalcification clusters in digitized mammograms

eliminating the false groups of objects having similarities with the true clusters. In

both datasets that have been used for testing, the performance of our method is high

for a large range of sensitivities. This is an indication of robustness giving expectations for
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satisfactory performance using other datasets. The employment of different rules in the

hybrid system, for the two datasets, is due to the fact that different digitization procedures

had been followed in each dataset. A larger homogeneous dataset must utilize a uniform

rule sub-system. However, it must be noted that the method performs well despite the fact

that no processing for identification of line structures is included. The latter constitutes a

reasonable direction for further improvement of our method performance.

Additional patient features other than those obtained from the image such as family

history, age, etc. might be included to improve the diagnostic value of our system. The next

step of our work is to use hybrid systems to perform classification of identified clusters

according to their likelihood of malignancy.

5. Conclusions

A hybrid intelligent system has been developed for the identification of microcalcifica-

tion clusters in digitized mammograms. The method employs two components: a rule-

based and a neural network sub-system. We tested our system in the Nijmegen and the

MIAS mammographic databases with satisfactory results. The achieved classification

specificity is 1.80 and 1.15 false positive clusters per image, for the Nijmegen and MIAS

dataset, respectively, at the sensitivity level of about 0.91.

Although the achieved performance is satisfactory further studies should be done in the

elimination of falsely detected objects with line structure that are in most cases not

originating from parenchymal microcalcifications. Further testing has to be performed

concerning the use of other databases as well as of original mammograms obtained from

the clinical routine of the collaborating hospitals or screening population projects. Finally,

future work will also be directed towards the construction of a classification system that

will perform discrimination between benign and malignant microcalcification clusters.
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