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Abstract. Implicit Runge–Kutta methods in time are used in conjunction with

the Galerkin method in space to generate stable and accurate approximations to

solutions of the nonlinear (cubic) Schrödinger equation. The temporal component of

the discretization error is shown to decrease at the classical rates in some important

special cases.

1. Introduction

In this paper we consider the following initial boundary value problem for the cubic

Schrödinger equation: Let Ω ⊂ Rd be a bounded domain with boundary ∂Ω. We seek

a complex-valued function u satisfying

(1.1)


ut = i∆u+ iλ|u|2u, (x, t) ∈ Ω̄ × [0, t∗],

u = 0, (x, t) ∈ ∂Ω × [0, t∗],

u(x, 0) = u0(x), x ∈ Ω̄,

where λ is a nonzero real number and u0 is a given complex-valued function on Ω̄. We

assume that the data of (1.1) are such that the problem possesses a unique classical

solution in Cµ(Ω̄ × [0, t∗]), where µ is sufficiently large for the approximation results

that will be proved in the sequel. We refer the reader to the surveys [[12] and [13] for

an overview of the physical significance and the mathematical theory of the nonlinear

Schrödinger equation.

We shall approximate the solution of (1.1) using Galerkin finite element type meth-

ods in space and suitable implicit Runge–Kutta (IRK) schemes for time-stepping. In

another paper [2], to which we also refer the reader for references to previous work on

the numerical solution of (1.1), we study Galerkin methods of second-order temporal

accuracy and address issues of their efficient implementation. The emphasis in the

paper at hand is on higher order IRK methods; in particular, we shall prove L2 error

1991 Mathematics Subject Classification. 65M60.
Key words and phrases. nonlinear Schrödinger equation, Galerkin methods, implicit Runge–Kutta

schemes, order reduction.
The work of G.D.A. and V.A.D. was supported by the Institute of Applied and Computational

Mathematics of the Research Center of Crete-FORTH and by the Science Alliance program of the

University of Tennessee.

The work of O.K. was supported by Air Force Office of Scientific Research grant 88-0019 and by

the Science Alliance program of the University of Tennessee.
1



2 OHANNES KARAKASHIAN, GEORGIOS D. AKRIVIS, AND VASSILIOS A. DOUGALIS

estimates whose spatial component is of optimal rate of convergence and whose tem-

poral component decreases at the optimal (classical) rates in some important special

cases.

Specifically, for suitable classes of IRK methods, we shall show that

(1.2) max
0≤n≤N

‖unh − u(tn)‖L2(Ω) ≤ c(kσ + hr),

where σ = min{p + 3, ν} if Ω is a general domain with piecewise smooth curved

boundary and σ = ν if Ω is any polyhedral domain (or any finite interval if d = 1).

Here h is the space discretization parameter, r is the optimal spatial rate of convergence

in L2 (cf. §2), k is the time step, tn = nk, 0 ≤ n ≤ N,N = t∗/k, u is the solution of

(1.1) (assumed to be sufficiently smooth up to the boundary), unh its fully discrete

approximation at time tn, and c is a constant depending on u and the data of (1.1) but

independent of h and k. The time-stepping is effected through a q−stage IRK method

with (classical) order of accuracy ν; p is the stage order (cf. (B), (C) in §2.3). For (1.2)

to hold, the Galerkin subspaces and the IRK scheme must satisfy a series of standard

properties (cf. §2), u0
h should be chosen so that ‖u0

h − u0‖L2(Ω) = O(hr), d < 2r, and

the (weak) mesh condition k = O(hd/2σ) as h→ 0 should be satisfied.

It is well known that approximating smooth solutions of initial and boundary value

problems for some partial differential equations (PDEs) by high order Runge–Kutta

methods results sometimes in observed temporal rates of convergence lower than the

(classical) order ν (cf., e.g., [6], [4], [9]). From (1.2) we may infer that, under our

hypotheses, no reduction of the order ν occurs for the problem (1.1) if Ω is a polyhedral

domain or if p + 3 ≥ ν, as would be the case, for example, with practically important

schemes such as the conservative q−stage Gauss–Legendre collocation type methods

(p = q, ν = 2q) with up to three stages, and the two-, respectively, three-stage optimal

order diagonally implicit RK (DIRK) schemes, for which p = 1, ν = 3 and p = 1, ν = 4,

respectively.

The proof of (1.2) relies on constructing suitable smooth approximations un,j to the

values u(tn,j), 1 ≤ j ≤ q, of the solution u of (1.1) at the intermediate time levels

tn,j of the Runge–Kutta scheme (cf. §2); the un,j are combined to produce a smooth

approximation un+1 of u(tn+1) to which un+1
h is then compared. The un,j are expressed

as polynomials of k (that may be viewed as extensions of Taylor expansions of u(t)

about tn,j) in the form un,j =
∑σ

`=0 k
`αj`, where the αj` are smooth functions on Ω̄ and

depend on the solution of (1.1) and the Runge–Kutta method. They occur naturally

in analyzing the consistency of the scheme and satisfy a crucial cancellation property

(cf. (4.8)). The heart of the proof is then checking that the αj`’s vanish on ∂Ω, a fact

that allows approximating un,j to optimal order in space by elements of the Galerkin

subspace. The technique of constructing expansions in powers of k at the intermediate

time levels has its origins in [10] but it was elaborated fully in [11] in the context of

the initial and periodic boundary value problem for the Korteweg–de Vries equation.

In the latter paper, the un,j were defined implicitly as the intermediate stages that

would be obtained in the process of applying the Runge–Kutta method to u(tn). In so
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doing, a host of difficulties had to be handled. In particular, the existence of the un,j

had to be established. Moreover, it was shown that the un,j were as smooth as u(tn)

and that appropriate high order Sobolev norms of theirs were bounded in terms of

corresponding norms of u(tn) with constants free of any dependence on k. In the paper

at hand, the un,j are defined explicitly and thus the issue of existence is bypassed. On

the other hand, the intermediate equations are not satisfied exactly, but to within an

error of O(kσ+1), which is perfectly acceptable for the purpose of error estimation. In

summary, the approach followed here, although similar in spirit to the one adopted in

[11], is considerably simpler.

Using a different technique, an error estimate analogous to (1.2) was shown in [1]

in the context of a linear Schrödinger equation on a general domain Ω with a time-

dependent potential (replace in (1.1) iλ|u|2u by β(x, t)u) with an exponent of k equal

to min{q + 2, 2q} for the q−stage Gauss–Legendre methods. In the specific nonlinear

autonomous case at hand, the nonlinearity |u|2u affords proving that solutions of (1.1),

that are smooth up to the boundary of Ω× (0, t∗), satisfy ∆mu = 0 on ∂Ω× [0, t∗], for

m high enough depending on Ω. This is the important observation that subsequently

allows proving that αj` = 0 for 0 ≤ ` ≤ σ on ∂Ω, which in turn implies (1.2). In fact,

for ν > p+ 3, by introducing local coordinates, it is possible to verify, in the case of a

nonpolyhedral domain with piecewise smooth boundary, that the functions αj,p+4 do

not vanish on ∂Ω for arbitrary solutions of (1.1) that are smooth up to the boundary

and for arbitrary schemes within the class of IRK methods under consideration. Hence,

our technique of investigating whether temporal order reduction occurs for (1.1) en-

counters a barrier at σ = p + 3 if the boundary of Ω is curved. To ascertain whether

this barrier is real or merely an artifact of our particular proof one should perhaps

resort to numerical experiments on plane domains. Such experiments will not be easy

to design and perform because of the nonlinearity of the problem, the high degree of

accuracy required of the spatial and temporal discretizations, and the fact that there

is no order reduction if the domain is polygonal. As was stated previously, our proof

depends on the assumption that the solution of (1.1) is smooth up to the boundary.

This assumption may not be realistic for arbitrary polyhedral domains, for which sin-

gularities due to the corners cannot be ruled out. However, there are important special

cases (d = 1, special solutions on rectangles in the presence of symmetries, etc.) for

which such smoothness is expected under reasonable smoothness and compatibility

conditions on u0.

The plan of the paper is as follows. In §2 we introduce notation, list our assump-

tions for the Galerkin subspaces and the IRK methods, and construct the fully discrete

approximations unh. In §3 we discuss briefly the existence, L2−boundedness and unique-

ness of unh. The main results of the paper that lead to the proof of (1.2) are to be found

in §4. In §5 we briefly indicate how the techniques and results of the present paper

extend to some related PDEs.

In a subsequent paper we shall construct and analyze efficient implementations of

Newton’s method for solving the nonlinear systems produced by the IRK schemes at
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each time step and show results of relevant numerical experiments. This has been

carried out in the context of O(k2) schemes in [2].

2. Preliminaries

2.1. Some function spaces. For 1 ≤ p ≤ ∞, Lp = Lp(Ω) will denote the Banach

space of (classes of) complex-valued measurable functions defined on Ω, equipped with

the norm

‖v‖Lp =

(∫
Ω

|v|p dx
)1/p

, 1 ≤ p <∞,

‖v‖L∞ = ess supx∈Ω |v(x)|.

In particular, for p = 2, the space L2 has the inner product (u, v) =
∫
Ω
uv̄ dx. Let

α = (α1, α2, . . . , αd), αi ≥ 0, denote a multi-integer, and let |α| = α1 + α2 + · · ·+ αd.

For m ≥ 0 integer, Hm will denote the Hilbert space of (classes of) complex-valued

measurable functions which, together with their (distributional) derivatives of order

up to m, are in L2, i.e.,

Hm = {v : Dαv ∈ L2, |α| ≤ m}.

These spaces are equipped with the norms ‖v‖Hm =
{∑

|α|≤m ‖Dαv‖2
L2

}1/2
. To simplify

notation, we shall denote the norm on L2 = H0 by ‖ · ‖. We let H1
0 = {v ∈ H1 : v =

0 on ∂Ω}.
We shall also use spaces of continuously differentiable functions. With Q denoting a

bounded domain in Rd, Cm(Q) is the usual space of complex-valued functions v defined

on Q which, together with their partial derivativesDαv of order |α| ≤ m, are continuous

on Q. Similarly, Cm(Q̄) is the space of functions v in Cm(Q) for which Dαv is bounded

and uniformly continuous on Q for |α| ≤ m. Cm(Q̄) is a Banach space with norm

‖v‖Cm(Q̄) = max
|α|≤m

sup
x∈Q̄
|Dαv(x)|.

2.2. The approximating spaces. For integer r ≥ 2 and 0 < h < 1, Srh ⊂ H1∩C0(Ω̄)

will represent an approximating finite-dimensional space of functions. Such spaces

typically consist of piecewise polynomial functions of degree ≤ r − 1 defined on a

suitable partition of Ω.

We assume that these spaces possess good approximation properties; indeed, that

there exists a constant c independent of h such that for each v ∈ Hr ∩H1
0 , there exists

χ ∈ Srh such that

(2.1) ‖v − χ‖ ≤ chr‖v‖r,

and if in addition v ∈ C2(Ω̄), then

(2.2) ‖v − χ‖L∞ ≤ ch2‖v‖C2(Ω̄).

We shall assume that the elements of Srh satisfy the following inverse inequality

(2.3) ‖χ‖L∞ ≤ ch−d/2‖χ‖.
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Let V = Srh + (H2 ∩H1
0 ). We assume the existence of a family of sesquilinear forms

Br
h : V × V → C with the following properties:

Br
h(v, v) is real for v ∈ V,(2.4a)

Br
h(v, v) ≥ c‖v‖2

1 for c > 0, ∀v ∈ Srh,(2.4b)

Br
h(v, χ) = −(∆v, χ) ∀χ ∈ Srh, v ∈ H2 ∩H1

0 .(2.4c)

With Br
h we associate an elliptic projection operator PE : H2 ∩H1

0 → Srh by

(2.5) Br
h(PEv, χ) = Br

h(v, χ) = −(∆v, χ) ∀χ ∈ Srh.

We assume that for some constant c independent of h

(2.6) ‖PEv − v‖ ≤ chr‖v‖r ∀v ∈ Hr ∩H1
0 .

The most well-known family of such sesquilinear forms is provided by the so-called

standard Galerkin method. In this case, Srh ⊂ H1
0 and

Br
h(v, w) =

∫
Ω

∇v · ∇w̄ dx.

There are several other examples of finite element formulations which generate forms

Br
h satisfying the requisite properties. Among these we may cite two methods of Nitsche

that use subspaces Srh ⊂ H1 which do not satisfy the homogeneous Dirichlet boundary

conditions and the Lagrange multiplier method of Babuska [3].

2.3. The implicit Runge–Kutta methods. For q ≥ 1 integer, a q−stage IRK

method is specified by a set of constants arranged in tableau form

a11 . . . a1q τ1

...
...

...

aq1 . . . aqq τq

b1 . . . bq

.

Given the initial value problem

(2.7) y = f(t, y), 0 < t ≤ t∗, y(0) = y0,

IRK methods generate approximations yn to y(tn), 0 ≤ n ≤ N, where k = t∗/N is the

temporal stepsize and tn = nk, as follows. Let

(2.8) yn+1 = yn + k

q∑
j=1

bjf(tn,j, yn,j),

where tn,j = tn + kτj and where the intermediate stages yn,j are given by the system

of coupled equations

(2.9) yn,j = yn + k

q∑
m=1

ajmf(tn,m, yn,m), j = 1, . . . , q.
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We shall assume that these methods (constants) satisfy certain stability and consis-

tency conditions [5], [7], [9]. Indeed it will be require that

(S)
bi ≥ 0, i = 1, . . . , q.

The q × q array mij = aijbi + ajibj − bibj is positive semidefinite.

The above condition, known as algebraic stability, is stronger than that of A–stability.

The consistency conditions are given by the following simplifying assumptions :

q∑
j=1

bjτ
`
j =

1

`+ 1
, ` = 0, . . . , ν − 1,(B)

q∑
j=1

aijτ
`
j =

τ `+1
i

`+ 1
, i = 1, . . . , q, ` = 0, . . . , p− 1,(C)

q∑
i=1

aijτ
`
i bi =

bj
`+ 1

(1− τ `+1
j ), j = 1, . . . , q, ` = 0, . . . , ρ− 1,(D)

for some integers ν ≥ 1, p ≥ 1, ρ ≥ 1. We assume that

ν ≤ ρ+ p+ 1,(2.10a)

ν ≤ 2p+ 2.(2.10b)

We shall refer to p and ν as the stage order and classical order, respectively. It

is well known [5], that the simplifying assumptions (B), (C), and (D) together with

(2.10a) and (2.10b) imply that the method is consistent of order ν.

The existence of the numerical approximations is obtained by assuming the following

positivity property (cf. [8]):

(P)
The matrix A = (aij) is invertible and there exists a positive diagonal

matrix D such that xTCx > 0, ∀x ∈ Rq, x 6= 0, where C = DA−1D−1.

We next give examples of some families of IRK methods that satisfy these properties

and the tableaus of their two- and three-stage members.

(i) Gauss–Legendre methods. These methods form a particularly interesting class in

that the matrix M in (S) vanishes identically, a fact that has important implications

such as L2−conservativeness of the schemes and mild growth of the discretization error.

For this class, ν = 2q, p = ρ = q [9, p. 71]. For (S) see [9, p. 101], and for (P) see [9,

p. 157].

1
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√
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√
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(ii) Radau IIA methods. These methods are characterized by τq = 1. Also, ν =

2q − 1, p = q, ρ = q − 1 (cf. [9, p. 71]). For (S) (P), see [9, p. 101, 164], respectively.

5
12
− 1

12
1
3

3
4

1
4

1

3
4

1
4

,

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4−
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

4+
√

6
10

16−
√

6
36

16+
√

6
36

1
9

1

16−
√

6
36

16+
√

6
36

1
9

Both of the families above are infinite, in the sense that arbitrarily high order meth-

ods can be constructed.

(iii) Two- and three-stage optimal order DIRK methods.

1
2

+ 1
2
√

3
0 1

2
+ 1

2
√

3

− 1√
3

1
2

+ 1
2
√

3
1
2
− 1

2
√

3

1
2

1
2

,

γ 0 0 γ
1
2
− γ γ 0 1

2

2γ 1− 4γ γ 1− γ
1

24( 1
2
−γ)2

1− 1
12( 1

2
−γ)2

1
24( 1

2
−γ)2

Here γ = 1/2 + 1/
√

3 cosπ/18 is the largest root of 24x3− 36x2 + 12x− 1 = 0. For the

two-stage method ν = 3, p = ρ = 1. For the three-stage method ν = 4, p = ρ = 1; hence

(2.10a) is not satisfied. This will necessitate a slight modification in the estimation of

the local truncation error. For (S) see [9, p. 121]. (P) also holds for both methods but

an existence proof may be given that does not use (P).

2.4. The fully discrete approximations. Following (2.8) and (2.9), we define the

fully discrete approximations {unh}Nn=0 recursively as follows: Let πhu
0 be any conve-

niently chosen element of Srh, e.g., L2−projection, interpolant, etc., that is optimally

close to u0 in the sense that

(2.11) ‖u0 − πhu0‖ ≤ chr.

We set u0
h = πhu

0 and for n = 0, . . . , N − 1, χ ∈ Srh,

(2.12) (un+1
h , χ) = (unh, χ) + k

q∑
j=1

bj
{
− iBr

h(u
n,j
h , χ) + iλ(|un,jh |

2un,jh , χ)
}
,

where the intermediate stages {un,jh }
q
j=1 satisfy the system of equations

(2.13)
(un,jh , χ) = (unh, χ) + k

q∑
m=1

ajm
{
− iBr

h(u
n,m
h , χ) + iλ(|un,mh |

2un,mh , χ)
}
,

∀χ ∈ Srh, j = 1, . . . , q.

Since A is nonsingular we may also write (2.12), setting e = (1, . . . , 1)T ∈ Rq, as

(2.14) un+1
h = (1− bTA−1e)unh + bTA−1Unh , Unh = (un,1h , . . . , un,qh )T .
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For ease of notation we introduce the maps ∆h : Srh → Srh and gh : Srh → Srh defined

by

(∆hw, χ) = −Br
h(w, χ) ∀χ ∈ Srh,(2.15)

(gh(w), χ)− (|w|2w, χ) ∀χ ∈ Srh.(2.16)

That these maps are well defined follows from the Riesz representation theorem.

Letting fh = i(∆h + λgh), we may write (2.12) and (2.13) as

un+1
h = unh + k

q∑
j=1

bjfh(u
n,j
h ),(2.17)

un,jh = unh + k

q∑
m=1

ajmfh(u
n,m
h ), j = 1, . . . , q.(2.18)

The map g(z) = |z|2z is locally Lipschitz. It will prove very convenient to associate

with g a Lipschitz map g̃ : C → C as follows: With u denoting the solution of (1.1),

let M(u) = sup(x,t)∈Ω̄×[0,t∗] |u(x, t)| and

(2.19) g̃(z) =

{
|z|2z, |z| ≤ 2M(u),

4M2(u)z, |z| ≥ 2M(u).

In case max1≤i≤q τi > 1, we replace t∗ in the definition of M(u) by t∗ − k +

kmax1≤i≤q τi, assuming that the solution possesses an extension out of the temporal

interval under consideration.

The easy proof of the following result is left to the reader.

Lemma 2.1. The map g̃ is Lipschitz continuous with Lipschitz constant L = 12M2(u).

�

The map g̃ induces a map g̃h : Srh → Srh via

(2.20) (g̃h(w), χ) = (g̃(w), χ) ∀χ ∈ Srh.

Letting f̃h = i(∆h + λg̃h), in analogy with (2.17) and (2.18), we define the auxiliary

functions {ũnh}Nn=0 by ũ0
h = u0

h = πhu
0, and, for n = 0, . . . , N − 1, by

ũn+1
h = ũnh + k

q∑
j=1

bj f̃h(ũ
n,j
h ),(2.21)

ũn,jh = ũnh + k

q∑
m=1

ajmf̃h(ũ
n,m
h ), j = 1, . . . , q.(2.22)

3. Existence, L2 bounds and uniqueness of the fully discrete

approximations

The main tool in obtaining existence is the following well-known version of the

Brouwer fixed point theorem (cf. [2]).
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Lemma 3.1. Let (H, (·, ·)H) be a finite-dimensional inner product space. Let g : H →
H be continuous and assume that for some α > 0,Re(g(z), z)H ≥ 0 for every z ∈ H
with ‖z‖H = α. Then there exists z∗ ∈ H with ‖z∗‖H ≤ α such that g(z∗) = 0. �

We shall also use the following lemma.

Lemma 3.2. Assume that the IRK method satisfies (P) and let C = DA−1D−1 and

D = diag{d1, . . . , dq}. Let {ϕj}qj=1 ∈ L2. Then, for some positive constant c depending

only on the IRK method

(3.1) Re

q∑
j,m=1

cjmdjdm(ϕm, ϕj) ≥ c

q∑
j=1

‖ϕj‖2.

Proof. Let ϕj = ϕj1 + iϕj2 where ϕj1 and ϕj2 are real-valued. Then

(3.2)

q∑
j,m=1

cjmdjdm(ϕm, ϕj) =

∫
Ω

q∑
j,m=1

cjmdjdm(ϕm1 ϕ
j
1 + ϕm2 ϕ

j
2) dx

+ i

∫
Ω

q∑
j,m=1

cjmdjdm(ϕm2 ϕ
j
1 − ϕm1 ϕ

j
2) dx.

The conclusion now follows from (P). �

Proposition 3.1. Assume that (P) holds. Then, systems (2.18) and (2.22) have

solutions.

Proof. Let H = (Srh)
q and equip it with the usual inner product (Φ, Ψ)H =

∑q
i=1(ϕi, ψi)

and corresponding norm ‖Φ‖2
H = (Φ,Φ)H . Define G = (g1, . . . , gq)

T : H → H by

gj(z1, . . . , zq) =

q∑
m=1

cjmdjdm(zm − unh)− kd2
j f̃h(zj), j = 1, . . . , q.

Multiplying the jth equation with z̄j, integrating and summing, we get

(G(Z), Z) =

q∑
j,m=1

cjmdjdm{(zm, zj)− (unh, zj)} − k
q∑
j=1

d2
j

(
f̃h(zj), zj

)
.

Using (3.1) and the fact that (f̃h(z), z) is imaginary, we get

Re(G(Z), Z) ≥ ‖Z‖H{c1‖Z‖H − c2‖unh‖}

for some positive constants c1, c2. It follows that Re(G(Z), Z) > 0 on the sphere of

radius 1 + c2‖unh‖/c1 in H. By Lemma 3.1, there exists Z = (z1, . . . , zq)
T satisfying

G(Z) = 0. That Z is indeed a solution to (2.22) is readily seen. As for (2.18), it is

sufficient to note that we have used only the properties that f̃h is continuous and that

(f̃h(z), z) is imaginary. �

As far the boundedness of the solution is concerned we have the following result, a

consequence of algebraic stability.
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Proposition 3.2. Assume that (2.18) has a solution and that (S) holds. Then

(3.3) ‖un+1
h ‖ ≤ ‖unh‖.

For the Gauss–Legendre methods (3.3) holds as an equality, i.e., these methods are

L2−conservative.

Proof. Take the L2−inner product of un+1
h given by (2.17) by itself, denoting f jh =

fh(u
n,j), and obtain

‖un+1
h ‖2 = ‖unh‖2 + k

q∑
j=1

bj
[
(f jh, u

n
h) + (unh, f

j
h)
]

+ k2

q∑
j,s=1

bjbs(f
j
h, f

s
h).

Using then (2.18) in the right-hand side of the above, we see that since (f jh, u
n,j
h ) is

imaginary,

‖un+1
h ‖2 = ‖unh‖2 − k2

q∑
j,s=1

mjs Re(f jh, f
s
h);

the result now follows from (S). For the Gauss–Legendre methods we have already

noted that mjs = 0. �

Using the fact that g̃ is Lipschitz, we can prove in a straightforward way that the

solution of (2.22) is unique. More specifically, we can show that there exists k0 > 0

that depends on the Lipschitz constant L and the IRK method, such that (2.22) admits

a unique solution provided k ≤ k0.

We thus have a local uniqueness result for solutions of (2.18) in the sense that two

solutions whose components are in the ball {v ∈ Srh : ‖v‖L∞ ≤ 2M(u)} are identical.

In fact using the embedding of H1 in L4, it is possible to prove that for d = 1, 2, or

3, solutions with components in {v ∈ Srh : ‖v‖L4 ≤ K} for some K > 0 are unique

provided k ≤ k0 for some k0 that depends on K and the IRK method.

For a detailed study of uniqueness in the context of single-step schemes of second-

order temporal accuracy, we refer the reader to [2].

4. Error estimates

Given n, 0 ≤ n ≤ N − 1, let u = u(·, tn). Let the functions αj` be defined by

(4.1)

αj0 = u, j = 1, . . . , q,

αj,`+1 = i

q∑
s=1

ajs
{
∆αs` + λ

∑
|m|=`

m=(m1,m2,m3)

αsm1αsm2ᾱsm3

}
, j = 1, . . . , q, ` = 0, . . . , ν − 1.

We shall first establish a series of results involving these functions. First some useful

identities.
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Lemma 4.1. Assume that (C) holds together with (2.10b). Denoting the vector (α1`,

. . . , αq`)
T by α`, with D`

tu = (∂`/∂t`)u(x, t)
∣∣
t=tn

and T = diag{τ1, . . . , τq}, we have

α` = D`
tu
T `e

`!
, ` = 0, . . . , p if p ≤ ν,(4.2)

αp+1 = Dp+1
t u

AT pe

p!
if p ≤ ν − 1,(4.3)

α`+1 = D`+1
t u

AT `e

`!
+ iA∆

[
α` −D`

tu
T `e

`!

]
(4.4)

+ 2iλA
∑̀

m1=p+1

D`−m1
t |u|2

(`−m1)!

[
T `−m1αm1 −Dm1

t u
T `e

m1!

]

+ iλA
∑̀

m3=p+1

D`−m3
t u2

(`−m3)!

[
T `−m3ᾱm3 −Dm3

t ū
T `e

m3!

]
,

` = p+ 1, . . . , ν − 1 if p ≤ ν − 2.

Proof. The case ` = 0 is obvious. So assume that (4.2) holds for all indices up to some

`, where 0 ≤ ` ≤ p− 1. Then using (1.1), (4.1), and (C)

αj,`+1 =

q∑
s=1

ajs

{
i∆
τ `s
`!
D`
tu+ iλ

∑
|m|=`

τm1
s

m1!
Dm1
t u

τm2
s

m2!
Dm2
t u

τm3
s

m3!
Dm3
t ū

}

=

q∑
s=1

ajs
{

i∆
τ `s
`!
D`
tu+ iλ

τ `s
`!
D`
t

(
|u|2u

)}
=

1

`!

( q∑
s=1

ajsτ
`
s

)
iD`

t{∆u+ λ|u|2u}

=
τ `+1
j

(`+ 1)!
D`+1
t u.

Formula (4.3) can be established in an analogous manner. To establish (4.4), for a

given `, p+ 1 ≤ ` ≤ ν − 1, we let

M ` = {m = (m1,m2,m3) : 0 ≤ mi ≤ `, 1 ≤ i ≤ 3, |m| = `},
M `

0 = {m ∈M ` : 0 ≤ mi ≤ p, i = 1, 2, 3},
M `

i = {m ∈M ` : p+ 1 ≤ mi ≤ `}, i = 1, 2, 3.
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It follows from (2.10b) that M `
i ∩M `

j = ∅, i 6= j, i, j = 0, 1, 2, 3, and that M ` =

∪3
i=0M

`
i . Using these facts

(4.5)

αj,`+1 =

q∑
s=1

ajs

{
i∆
τ `s
`!
D`
tu+ i∆

[
αs` −

τ `s
`!
D`
tu
]

+ iλ
∑
m∈M`

0

τm1
s

m1!
Dm1
t u

τm2
s

m2!
Dm2
t u

τm3
s

m3!
Dm3
t ū

+ 2iλ
∑̀

m1=p+1

αsm1

∑
m2+m3=`−m1

τm2
s

m2!
Dm2
t u

τm3
s

m3!
Dm3
t ū

+ iλ
∑̀

m3=p+1

ᾱsm3

∑
m1+m2=`−m3

τm1
s

m1!
Dm1
t u

τm2
s

m2!
Dm2
t ū

}
.

Now note that ∑
m2+m3=`−m1

τm2
s

m2!
Dm2
t u

τm3
s

m3!
Dm3
t ū =

τ `−m1
s

(`−m1)!
D`−m1
t |u|2.

Using this and a similar identity for the last term in (4.5), we get

αj,`+1 =

q∑
s=1

ajs

{
i∆
τ `s
`!
D`
tu+ i∆

[
αs` −

τ `s
`!
D`
tu
]

+ iλ
∑
|m|=`

τm1
s

m1!
Dm1
t u

τm2
s

m2!
Dm2
t u

τm3
s

m3!
Dm3
t ū

+ 2iλ
∑̀

m1=p+1

[
αsm1 −

τm1
s

m1!
Dm1
t u

] τ `−m1
s

(`−m1)!
D`−m1
t |u|2

+ iλ
∑̀

m3=p+1

[
ᾱsm3 −

τm3
s

m3!
Dm3
t ū

] τ `−m3
s

(`−m3)!
D`−m3
t u2

}
.

This is the componentwise form of (4.4). �

In the sequel we shall assume with no loss of generality that p ≤ ν − 2.

Lemma 4.2. Assume that (B), (C), and (D) hold together with (2.10a) and (2.10b).

Then, for each ` = 0, . . . , ν − 1, using the notation of Lemma 4.1 we have

(4.6) bTT sα` =
D`
tu

`!(s+ `+ 1)
,

for every nonnegative integer s such that s+ ` ≤ ν − 1.

Proof. Assume 0 ≤ ` ≤ p, 0 ≤ s ≤ ν − 1 with s+ ` ≤ ν − 1. From (4.2) and (B)

bTT sα` = bTT s
T `e

`!
D`
tu = bT

T s+`e

`!
D`
tu =

D`
tu

`!(s+ `+ 1)
.
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Now let ` = p + 1 and 0 ≤ s ≤ ν − 1 with s + p + 1 ≤ ν − 1. It follows from the

inequalities ν ≤ ρ+ p+ 1 and s+ p+ 1 ≤ ν − 1 that s ≤ ρ− 1; hence using (4.3), (B),

and (D), we obtain

bTT sαp+1 =
bTT sAT pe

p!
Dp+1
t u

=
1

(s+ 1)p!
bT (1− T s+1)T peDp+1

t u

=
1

(s+ 1)p!
{bTT pe− T s+1+pe}Dp+1

t u

=
1

(s+ 1)p!

{ 1

p+ 1
− 1

s+ p+ 2

}
Dp+1
t u

=
Dp+1
t u

(p+ 1)!(s+ p+ 2)
.

We now complete the proof using an induction argument; assume that (4.6) holds up

to some ` with p + 1 ≤ ` ≤ ν − 2. From (4.4) we have for s = 0, . . . , ν − 1 with

s+ `+ 1 ≤ ν − 1,

(4.7)

bTT sα`+1 =
bTT sAT `e

`!
D`+1
t u+ i∆bTT sA

[
α` −

T `e

`!
D`
tu
]

+ 2iλ
∑̀

m1=p+1

D`−m1
t |u|2

(`−m1)!
bTT sA

[
T `−m1αm1 −Dm1

t u
T `e

m1!

]

+ iλ
∑̀

m3=p+1

D`−m3
t u2

(`−m3)!
bTT sA

[
T `−m3ᾱm3 −Dm3

t ū
T `e

m3!

]
.

As before, s ≤ ρ− 1; hence using (B) and (D),

bTT sAT `e =
1

s+ 1
bT (1− T s+1)T `e

=
1

s+ 1
{bTT `e− bTT s+1+`e}

=
1

(`+ 1)(s+ `+ 2)
.

Therefore,

bTT sAT `e

`!
D`+1
t u =

1

(`+ 1)!(s+ `+ 2)
D`+1
t u.

Thus, to conclude the proof, it is sufficient to show that the last three terms in (4.7)

are zero. This may be done in a similar way for all terms, so we consider here, as an

example, only the second one. Indeed, from (B) and (D), for p + 1 ≤ m1 ≤ `, using
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the induction hypothesis we have

bTT sAT `−m1αm1 =
1

s+ 1
bT (1− T s+1)T `−m1αm1

=
1

s+ 1
{bTT `−m1 − bTT s+`−m1+1}αm1

=
1

(s+ 1)

{ 1

m1!(`+ 1)
− 1

m1!(s+ `+ 2)

}
Dm1
t u

=
Dm1
t u

m1!(`+ 1)(s+ `+ 2)
.

On the other hand, we have shown above that bTT sAT `e = 1/(` + 1)(s + ` + 2), so

indeed the second term is zero. �

The key identity (4.6) is used to establish the following important cancellation prop-

erty involving the α’s.

Corollary 4.1. Assume that (B), (C) and (D) hold together with (2.10a) and (2.10b),

or that the RK method is the three-stage DIRK. Then

(4.8) bTA−1α` =
D`
tu

`!
, ` = 1, . . . , ν.

Proof. For ` = 1, . . . , p using (B), (C), and (4.2), we see that

bTA−1α` = bTA−1T
`e

`!
D`
tu

= bTA−1AT
`−1e

(`− 1)!
D`
tu

=
D`
tu

`!
.

For ` = p+ 1, from (4.3) and (B),

bTA−1αp+1 =
bTT pe

p!
Dp+1
t u =

Dp+1
t u

(p+ 1)!
.

For ` = p+ 1, . . . , ν − 1, from (4.4) we obtain

bTA−1α`+1 =
bTT `e

`!
D`+1
t u+ i∆bT

[
α` −

T `e

`!
D`
tu
]

+ 2iλ
∑̀

m1=p+1

D`−m1
t |u|2

(`−m1)!
bT
[
T `−m1αm1 −Dm1

t u
T `e

m1!

]

+ iλ
∑̀

m3=p+1

D`−m3
t u2

(`−m3)!
bT
[
T `−m3ᾱm3 −Dm3

t ū
T `e

m3!

]
.

Using (B), the first term on the right-hand side gives D`+1
t u/(` + 1)!. On the other

hand, the second, third, and fourth terms are zero by virtue of (4.6) and (B).
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We finally consider briefly the special case of the three-stage DIRK method, for

which, as we recall, 2p+2 = 4 but ρ+p+1 = 3. We need only to verify that bTA−1α4 =

D4
t u/24. That this identity indeed holds can be seen by straightforward albeit long

calculations and Lemma 4.1 in conjunction with the following three identities:

bTTATe =
1

8
, bTAT 2e =

1

12
, bTA2Te =

1

24
. �

It follows from (4.1) that α`, ` = 0, . . . , ν−1, are smooth if u, the solution of (1.1), is

sufficiently smooth. Also, it will be very important for the analysis to follow that the

α`’s inherit the homogeneous Dirichlet boundary conditions of u, since we shall need

to approximate them optimally by elements of Srh. Specifically, we have the following

result.

Proposition 4.1. Assume that u, the solution of (1.1), is in Cµ(Ω̄ × [0, t∗]) for µ

sufficiently large. Then, for each n, 0 ≤ n ≤ N − 1,

(i) α`
∣∣
∂Ω

= 0, ` = 0, . . . ,min{p+ 3, ν}. In fact, if ν > p+ 3, αp+4

∣∣
∂Ω
6= 0 in general.

(ii) If Ω is a polyhedral domain or d = 1, then

α`
∣∣
∂Ω

= 0, ` = 0, . . . , ν.

Proof. To establish (i) suppose, e.g., p + 3 ≤ ν. Let Q = ∂Ω × [0, t∗]. Since u
∣∣
Q

=

0, ∂jtu
∣∣
Q

= 0, j = 0, 1, . . . . Using the PDE in (1.1), we see that ∆u
∣∣
Q

= 0, and hence

∆∂jtu
∣∣
Q

= 0, j = 0, 1, . . . . Since now

i∆2u = ∆ut − iλ∆(|u|2u)

= ∆ut − iλ
{
|u|2∆u+ u∆(|u|2) + 2ū∇u · ∇u+ 2u|∇u|2

}
,

we see that ∆2u
∣∣
Q

= 0, and hence ∆2∂jtu
∣∣
Q

= 0, j = 0, 1, . . . .

We have thus shown that ∆s∂jtu
∣∣
Q

= 0, j = 0, 1, . . . , s = 0, 1, 2. Then, for each n, 0 ≤
n ≤ N−1, it follows from (4.2) and (4.3) that ∆sα`

∣∣
∂Ω

= 0, ` = 0, . . . , p+1, s = 0, 1, 2.

Hence, by (4.1), it follows at once that αp+2

∣∣
∂Ω

= 0. Furthermore, from (4.1),

∆αj,p+2 = i

q∑
s=1

ajs

{
∆2αs,p+1 + λ

∑
|m|=p+1

∆(αsm1αsm2ᾱsm3)
}

= i

q∑
s=1

ajs

{
∆2αs,p+1 + λ

∑
|m|=p+1

(αsm1αsm2∆ᾱsm3 + αsm2ᾱsm3∆αsm1 + αsm1ᾱsm3∆αsm2

+ 2αsm1∇αsm2 · ∇ᾱsm3 + 2αsm2∇αsm1 · ∇ᾱsm3 + 2ᾱsm3∇αsm1 · ∇αsm2)
}
,

j = 1, . . . , q.

We conclude that ∆αp+2

∣∣
∂Ω

= 0, and hence by (4.1) that αp+3

∣∣
∂Ω

= 0.

A finer analysis shows in fact that the functions αj,p+4 (suppose ν > p + 3) do not

vanish on ∂Ω for arbitrary solutions of (1.1) that are smooth up to ∂Ω and arbitrary

IRK schemes that satisfy our stated assumptions. Indeed, suppose ∂Ω is the union of
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the closures of a finite number of open, smooth, connected subsets such as Γ in Figure

4.1.

Figure 4.1.

Fix a point x0 ∈ Γ and consider a Cartesian coordinate system centered at x0

with the xd axis coinciding with the outer normal to ∂Ω at x0. Since the PDE under

consideration is invariant under translation and rotation and since the functions αj`
are also invariant under such changes, we may with no loss of generality assume that

x0 = 0 and that the coordinate system (x1, . . . , xd), with respect to which (1.1) and

the functions αj` have been stated, is the one shown in Figure 4.1.

Again with no loss of generality assume that for some α > 0, Γ = ∂Ω ∩ {x ∈ Rd :

|x| < α} and that Γ can be projected one-to-one along the Oxd axis onto a region

D of the tangent hyperplane xd = 0. Assume that the equation of Γ is given by

xd = ψ(x′), for x′ = (x1, . . . , xd−1) ∈ D, where ψ ∈ Cj(D̄) for some j sufficiently large

and ψ(0) = 0, ∂ψ/∂xi(0) = 0, 1 ≤ i ≤ d− 1. Make now the change of variables x 7→ y,

defined by

yi = xi, 1 ≤ i ≤ d− 1,

yd = xd − ψ(x′),

and assume that Ω is such that Ω ∩ {x ∈ Rd : |x| < α} is mapped one-to-one onto an

open connected subset ω of the yd < 0 halfspace in the y−space. Under this change of

variables, Γ is flattened and mapped one-to-one onto D (which remains invariant) on

the yd = 0 hyperplane.
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Under this change of independent variables, the PDE and the boundary condition in

(1.1) are transformed into a local problem on ω̄ with homogeneous Dirichlet boundary

condition on D. In addition, the problem of computing the boundary values on D of

the transformed αj` simplifies considerably. After a long computation (the details of

which we omit) in the y−variables and transformation back to the x−variables, we

obtain the formula

(4.9) αp+4(0) = Λ∆ψ(0)A3
(
AT pe− T p+1e

p+ 1

)
,

where

Λ = Λ(u, p) = −24iλ
∑

m∈Mp+1
0

1

m!
Dm1
t (∂du)Dm2

t (∂du)Dm3
t (∂dū)

∣∣
x=0

and ∆ψ =
∑d−1

i=1 ∂
2
i ψ. (Here and in the sequel, we put ∂iv = −(∂/∂xi)v, 1 ≤ i ≤ d; the

multi-integer set Mp+1
0 was defined in the course of the proof of Lemma 4.1.)

For an arbitrary solution of (1.1) and arbitrary p, Λ is nonzero. (Take, e.g., p odd,

d = 2, and solutions of (1.1) of the form eiβtΦ(x1, x2).) In addition, we see by property

(C) that AT pe − T p+1e/(p + 1) is nonzero. Hence αp+4(0) is zero only when ∆ψ(0)

vanishes, which can only be true (due to the arbitrary choice of x0) if ψ = 0, i.e., when

Γ = D. This leads us to consider, therefore, polyhedral domains for which we shall

establish Proposition 4.1(ii) by a direct proof.

In the polyhedral case, no change of variables is required of course, and we simply

let D be a (d − 1)−dimensional face of Ω̄, on which we again orient the coordinate

system so that the axis Oxd is perpendicular to D. We let Q′ = D × [0, t∗].

First we shall prove by induction that

(4.10) ∂2`
d u
∣∣
Q′

= 0, ` = 0, . . . , ν.

Since u vanishes on Q′, (4.10) holds for ` = 0. Assume that it is true up to some

`, 0 ≤ ` ≤ ν − 1; we shall prove that ∂
2(`+1)
d u

∣∣
Q′

= 0. From (1.1) we have

∂
2(`+1)
d u = ∂2`

d

(
∆u−

d−1∑
j=1

∂2
ju
)

= −i∂2`
d ut − λ∂2`

d (|u|2u)−
d−1∑
j=1

∂2`
d (∂2

ju).

Using the induction hypothesis, we see now that ∂2`
d ut

∣∣
Q′

= 0, and

d−1∑
j=1

∂2`
d (∂2

ju)
∣∣
Q′

=
d−1∑
j=1

∂2
j (∂

2`
d u)

∣∣
Q′

= 0.

By Leibniz’s rule

∂2`
d (|u|2u) =

∑
s1+s2+s3=2`

(2`)!

s1!s2!s3!
∂s1d u ∂

s2
d u ∂

s3
d ū.
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Since 2` is even, at least one component si of each multi-integer s = (s1, s2, s3) with

|s| = 2` is even. Therefore, by the induction hypothesis, the corresponding terms on

the right-hand side of the sum above vanish on Q′. We conclude that ∂2`
d (|u|2u)

∣∣
Q′

= 0,

which completes the inductive step for the proof of (4.10).

We can now prove that

(4.11) ∀`, 0 ≤ ` ≤ ν, ∂2`1
d α`

∣∣
D

= 0, ∀`1, 0 ≤ `1 ≤ ν − `,

from which Proposition 4.1(ii) follows by taking `1 = 0. It is obvious by (4.10) that

(4.11) holds for ` = 0. Assume that it is valid up to some `, 0 ≤ ` ≤ ν − 1; we shall

establish that it holds for ` + 1 as well. To this end, let `1 be an integer such that

0 ≤ `1 ≤ ν − (`+ 1). Then, for 1 ≤ j ≤ q,

∂2`1
d αj,`+1 = i

q∑
s=1

ajs

(
∂2`1
d ∆αs,` + λ

∑
m1+m1+m3=`

∂2`1
d (αsm1αsm2ᾱsm3)

)
.

Now since ∂2`1
d ∆α` =

(
∂

2(`1+1)
d +

∑d−1
i=1 ∂

2`1
d ∂2

i

)
α` and by the induction hypothesis `1 +

1 ≤ ν− `, ∂2(`1+1)
d α`

∣∣
D

= 0, ∂2
i (∂

2`1
d α`)

∣∣
D

= 0, 1 ≤ i ≤ d− 1, we conclude, for 1 ≤ s ≤ q,

that ∂2`1
d ∆αs,`

∣∣
D

= 0.

On the other hand, for any s, 1 ≤ s ≤ q, and multi-integer m = (m1,m2,m3) with

|m| = `,

∂2`1
d (αsm1αsm2ᾱsm3) =

∑
ξ1+ξ2+ξ3=2`1

(2`1)!

ξ1!ξ2!ξ3!
∂ξ1d αsm1 ∂

ξ2
d αsm2 ∂

ξ3
d ᾱsm3 .

Given ξ = (ξ1, ξ2, ξ3), |ξ| = 2`1, at least one of its components, say ξ1, is even. Since

m1 ≤ `, ξ1 ≤ 2`1, it follows that ξ1/2 +m1 ≤ `1 + ` ≤ ν − 1. The induction hypothesis

gives then that ∂ξ1d αsm1

∣∣
D

= 0. We conclude therefore that ∂2`1
d αj,`+1

∣∣
D

= 0 and com-

plete the inductive step for the proof of (4.11). Needless to say, the proof is valid for

d = 1 as well. �

Henceforth the integer σ will be given by

σ =

{
ν if Ω is polyhedral or d = 1,

min{p+ 3, ν} otherwise.

Now, given n, 0 ≤ n ≤ N − 1, define the (pseudo-)intermediate stages un,j by

(4.12) un,j =
σ∑
`=0

k`αj`, j = 1, . . . , q,

and un+1 by

(4.13) un+1 = u(tn) + bTA−1
(
Un − u(tn)e

)
, with Un = (un,1, . . . , un,q)T .

Our temporal consistency result (the proof of which provides the motivation for the

definition of the αj`) now follows. In Proposition 4.2 and in the sequel we shall denote

by c, cj, etc., generic positive constants independent of h and k but possibly depending

on the solution and the data of (1.1).
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Proposition 4.2. Let the truncation errors en,j, en+1 be given by

(4.14) un,j = u(tn) + k

q∑
s=1

ajs
{

i∆un,s + iλ|un,s|2un,s
}

+ en,j, j = 1, . . . , q,

(4.15) un+1 = u(tn) + k

q∑
j=1

bj
{

i∆un,j + iλ|un,j|2un,j
}

+ en+1.

Then, under the hypotheses of Corollary 4.1 and Proposition 4.1, we have

(4.16)

q∑
j=1

‖en,j‖m + ‖en+1‖m ≤ cmk
σ+1, m = 0, 1, . . . ,

and

(4.17) ‖u(tn+1)− un+1‖m ≤ cmk
σ+1, m = 0, 1, . . . .

Proof. We have

en,j =
σ∑
`=0

k`αj` − u(tn)− k
q∑
s=1

ajs

{
i∆

σ∑
`=0

k`αs` + iλ
∣∣∣ σ∑
`=0

k`αs`

∣∣∣2 σ∑
`=0

k`αs`

}

=
σ∑
`=1

k`αj` − k
q∑
s=1

ajs

{
i∆

σ∑
`=0

k`αs` + iλ
σ−1∑
`=0

k`
∑
|m|=`

αsm1αsm2ᾱsm3

+ iλ
3σ∑
`=σ

k`
∑
|m|=`

δmαsm1αsm2ᾱsm3

}
,

where the constants δm are zero or 1. Now, using the defining relations (4.1),

en,j = −
q∑
s=1

ajs
{

ikσ+1∆αsσ + iλ
3σ∑
`=σ

k`+1
∑
|m|=`

δmαsm1αsm2ᾱsm3

}
.

Hence en,j satisfies the bound (4.16). As for en+1, using (4.13) and (4.14) in (4.15),

en+1 = un+1 − u(tn)− k
q∑
j=1

bj
{

i∆un,j + iλ|un,j|2un,j
}

= un+1 − u(tn)−
q∑
j=1

bj

q∑
s=1

a−1
js {un,s − u(tn)− en,s}

=

q∑
j,s=1

bja
−1
js e

n,s,



20 OHANNES KARAKASHIAN, GEORGIOS D. AKRIVIS, AND VASSILIOS A. DOUGALIS

where a−1
js = (A−1)js; (4.16) follows. Now using (4.13) and (4.8),

un+1 = u(tn) + bTA−1

σ∑
`=1

k`α`

=
σ∑
`=0

k`
D`
tu(tn)

`!
.

By Taylors theorem (4.17) follows. �

Remark 4.1. From the definition of un,j and αj`, it follows that, for k sufficiently

small, un,j will satisfy ‖un,j‖L∞ ≤ 2M(u). Hence the conclusion of Proposition 4.2 also

holds if we replace|un,j|2un,j by g̃(un,j) in (4.14) and (4.15).

Henceforth we shall let ωn,j, ω(tn) and ωn+1 stand for PEu
n,j, PEu(tn) and PEu

n+1,

respectively. The following lemma, which establishes the spatial and temporal consis-

tency of the methods, uses the results of Proposition 4.2.

Lemma 4.3. Let ηn,j, j = 1, . . . , q, ηn+1 in Srh be given by

ωn,j = ω(tn) + k

q∑
s=1

ajsf̃h(ω
n,s) + ηn,j, j = 1, . . . , q,(4.18)

ωn+1 = ω(tn) + k

q∑
j=1

bj f̃h(ω
n,j) + ηn+1.(4.19)

Then, under the hypotheses of Proposition 4.1, we have

(4.20)

q∑
j=1

‖ηn,j‖ ≤ ck{hr + kσ},

(4.21) ‖ηn+1‖ ≤ ck{hr + kσ}.

Proof. Using (2.15), (2.5), and (2.20) we have for χ ∈ Srh

(ηn,j, χ) = (ωn,j − ω(tn), χ)− k
q∑
s=1

ajs
{

i(∆un,s, χ) + iλ(g̃(ωn,s), χ)
}
.

Thus, using (4.14), from Remark 4.1, it follows that

(4.22)

(ηn,j, χ) = ([ωn,j − un,j]− [ω(tn)− u(tn)], χ)

− ikλ

q∑
s=1

ajs
(
g̃(ωn,s)− g̃(un,s), χ

)
+ (en,j, χ).

Now ωn,j−un,j−[ω(tn)−u(tn)] = (PE−I)
∑σ

`=1 αj`; hence from (2.6) and Proposition

4.1,

(4.23) ‖ωn,j − un,j − [ω(tn)− u(tn)]‖ ≤ ckhr.

Furthermore, since the map g̃ is Lipschitz,

(4.24) ‖g̃(ωn,s)− g̃(un,s)‖ ≤ c‖ωn,s − un,s‖ ≤ chr, 1 ≤ s ≤ q.
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Letting χ = ηn,j in (4.22), it follows from (4.23) and (4.24) that

‖ηn,j‖ ≤ ckhr + ‖en,j‖, j = 1, . . . , q.

Hence, (4.20) follows from (4.16). Now using (4.18) and (4.19)

ηn+1 = ωn+1 − ω(tn)− k
q∑
j=1

bj f̃h(ω
n,j)

= ωn+1 − ω(tn)−
q∑

j,s=1

bja
−1
js {ωn,s − ω(tn)− ηn,s}

=

q∑
j,s=1

bja
−1
js η

n,s;

(4.21) now follows from (4.20). �

It will also be necessary to compare ωn,j, ωn+1 with an exact solution of a Runge–

Kutta step of the form (2.21), (2.22) that has ω(tn) as initial value.

Lemma 4.4. Assume that the IRK method satisfies (P). Then, under the hypotheses

of Proposition 4.1, there exist vn,j, j = 1, . . . , q, vn+1 in Srh satisfying

vn,j = ω(tn) + k

q∑
s=1

ajsf̃h(v
n,s), j = 1, . . . , q,(4.25)

vn+1 = ω(tn) + k

q∑
j=1

bj f̃h(v
n,j).(4.26)

Furthermore,

(4.27) ‖ωn,j − vn,j‖ ≤ ck{hr + kσ}, j = 1, . . . , q,

(4.28) ‖ωn+1 − vn+1‖ ≤ ck{hr + kσ}.

Proof. The existence of vn,j and hence that of vn+1 follows at once from Proposition

3.1. Letting ζn,j = ωn,j − vn,j, from (4.25) and (4.18) we obtain
q∑

j,s=1

cjsdjds(ζ
n,s, ζn,j) = k

q∑
j=1

d2
j(f̃h(ω

n,j)− f̃h(vn,j), ζn,j) +

q∑
s,j=1

a−1
js d

2
j(η

n,s, ζn,j).

Since g̃ is Lipschitz, using (3.1) we see that
q∑
j=1

‖ζn,j‖2 ≤ ck

q∑
j=1

‖ζn,j‖2 + c

q∑
j,s=1

‖ηn,s‖ ‖ζn,j‖.

Using the Cauchy–Schwarz inequality and (4.20), we get (4.27) for k sufficiently small.

Now from (4.18), (4.19), (4.25), and (4.26) we obtain

ωn+1 − vn+1 =

q∑
j,s=1

bja
−1
js (ωn,s − vn,s − ηn,s) + ηn+1.
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Inequality (4.28) now follows from this, (4.27) and (4.21). �

We now prove our main stability result.

Lemma 4.5. Let ũn+1
h , vn+1 be given by (2.21) and (4.26), respectively, and the IRK

method satisfy (S). Then

(4.29) ‖ũn+1
h − vn+1‖ ≤ (1 + ck)‖ũnh − ω(tn)‖.

Proof. Let εn,j = vn,j − ũn,jh and δf̃ jh = f̃h(v
n,j) − f̃h(ũ

n,j
h ). Subtracting (4.26) from

(2.21) and taking inner products, it follows that

‖vn+1 − ũn+1
h ‖2 = ‖ω(tn)− ũnh‖2 + k

q∑
j=1

bj(δf̃
j
h, ω(tn)− ũnh)

+ k

q∑
j=1

bj(ω(tn)− ũnh, δf̃
j
h) + k2

q∑
j,s=1

bjbs(δf̃
j
h, δf̃

s
h).

Subtracting (2.22) from (4.25), we obtain ω(tn)−ũnh = εn,j−k
∑q

s=1 ajsδf̃
s
h. Therefore,

‖vn+1 − ũn+1
h ‖2 = ‖ω(tn)− ũnh‖2 + 2kRe

q∑
j=1

bj(δf̃
j
h, ε

n,j)− k2

q∑
j,s=1

bjajs(δf̃
j
h, δf̃

s
h)

− k2

q∑
j,s=1

bjajs(δf̃
s
h, δf̃

j
h) + k2

q∑
j,s=1

bjbs(δf̃
j
h, δf̃

s
h)

= ‖ω(tn)− ũnh‖2 + 2kRe

q∑
j=1

bj(δf̃
j
h, ε

n,j)− k2

q∑
j,s=1

mjs Re(δf̃ jh, δf̃
s
h),

where {mjs} is the array pertaining to (S); given that it is positive semidefinite, we get

‖vn+1 − ũn+1
h ‖2 ≤ ‖ω(tn)− ũnh‖2 + 2kRe

q∑
j=1

bj(δf̃
j
h, ε

n,j).

On the other hand, since Br
h(ε

n,j, εn,j) is real and g̃ is Lipschitz, we obtain

‖vn+1 − ũn+1
h ‖2 ≤ ‖ω(tn)− ũnh‖2 + ck

q∑
j=1

‖εn,j‖2.

Now using (2.22), (4.25), and (P) together with previously used techniques,

(4.30)

q∑
j=1

‖εn,j‖2 ≤ c‖ω(tn)− ũnh‖2.

Using this in the above yields (4.29). �

We are now ready to state and prove the main convergence result.

Theorem 4.1. Under our hypotheses on the IRK methods and if u ∈ Cµ(Ω̄ × [0, t∗])

for µ sufficiently large, there exists a constant c independent of k and h such that

(4.31) max
0≤n≤N

‖ũnh − u(tn)‖ ≤ c{hr + kσ}.
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Assume that d < 2r and that k = o(hd/2σ) as h→ 0. Then, for h sufficiently small,

(4.32) max
0≤n≤N

‖unh − u(tn)‖ ≤ c{hr + kσ}.

Proof. Let ω(tn+1) = PEu(tn+1). We will first show that

(4.33) ‖ω(tn+1)− vn+1‖ ≤ ck{hr + kσ}.

Since ω(tn+1)− vn+1 = ω(tn+1)− ωn+1 + ωn+1− vn+1, it is sufficient, in view of (4.28),

to show that

(4.34) ‖ω(tn+1)− ωn+1‖ ≤ ck{hr + kσ}.

Writing ω(tn+1)− ωn+1 = (I − PE)
(
un+1 − u(tn+1)

)
+ u(tn+1)− un+1, and recalling

that un+1 is smooth and un+1
∣∣
∂Ω

= 0, we see that (4.34) follows from (2.6) and (4.17).

Now from (4.33) and (4.29) we get

‖ω(tn+1)− ũn+1
h ‖ ≤ ‖ω(tn+1)− vn+1‖+ ‖vn+1 − ũn+1

h ‖
≤ ck{hr + kσ}+ (1 + ck)‖ω(tn)− ũnh‖.

From this it follows that

(4.35) ‖ω(tn)− ũnh‖ ≤ cect
n{‖ω(0)− ũ0

h‖+ hr + kσ
}
, n = 0, . . . , N.

Hence, (4.35), (2.6), and (2.11) establish (4.31), since

‖u(tn)− ũnh‖ ≤ ‖u(tn)− ω(tn)‖+ ‖ω(tn)− ũnh‖
≤ c{hr + kσ}.

Now, using (4.30), (4.35), (4.27), and the definition of ωn,j, we have for all j, 1 ≤
j ≤ q,

‖ũn,jh − u
n,j‖ ≤ ‖ũn,jh − v

n,j‖+ ‖vn,j − ωn,j‖+ ‖ωn,j − un,j‖(4.36)

≤ c(hr + kσ).

Fix j. Then, letting χ be an element of Srh that satisfies (2.1) and (2.2) for un,j, we

have by (2.3) and (4.36),

‖ũn,jh − u
n,j‖L∞ ≤ ‖ũn,jh − χ‖L∞ + ‖χ− un,j‖L∞

≤ ch−d/2‖ũn,jh − χ‖+ ‖χ− un,j‖L∞

≤ ch−d/2
(
‖ũn,jh − u

n,j‖+ ‖un,j − χ‖
)

+ ‖un,j − χ‖L∞

≤ ch−d/2(hr + kσ) + h2.

It follows by our hypotheses that given ε > 0, there exists h0 such that for h ≤ h0,

maxj,n ‖ũn,jh − un,j‖L∞ ≤ ε. Hence for ε, k sufficiently small

max
j,n
‖ũn,jh ‖L∞ ≤ max

j,n
‖ũn,jh − u

n,j‖L∞ + max
j,n
‖un,j‖L∞

≤ ε+ max
n
‖u(tn)‖L∞ + ck ≤ 2M(u).

By local uniqueness we have therefore that unh = ũnh and (4.32) follows. �
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5. Remarks

In this section we shall briefly indicate how the techniques and results of the present

paper extend to cases of some related PDEs. Our objective is to use these extensions

to illuminate the capabilities and the limitations of our approach to the consistency of

the fully discrete schemes using the functions αj`.

Our results can be easily extended first to analogous to (1.1) initial and boundary

value problems for the nonlinear Schrödinger equation with a general power nonlinearity

[12], obtained by replacing the nonlinear term |u|2u in the PDE in (1.1) by |u|2βu, β ≥ 1

integer. The results of §3 carry over immediately while the functions αj` must now

be redefined in the obvious fashion to correspond to the new nonlinearity. It may be

easily established that the α` vanish on ∂Ω for 0 ≤ ` ≤ σ, where σ is now given by

(5.1) σ =

{
ν if Ω is polyhedral or d = 1,

min{p+ β + 2, ν} otherwise.

The key observation that gets us up to the classical order in the polyhedral case

is that in applying Leibniz’s rule for evaluating ∂2`
d (|u|2βu) in the course of the proof

of the analogue of (4.10), the sum is taken over all multi-integers s = (s1, . . . , s2β+1)

[i.e., with an odd number of components (as in the cubic case)] that satisfy |s| = 2`.

Hence, for each such s, at least one of the si is even and the corresponding term in the

sum vanishes on ∂Ω, thus allowing the inductive step to be completed (similarly with

the analogue of ((4.11)). The rest of the results of §4 are easily established mutatis

mutandis; in particular, the optimal order error estimate (4.32) is valid with σ given

by (5.1).

The results above should be contrasted with those that may be obtained in the case

of the analogous to (1.1) initial and boundary value problem for the semilinear heat

equation with a power nonlinearity given by

(5.2) ut = ∆u+ λuγ.

The solution u is now real valued of course, λ is a constant, and γ ≥ 2 is an integer. For

the purposes of the consistency proof, αj` can be again easily constructed to correspond

to (5.2) and a straightforward computation as in the proof of Proposition 4.1(i) yields

now that on a general domain the αj` vanish on ∂Ω for 0 ≤ ` ≤ min{p+ [γ + 3/2], ν}.
However, if Ω is polyhedral, we may go up to ν mimicking the proof of Proposition

4.1(ii), only when γ is odd. In summary, in the case of (5.2) we may show that

αj`
∣∣
∂Ω

= 0 for 0 ≤ ` ≤ σ, where now

(5.3) σ =


ν if Ω is polyhedral (or d = 1) and γ is odd,

min{p+
[γ + 3

2

]
, ν} otherwise.

There is another difference between the error analysis for the cubic Schrödinger

equation and that appropriate to (5.2). Unless λ is negative and γ is odd, it is no

longer possible to establish a priori existence and boundedness (cf. Propositions 3.1

and 3.2) of the fully discrete approximations un,ih , u
n
h, solutions of the analogues of
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(2.17) and (2.18). However, we easily obtain existence and L2−boundedness for the ũnh
that satisfy the analogues of (2.21) and (2.22) defined by constructing in the standard

way a globally Lipschitz map g̃ associated with g(u) = uγ. In addition, local uniqueness

again holds in the sense that two fully discrete solutions with components in the ball

{v ∈ Srh : ‖v‖L∞ ≤ cM(u)} (where g̃(v) and g(v) coincide for |v| < cM(u)) are

identical. Mimicking the analysis of §4 we may at the end establish, as in the proof

of Theorem 4.1, that maxn,j ‖ũn,jh ‖L∞ ≤ cM(u) and conclude by local uniqueness that

unh = ũnh; an error estimate of the form (4.31), where σ is given by (5.3), follows.
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