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Abstract. We derive optimal order, residual-based a posteriori error estimates for time dis-
cretizations by the two–step BDF method for linear parabolic equations. Appropriate reconstruc-
tions of the approximate solution play a key role in the analysis. To utilize the BDF method we
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1. Introduction. In this paper we establish optimal order a posteriori error
estimates for time discretizations by the two–step BDF method (BDF2) for linear
parabolic partial differential equations (p.d.e’s).

We consider initial value problems of the form: Find u : [0, T ] → D(A) satisfying

(1.1)

{

u′(t) +Au(t) = f(t), 0 ≤ t ≤ T,

u(0) = u0,

with A : D(A) → H a positive definite, selfadjoint, linear operator on a Hilbert space
(H, 〈·, ·〉) with domain D(A) dense in H, forcing term f : [0, T ] → H, and initial value
u0 ∈ H. We denote by | · | the norm of H.

Let N ∈ N, N ≥ 2, k := T/N be the constant time step, tn := nk, n = 0, . . . , N,
be a uniform partition of [0, T ], and Jn := (tn−1, tn]. We define nodal approximations
Um ∈ D(A) to the values um := u(tm) of the solution u of (1.1) as follows: We set
U0 := u0, perform one step with the trapezoidal method to get U1 and then apply
the BDF2 method to obtain U2, . . . , UN , i.e., the approximations U1, . . . , UN are
recursively defined by

(1.2)



















k

2
∂̄2Un + ∂̄Un +AUn = fn, n = 2, . . . , N,

∂̄U1 +AU1/2 = f1/2,

U0 = u0,

with fm := f(tm). Here we have used the notation

∂̄vn :=
1

k
(vn − vn−1), ∂̄2vn := ∂̄∂̄vn =

1

k2
(vn − 2vn−1 + vn−2), vn−

1

2 :=
vn−1 + vn

2
,
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for given v0, . . . , vN .
Our goal is to derive optimal order residual based a posteriori error estimates.

To define the residual, we need to introduce an approximation U(t) to u(t), for all
t ∈ [0, T ]. Since the error um − Um at the nodes is of second order, a natural choice
for a second order BDF2 approximation U : [0, T ] → D(A) to u is the piecewise linear
interpolant at the nodal values Um,

(1.3) U(t) = Un + (t− tn)∂̄Un, t ∈ Jn, n = 1, . . . , N.

Although U(t) is a second order approximation to u(t), its residual R(t) ∈ H,

(1.4) R(t) := U ′(t) +AU(t)− f(t), t ∈ Jn,

i.e., the amount by which the approximate solution U misses being an exact solution
of the differential equation in (1.1), is of first order; see §2. The error e, e := u − U,
satisfies the error equation e′ +Ae = −R. Since R(t) is of suboptimal order, applying
energy techniques to this error equation leads inevitably to a posteriori estimators of
suboptimal order. To recover the optimal order, we shall reconstruct the approximate
solution U in an appropriate way.

Next, we modify U to construct appropriate reconstructions Û . As we will see
later on, several continuous approximations Û are appropriate for our purposes, in
the sense that they lead to optimal order residuals. To motivate the construction of
Û , let us note that U satisfies the relation

(1.5) U ′(t) +AU(t) = (t− tn−
1

2 )A∂̄Un + ∂̄Un +AUn− 1

2 , t ∈ Jn,

as we see by writing U in the form

U(t) = Un− 1

2 + (t− tn−
1

2 )∂̄Un, t ∈ Jn.

We will be lead to Û by replacing the coefficient A∂̄Un on the right-hand side of (1.5)
by appropriate quantities.

We first choose a piecewise linear approximation ϕ to f,

(1.6) ϕ(t) = αn · (t− tn−
1

2 ) + βn, t ∈ Jn,

and introduce the corresponding BDF2 reconstruction Û of U, namely a piecewise
quadratic polynomial in time Û : [0, T ] → D(A) defined in [tn−1, tn] by

(1.7)

{

Û ′(t) +AU(t) = ϕ(t) in Jn,

Û(tn−1) = Un−1.

Now, obviously,

Û(tn) = Un−1 −A

∫ tn

tn−1

U(t) dt+

∫ tn

tn−1

ϕ(t) dt,

and, evaluating the integrals by the mid-point rule, we obtain

Û(tn) = Un−1 + k
(

βn −AUn− 1

2

)

;

therefore, the continuity requirement Û(tn) = Un of Û is satisfied, if and only if

(1.8) βn = ∂̄Un +AUn− 1

2 .
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As we already mentioned, there are several appropriate choices for αn; see (1.6). (We
recall that αn := A∂̄Un corresponds to U ; cf. (1.5).) In the sequel we will consider
two particular choices: The first choice is αn := ∂̄fn, n = 1, . . . , N, and the second
α1 := ∂̄2U2+A∂̄U1, α2 := ∂̄2U2+A∂̄U2, and αn := ∂̄fn− k

2 ∂̄
3Un, n = 3, . . . , N. As we

will see later on, the second choice corresponds to the “three–point reconstruction”,
i.e., the reconstruction is, for t ∈ [0, t2], the quadratic interpolant of U2, U1 and
U0, and, for n ≥ 3, the restriction to Jn of the quadratic polynomial interpolating
Un, Un−1 and Un−2.

As in [6, 2, 3], we consider the error functions e and ê,

(1.9) e := u− U, ê := u− Û .

Once an appropriate reconstruction Û is in place, the derivation of a posteriori error
estimates is elementary; cf. [2, 3]. Let V := D(A1/2), ‖ · ‖ be the norm of V, ‖v‖ :=
|A1/2v|, V ⋆ be the (topological) dual of V and ‖ · ‖⋆ its norm, ‖v‖⋆ := |A−1/2v|. As
we will see in §2, the following upper and lower error bounds are valid, for t ∈ [0, T ],

(1.10)

max
0≤τ≤t

[

|ê(τ)|2 +
∫ τ

0

(

‖e(s)‖2 + 1

2
‖ê(s)‖2

)

ds

]

≤
∫ t

0

‖Û(s)− U(s)‖2 ds+ 2

∫ t

0

‖f(t)− ϕ(t)‖2⋆ ds,

(1.11)
1

3

∫ t

0

‖Û(s)− U(s)‖2 ds ≤
∫ t

0

(

‖e(s)‖2 + 1

2
‖ê(s)‖2

)

ds.

In the sequel we will refer to the upper bound on the right-hand side of (1.10) as the
estimator E .

The above idea is related to earlier work on a posteriori analysis of time or space
discrete approximations of evolution equations [6, 2, 3, 5]. It provides the means to
establish optimal order error estimates with energy as well as with other stability
techniques. In these references single step time stepping schemes were considered; the
present work is devoted to a multistep scheme that is quite popular in the computa-
tions of parabolic equations.

The paper is organized as follows: In §2 we present two appropriate reconstruc-
tions and establish the upper and lower estimates (1.10) and (1.11). In §3 we show
that the estimator E is of optimal order. In §4 we consider the scheme

(1.12)



















k

2
∂̄2Un + ∂̄Un +AUn = fn, n = 2, . . . , N,

∂̄U1 +AU1 = f1,

U0 = u0;

the only difference to (1.2) is that in this case U1 is computed by the backward Euler
scheme. This choice for U1 is indeed more natural in the a priori error analysis.
Since the backward Euler method is applied only once (in particular, a finite number
of times, independent of the time step k), it is well known that the method (1.12)
yields second order approximations Um to um. Unfortunately, as illustrated in §4, our
approach leads to a suboptimal a posteriori estimator for the scheme (1.12). Finally,
in §5 we present numerical results that illustrate the theoretical results of §4 and
demonstrate the effectivity of our upper and lower a posteriori error estimates.
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2. A posteriori error estimates. In this section we present two appropriate
BDF2 reconstructions and establish the estimates (1.10) and (1.11) for the errors e
and ê.

First, we show that the residual R(t) ∈ H of U is of first order. Indeed, from the
differential equation in (1.1) and the definition (1.4) of the residual, we have

(2.1) u′ +Au = f, U ′ +AU = f +R;

consequently,

(2.2) R = −(u− U)′ −A(u − U).

The second term on the right-hand side of (2.2) is of second order; however, the first
term can be at most of first order, since u′ is approximated by a piecewise constant
function U ′ (and this is valid for any choice of piecewise linear function, not only
for the specific approximation U); negative norms in time are excluded from this
discussion.

A concrete example illustrating that R(t) is of first order might be instructive
here: In the case of the initial value problem for an o.d.e. u′(t) = f(t), (1.4) yields

R(t) = ∂̄Un − f(t), t ∈ Jn.

Let now f be an affine function, f(t) = ct+ d, c 6= 0, and assume that U0 = u0. Since
both the trapezoidal scheme and the BDF2 method integrate this o.d.e. exactly, we
have Un = un, n = 1, . . . , N, and thus

R(t) = ∂̄un − f(t) =
1

k

∫ tn

tn−1

u′(s) ds− 1

k

∫ tn

tn−1

f(t) ds

=
1

k

∫ tn

tn−1

[

f(s)− f(t)
]

ds =
1

k
c

∫ tn

tn−1

(s− t) ds

= c
(

tn−
1

2 − t
)

, t ∈ Jn,

whence the order of the residual is equal to one.
It is obvious from (2.2) that to obtain a second order residual by a piecewise

polynomial function Û , we should allow Û to be piecewise quadratic. We require two
fundamental properties from the approximate solution Û : it should be continuous and
its residual should be of second order.

Next, we introduce two appropriate reconstructions, Û and Ũ ; they are associated
to two piecewise linear functions ϕ̂ and ϕ̃, given in (2.3) and in (2.19), (2.20) in the
sequel, respectively.

First choice: Motivated by the discussion in the Introduction (see, in particular, (1.6)

and (1.8)) and the fact that ∂̄fn is a second order approximation to f ′(tn−
1

2 ), our
first choice is based on the piecewise linear approximation ϕ̂ to f,

(2.3) ϕ̂(t) = (t− tn−
1

2 )∂̄fn + ∂̄Un +AUn− 1

2 , t ∈ Jn.

We then let Û be given by (1.7), with ϕ replaced by ϕ̂. Obviously,

(2.4) Û(t) = Un−1 −A

∫ t

tn−1

U(s) ds+

∫ t

tn−1

ϕ̂(s) ds, t ∈ Jn.
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Since both U and ϕ̂ are affine in Jn, Û is quadratic in Jn. In fact, it is easily seen that

(2.5) Û(t) = U(t) +
1

2
(t− tn)(t− tn−1)∂̄(fn −AUn) ∀t ∈ Jn.

Obviously, Û coincides with U at the nodes tm; in particular, Û is continuous. Also,
relation (2.5) yields

(2.6) Û(t) = U(t) +
1

2
(t− tn)(t− tn−1)Û ′′ ∀t ∈ Jn.

Let us also note, for later use, the relation between ϕ̂ and f ; we will denote by
I1f the piecewise linear interpolant of f at the nodes t0, t1, . . . , tN . First, for n = 1,
we have

ϕ̂(t) = (t− t
1

2 )∂̄f1 + ∂̄U1 + AU
1

2 ,

i.e., in view of (1.2),

(2.7) ϕ̂(t) = (t− t
1

2 )∂̄f1 + f
1

2 = (I1f)(t) ∀t ∈ (t0, t1).

Furthermore, for n ≥ 2 we have

ϕ̂(t) = ∂̄Un +AUn − k

2
∂̄AUn + (t− tn)∂̄fn +

k

2
∂̄fn

= ∂̄Un +AUn +
k

2
∂̄(fn −AUn) + (t− tn)∂̄fn,

whence, in view of (1.2),

ϕ̂(t) = fn − k

2
∂̄2Un +

k

2
∂̄(fn −AUn) + (t− tn)∂̄fn,

i.e.,

ϕ̂(t) = fn + (t− tn)∂̄fn +
k

2
∂̄(fn −AUn − ∂̄Un);

thus

(2.8) ϕ̂(t) = (I1f)(t) +
k

2
∂̄(fn −AUn − ∂̄Un), t ∈ (tn−1, tn), n ≥ 2.

Therefore, using again (1.2), for n ≥ 3,

(2.9) ϕ̂(t) = (I1f)(t) +
k2

4
∂̄3Un, t ∈ (tn−1, tn).

Remark 2.1 (Regularity of Û). A natural question is whether Û(t) belongs to any
space containing the approximations U0, . . . , UN . We will see that this is indeed the
case, provided u′(0) is contained in the same space; in particular, in the applications,
Û(t) satisfies the same boundary conditions as U0, . . . , UN .

First, let n ≥ 3; then, (1.2) yields

∂̄(fn −AUn) = ∂̄2Un +
k

2
∂̄3Un.
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Therefore, from (2.5) we obtain

(2.10) Û(t) = U(t) +
1

2
(t− tn)(t− tn−1)

(

∂̄2Un +
k

2
∂̄3Un

)

∀t ∈ Jn, n ≥ 3,

and conclude that Û(t) belongs, for t ∈ [t2, T ], to any space containing the approxi-
mations U0, . . . , UN . (Note that, for t ∈ [t2, T ], the assumption that u′(0) is contained
in the same space is not needed.)

Furthermore, since U1 is computed by the trapezoidal method, the second relation
in (1.2) yields

1

2
(f1 −AU1) = ∂̄U1 − 1

2
(f0 −AU0),

i.e.,

(2.11) f1 −AU1 = 2∂̄U1 − u′(0).

Therefore,

∂̄(f2 −AU2) =
1

2
∂̄2U2 +

1

k
∂̄U2 − 1

k

[

2∂̄U1 − u′(0)
]

and we easily conclude from (2.5) that Û(t) belongs, for t ∈ J2, to any space containing
u′(0) and the approximations U0, U1 and U2.

Finally, combining (2.5) with (2.11), we see that Û(t) belongs, for t ∈ J1, to any
space containing u′(0) and the approximations U0, U1. �

Second choice: The three-point reconstruction.

In J1 ∪ J2, we let the reconstruction Ũ be the quadratic interpolant of U2, U1

and U0; for n ≥ 3, we let Ũ in Jn be the restriction to Jn of the quadratic interpolant
of Un, Un−1 and Un−2, i.e., Ũ(ti) = U i, i = n, n− 1, n− 2. It is easily seen that

(2.12) Ũ(t) = Un + (t− tn)∂̄Un +
1

2
(t− tn)(t− tn−1)∂̄2Un ∀t ∈ Jn, n ≥ 2.

The three-point reconstruction was proposed in [4] for the trapezoidal scheme.
Let us note that, since U(t) = Un + (t− tn)∂̄Un, t ∈ Jn, we have

(2.13) Ũ(t) = U(t) +
1

2
(t− tn)(t− tn−1)∂̄2Un ∀t ∈ Jn.

Obviously,

Ũ ′(t) = ∂̄Un + (t− tn−
1

2 )∂̄2Un, t ∈ Jn,

i.e.,

(2.14) Ũ ′(t) = ∂̄Un + (t− tn)∂̄2Un +
k

2
∂̄2Un, t ∈ Jn.

Therefore,

Ũ ′(t) +AU(t) = ∂̄Un + (t− tn)∂̄2Un +
k

2
∂̄2Un +AUn + (t− tn)A∂̄Un,
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whence, in view of (1.2),

(2.15) Ũ ′(t) +AU(t) = fn + (t− tn)
(

∂̄2Un +A∂̄Un
)

, t ∈ Jn,

n ≥ 2. Furthermore, for n ≥ 3, using again (1.2), we have

Ũ ′(t) +AU(t) = fn + (t− tn)∂̄
(

∂̄Un +AUn
)

= fn + (t− tn)∂̄
(

fn − k

2
∂̄2Un

)

= fn + (t− tn)∂̄fn − k

2
(t− tn)∂̄3Un,

i.e.,

(2.16) Ũ ′(t) +AU(t) = (I1f)(t)−
k

2
(t− tn)∂̄3Un, t ∈ Jn, n ≥ 3.

Finally,

(2.17) Ũ(t) = U(t) +
1

2
t(t− t1)∂̄2U2 ∀t ∈ J1,

and we easily see that

(2.18) Ũ ′(t) +AU(t) = (t− t
1

2 )
(

∂̄2U2 +A∂̄U1
)

+ f
1

2 , t ∈ J1.

Remark 2.2. Let

(2.19) ϕ̃(t) := (t− t
1

2 )
(

∂̄2U2 +A∂̄U1
)

+ f
1

2 , t ∈ J1,

and

(2.20) ϕ̃(t) := fn + (t− tn)
(

∂̄2Un +A∂̄Un
)

, t ∈ Jn, n ≥ 2;

see (2.15) and (2.18). Then, the three-point reconstruction Ũ could be alternatively
defined by (1.7), with ϕ replaced by ϕ̃. �

Remark 2.3. From (2.16) and (2.9), we immediately obtain, for n ≥ 3,

(2.21) ϕ̃(t) = ϕ̂(t)− k

2

(

t− tn−
1

2

)

∂̄3Un, t ∈ Jn.

In particular, in view of (2.3),

(2.22) ϕ̃(t) =
(

t− tn−
1

2

)(

∂̄fn − k

2
∂̄3Un

)

+ ∂̄Un +AUn− 1

2 , t ∈ Jn.

Furthermore, for n = 2, it is easily seen from (2.20) that

(2.23) ϕ̃(t) =
(

t− t
3

2

)(

∂̄2U2 +A∂̄U2
)

+ ∂̄U2 +AU
3

2 , t ∈ J2.

Finally, for t ∈ J1, ϕ̃ is given in (2.19). �
Remark 2.4 (Regularity of Ũ). Obviously, Ũ(t) belongs to any space containing

the approximations U0, . . . , UN , for all t ∈ [0, T ]. �

In the remaining part of this section, we let Û be either one of the two reconstruc-
tions defined above and ϕ stand for either ϕ̂ or ϕ̃, depending on the corresponding
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choice of Û . Once an appropriate reconstruction Û is in place, the rest of the analysis
is elementary as the following result illustrates; cf. [2, 3].

Theorem 2.1 (Error estimates). The upper and lower error bounds (1.10) and

(1.11) are valid for the errors e = u− U and ê = u− Û , for t ∈ [0, T ].
Proof. Subtracting the differential equation in (1.7) from the one in (1.1), we

obtain

(2.24) ê′(t) +Ae(t) = f(t)− ϕ(t).

Taking in (2.24) the inner product with ê(t) and using the identity 2〈Ae(t), ê(t)〉 =
‖e(t)‖2 + ‖ê(t)‖2 − ‖Û(t)− U(t)‖2, we arrive at

(2.25)
d

dt
|ê(t)|2 + ‖e(t)‖2 + ‖ê(t)‖2 = ‖Û(t)− U(t)‖2 + 2〈f(t)− ϕ(t), ê(t)〉.

Now,

2〈f(t)− ϕ(t), ê(t)〉 ≤ 2‖f(t)− ϕ(t)‖2⋆ +
1

2
‖ê(t)‖2,

and (2.25) yields

d

dt
|ê(t)|2 + ‖e(t)‖2 + 1

2
‖ê(t)‖2 ≤ ‖Û(t)− U(t)‖2 + 2‖f(t)− ϕ(t)‖2⋆,

whence, since ê is continuous and ê(0) = 0,

(2.26)

|ê(t)|2 +
∫ t

0

(

‖e(s)‖2 + 1

2
‖ê(s)‖2

)

ds

≤
∫ t

0

‖Û(s)− U(s)‖2 ds+ 2

∫ t

0

‖f(s)− ϕ(s)‖2⋆ ds.

This easily leads to the upper bound (1.10). Furthermore, obviously, ‖(Û −U)(s)‖ ≤
‖e(s)‖+ ‖ê(s)‖, and thus

‖(Û − U)(s)‖2 ≤ 3
[

‖e(s)‖2 + 1

2
‖ê(s)‖2

]

;

integrating in [0, t], we obtain the lower bound (1.11).
Combining (1.10) and (1.11), we immediately conclude

(2.27)

1

3

∫ t

0

‖Û(s)− U(s)‖2 ds ≤
∫ t

0

(

‖e(s)‖2 + 1

2
‖ê(s)‖2

)

ds

≤
∫ t

0

‖Û(s)− U(s)‖2 ds+ 2

∫ t

0

‖f(s)− ϕ(s)‖2⋆ ds.

3. Optimality of the estimator. In this section we show that the estimator
E on the right-hand side of (1.10) is of optimal order, i.e., of order O(k4), for both
reconstructions Û and Ũ described in §2; see first and second choice in §2. We will
present the details for the three-point estimator Ũ . For the other estimator, Û , the
proof goes along the same lines; we will briefly discuss this case in Remark 3.1.

Let

(3.1) E1 :=

∫ T

0

‖Ũ(t)− U(t)‖2 dt and E2 :=

∫ T

0

‖f(t)− ϕ̃(t)‖2⋆ dt

with ϕ̃ as described in detail in §2 and Ũ the corresponding, three-point reconstruc-
tion. In the sequel we show that both E1 and E2 are of order O(k4); thus, the estimator
E = E1+2E2 on the right-hand side of (1.10) is of optimal order for this reconstruction.
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3.1. Optimality of E1. First, let n ≥ 2. Then, using (2.13), we obtain

∫

Jn

‖Ũ(t)− U(t)‖2 dt = 1

4

∫

Jn

(tn − t)2(t− tn−1)2 dt ‖∂̄2Un‖2

=
1

4
k5

∫ 1

0

(s− 1)2s2 ds ‖∂̄2Un‖2,

i.e.,

(3.2)

∫

Jn

‖Ũ(t)− U(t)‖2 dt = 1

120
k5‖∂̄2Un‖2, n ≥ 2.

Similarly, in view of (2.17), we have

(3.3)

∫

J1

‖Ũ(t)− U(t)‖2 dt = 1

120
k5‖∂̄2U2‖2.

We readily conclude from (3.1), (3.2) and (3.3) that

(3.4) E1 =
k4

120
k
[

2‖∂̄2U2‖2 +
N
∑

n=3

‖∂̄2Un‖2
]

.

We will estimate E1. We begin with some preparatory estimates for e1 and e2;
actually, to estimate E1 we will only need an estimate for e1, but since an estimate
for e2 will be needed in the next subsection to show that E2 is also of optimal order,
we will provide here estimates for both e1 and e2.

Let E1 denote the consistency error of the first step by the trapezoidal scheme,

(3.5) E1 := ∂̄u1 +Au1/2 − f1/2,

and E2 denote the consistency error of the BDF2 scheme in the second step,

(3.6) E2 :=
k

2
∂̄2u2 + ∂̄u2 +Au2 − f2.

It is well known and easily seen that, under obvious regularity assumptions,

(3.7) ‖E1‖⋆ + ‖E2‖⋆ ≤ Ck2.

Now, we have

e1 +
k

2
Ae1 = kE1;

taking here the inner product with e1 and using elementary inequalities, we obtain

|e1|2 + k

2
‖e1‖2 ≤ k‖E1‖⋆ ‖e1‖ ≤ k‖E1‖2⋆ +

k

4
‖e1‖2,

whence

(3.8) |e1|2 + k

4
‖e1‖2 ≤ k‖E1‖2⋆.
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Combining (3.8) with (3.7), we arrive at the desired estimate for e1,

(3.9) |e1|2 + k‖e1‖2 ≤ Ck5.

Similarly, we have

−2e1 +
3

2
e2 + kAe2 = kE2;

taking here the inner product with e2, we obtain

3

2
|e2|2 + k‖e2‖2 = k〈E2, e2〉+ 2〈e1, e2〉

≤ k

2
‖E2‖2⋆ +

k

2
‖e2‖2 + |e1|2 + |e2|2,

whence

(3.10) |e2|2 + k‖e2‖2 ≤ k‖E2‖2⋆ + 2|e1|2.

Combining (3.10) with (3.7) and (3.9), we arrive at the desired estimate for e2,

(3.11) |e2|2 + k‖e2‖2 ≤ Ck5.

We shall next use these preparatory estimates to estimate E1. It is well known
from the a priori error analysis for the BDF2 method that, for sufficiently smooth u,

(3.12) |en|2 + k

n
∑

ℓ=2

‖eℓ‖2 ≤ C
(

|e0|2 + |e1|2 + k4
)

, n = 2, . . . , N,

with em := um − Um; cf. [7], [1]. In particular, in view of (3.9),

(3.13) k
N
∑

ℓ=2

‖eℓ‖2 ≤ Ck4.

Now,

k

N
∑

n=2

‖∂̄2Un‖2 ≤ 2k

N
∑

n=2

‖∂̄2en‖2 + 2k

N
∑

n=2

‖∂̄2un‖2

≤ C
1

k3

N
∑

n=0

‖en‖2 + 2k

N
∑

n=2

‖∂̄2un‖2,

whence

(3.14) k
N
∑

n=2

‖∂̄2Un‖2 ≤ C
1

k3
‖e1‖2 + C

1

k3

N
∑

n=2

‖en‖2 + C(u).

Using (3.13) in (3.14), we conclude

(3.15) k

N
∑

n=2

‖∂̄2Un‖2 ≤ C
1

k3
‖e1‖2 + C.
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Combining (3.15) with the estimate (3.9), we obtain

(3.16) k
N
∑

n=2

‖∂̄2Un‖2 ≤ C,

and we arrive at the desired optimal order estimate for E1,

(3.17) E1 ≤ ck4.

3.2. Optimality of E2. We split E2 in the form E2 = E2,1 + E2,2 with

(3.18) E2,1 :=

∫ 2k

0

‖f(t)− ϕ̃(t)‖2⋆ dt, E2,2 :=

∫ T

2k

‖f(t)− ϕ̃(t)‖2⋆ dt.

First, for t ∈ J1, using (2.19) and (1.2), we have

ϕ̃(t) =
(

t− t
1

2

)

(∂̄2U2 +A∂̄U1) + f
1

2

= f
1

2 +
(

t− t
1

2

)

∂̄f1 +
(

t− t
1

2

)

(∂̄2U2 +A∂̄U1 − ∂̄f1),

i.e.,

(3.19) ϕ̃(t) = (I1f)(t) +
(

t− t
1

2

)

(∂̄2U2 +A∂̄U1 − ∂̄f1), t ∈ J1.

Thus, easily,

(3.20) ‖f(t)− ϕ̃(t)‖⋆ ≤ Ck2 +
k

2
‖∂̄2U2 +A∂̄U1 − ∂̄f1‖⋆, t ∈ J1.

Now, using (1.2) and (1.1), we have

k

2

(

∂̄2U2 +A∂̄U1 − ∂̄f1
)

=
k

2
∂̄2U2 − k

2
∂̄(f1 −AU1)

= (f2 − ∂̄U2 −AU2)− 1

2
(f1 −AU1) +

1

2
(f0 −Au0)

= (f2 − AU2)− 1

2
(f1 −AU1) +

1

2
(f0 −Au0)− ∂̄U2

= (f2 − Au2)− 1

2
(f1 −Au1) +

1

2
(f0 −Au0) +Ae2 − 1

2
Ae1 + ∂̄e2 − ∂̄u2

=
[

u′(t2)− 1

2
u′(t1) +

1

2
u′(0)− ∂̄u2

]

+Ae2 − 1

2
Ae1 + ∂̄e2,

and we easily conclude that

(3.21)
k

2
‖∂̄2U2 +A∂̄U1 − ∂̄f1‖⋆ ≤ Ck2 + ‖e2‖+ 1

2
‖e1‖+ ‖∂̄e2‖⋆.

Using here the estimates (3.9) and (3.11), we obtain

(3.22)
k

2
‖∂̄2U2 +A∂̄U1 − ∂̄f1‖⋆ ≤ Ck

3

2 .

Now (3.20) yields

∫ k

0

‖f(t)− ϕ̃(t)‖2⋆ dt ≤ Ck5 + k3‖∂̄2U2 +AU1 − ∂̄f1‖2⋆,
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whence, in view of (3.22),

(3.23)

∫ k

0

‖f(t)− ϕ̃(t)‖2⋆ dt ≤ Ck4.

Furthermore, for n = 2, in view of (2.20), we have

f(t)− ϕ̃(t) = f(t)−
[

f2 + (t− t2)∂̄f2
]

− (t− t2)
(

∂̄2U2 +A∂̄U2 − ∂̄f2
)

=
[

f(t)− (I1f)(t)
]

− (t− t2)
(

∂̄2U2 +A∂̄U2 − ∂̄f2
)

, t ∈ J2,

whence, easily,

(3.24) ‖f(t)− ϕ̃(t)‖⋆ ≤ Ck2 + k‖∂̄2U2 +A∂̄U2 − ∂̄f2‖⋆, t ∈ J2.

Now,

k

2
∂̄(f2 −AU2 − ∂̄U2) =

k

2
∂̄(f2 −AU2)− k

2
∂̄2U2

=
k

2
∂̄(f2 −AU2) + ∂̄U2 +AU2 − f2

= ∂̄U2 +AU
3

2 − f
3

2

= ∂̄U2 +AU
3

2 −Au
3

2 − 1

2

[

u′(t1) + u′(t2)
]

= −∂̄e2 −Ae
3

2 +
[

∂̄u2 − 1

2

[

u′(t1) + u′(t2)
]

]

,

whence

(3.25) k‖∂̄(f2 −AU2 − ∂̄U2)‖⋆ ≤ 2‖∂̄e2‖⋆ + 2‖e 3

2 ‖+ Ck2.

Estimating the first two terms on the right–hand side of (3.25) by (3.9) and (3.11),
we get

(3.26) k‖∂̄(f2 −AU2 − ∂̄U2)‖⋆ ≤ Ck
3

2 .

Now (3.24) yields

∫ 2k

k

‖f(t)− ϕ̃(t)‖2⋆ dt ≤ Ck5 + 2k3‖∂̄(f2 −AU2 − ∂̄U2)‖2⋆,

whence, in view of (3.26),

(3.27)

∫ 2k

k

‖f(t)− ϕ̃(t)‖2⋆ dt ≤ Ck4.

From (3.23) and (3.27) we obtain the desired optimal order estimate for E2,1,

(3.28) E2,1 ≤ Ck4.

To estimate E2,2, we first note that, in view of (2.16),

f(t)− ϕ̃(t) =
[

f(t)− (If)(t)
]

+
k

2
(t− tn)∂̄3Un, t ∈ Jn,
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n ≥ 3. Therefore,

E2,2 ≤ 2

∫ T

2k

‖f(t)− (If)(t)‖2⋆ dt+
k2

2

N
∑

n=3

∫

Jn

(t− tn)2 dt ‖∂̄3Un‖2⋆,

whence

(3.29) E2,2 ≤ Ck4 +
k4

6
k

N
∑

n=3

‖∂̄3Un‖2⋆.

Therefore, it suffices to show

(3.30) k
N
∑

n=3

‖∂̄3Un‖2⋆ ≤ C.

But (3.30) follows from the stability estimate

(3.31)

|A−1∂̄3Un|2 + k
n
∑

j=5

‖∂̄3U j‖2⋆ ≤ C
[

|A−1∂̄3U3|2

+ |A−1∂̄3U4|2 + k

n
∑

j=5

‖A−1∂̄3f j‖2⋆
]

, n = 5, . . . , N,

cf. [7], [1], and the fact that U0, . . . , U4 are third order approximations to u0, . . . , u4,
respectively, in the norm |A−1 · | and approximations of order 5/2 in the norm ‖ · ‖⋆.

Remark 3.1. Here we briefly sketch the proof of the optimality of the estimator
for the reconstruction Û given by (2.4). With notation analogous to (3.1), with Û
and ϕ̂ instead of Ũ and ϕ̃, respectively, it is easily seen that in this case

(3.32) E1 = E1,1 + E1,2

with

(3.33)



















E1,1 :=
k4

120
k
(

‖∂̄(f1 −AU1)‖2 + ‖∂̄(f2 −AU2)‖2
)

E1,2 :=
k4

120
k

N
∑

n=3

‖∂̄2Un +
k

2
∂̄3Un‖2.

We will now use (3.9) and (3.11) to estimate E1,1. First, in view of (2.11) and (1.1),
we have

∂̄(f1 −AU1) =
2

k

[

∂̄U1 − u′(0)
]

,

whence

(3.34) ∂̄(f1 −AU1) = − 2

k2
e1 +

2

k

[

∂̄u1 − u′(0)
]

.

Under obvious regularity requirements, the second term on the right-hand side of
(3.34) can be easily estimated; we conclude

k‖∂̄(f1 −AU1)‖2 ≤ 4

k3
‖e1‖2 + Ck.
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Therefore, in view of (3.9),

(3.35) k‖∂̄(f1 −AU1)‖2 ≤ c.

Using (3.35) and the analogous estimate for ∂̄(f2 − AU2), we can easily see that
E1,1 ≤ Ck4. Also, combining (3.16) with (3.30) we see that E1,2 ≤ Ck4. Therefore,
E1 ≤ Ck4.

Furthermore, in view of (3.28) and (2.9), we easily obtain

E2 :=

∫ T

0

‖f(t)− ϕ̂(t)‖2⋆ dt ≤ Ck4 +
k4

8
k

N
∑

n=3

‖∂̄3Un‖2⋆;

using here (3.30), we conclude E2 ≤ Ck4, i.e., the estimator E is of optimal order. �

4. Starting with the backward Euler scheme. Since we want to have a
second order approximation U1 to u1, the first choice that comes to mind is to define
U1 by performing one step with the backward Euler method. Unfortunately, for this
choice our estimator is of suboptimal order for both reconstructions. We illustrate
this with two elementary examples.

Example 4.1. Let us first consider the initial value problem

(4.1)

{

u′(t) = 2t, 0 ≤ t ≤ 1,

u(0) = 0.

It is an easy task to derive a posteriori error estimates for (4.1) and we will not dwell
upon this. Our purpose here is to study the order of our estimator E2 for this concrete
example, cf. (3.1).

We first perform one step of the backward Euler method and get U1 = 2k2.
Subsequently, we apply the BDF2 method to obtain the approximations U2, . . . , UN ,

(4.2)







1

2
Un−2 − 2Un−1 +

3

2
Un = 2k2n, n = 2, . . . , N,

U0 = 0, U1 = 2k2.

The solution Un of (4.2) can be easily determined; since the order of the BDF2 method
is two, and the exact solution u of (4.1) is a polynomial of degree two, u0, u1, . . . , uN is
a particular solution of the inhomogeneous difference equation. Using also the general
solution of the corresponding homogeneous equation and the given starting values U0

and U1, we obtain

(4.3) Un =
[3

2

(

1− 1

3n
)

+ n2
]

k2, n = 0, . . . , N.

Therefore, for the error un − Un we have

(4.4) un − Un = −3

2

(

1− 1

3n
)

k2, n = 0, . . . , N ;

in particular, Un are second order approximations to un.
Furthermore, (4.3) yields

(4.5)
k

2
∂̄3Un =

2

3n−1
, n = 3, . . . , N.
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Now, for f(t) := 2t, we obviously have I1f = f, and (2.16) yields, for n ≥ 3,

f(t)− ϕ̃(t) = −k

2
(t− tn)∂̄3Un, t ∈ (tn−1, tn),

i.e.,

(4.6) f(t)− ϕ̃(t) = −2(t− tn)
1

3n−1
, t ∈ (tn−1, tn).

Thus, we have

E2,2 =

∫ 1

2k

|f(t)− ϕ̃(t)|2 dt = 4

3
k3

N
∑

n=3

1

9n−1
,

and conclude that E2,2 is of suboptimal order O(k3).
Remark 4.1. Using the first reconstruction for the initial value problem (4.1)

and the scheme (4.2), we get

E2,2 =

∫ 1

2k

|f(t)− ϕ̂(t)|2 dt = k3
N
∑

n=3

1

9n−1
,

and conclude that also in this case E2,2 is of suboptimal order O(k3). �
Remark 4.2. Let us discretize the initial value problem (4.1) by combining the

BDF2 method with the trapezoidal scheme: We start with the exact initial value U0 =
0, perform one step with the trapezoidal scheme to compute U1 and subsequently
apply the BDF2 method to obtain U2, . . . , UN . It is then easily seen that Un = un,
i.e.,

Un = n2k2, n = 0, 1, . . . , N.

Therefore, we have ∂̄3Un = 0, n = 3, . . . , N, whence E2,2 = 0. It is also easily seen that
both ϕ̂ and ϕ̃ coincide with f in the interval [0, 2k]; we conclude that E2 vanishes.

Furthermore, it is readily seen that both reconstructions Û and Ũ of U considered
in this paper coincide in this case with the exact solution u. Therefore, ê = 0 and the
a posteriori estimate (2.26) holds as an equality for this problem,

∫ t

0

|e(s)|2 ds =
∫ t

0

|Û(s)− U(s)|2 ds =
∫ t

0

|Ũ(s)− U(s)|2 ds, t ∈ [0, 1]. �

Example 4.2. Let us also consider the initial value problem

(4.7)







u′ +
1

2
u = 0, 0 ≤ t ≤ 1,

u(0) = 1.

The BDF2 method for problem (4.7) is

3

2
Un − 2Un−1 +

1

2
Un−2 +

1

2
kUn = 0,

i.e.,

(4.8) (3 + k)Un − 4Un−1 + Un−2 = 0.
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We will first determine the approximations Un, in terms of the starting approximation
U1; we will use the exact value U0 := 1 and in the sequel will consider two cases,
when U1 is given by the backward Euler or the trapezoidal methods, respectively.

For the sake of brevity we will use the notation α :=
√
1− k. Since the roots of

the characteristic polynomial ρ, ρ(z) := (3 + k)z2 − 4z + 1, of the difference equation
(4.8) are

z1 :=
2 + α

3 + k
and z2 :=

2− α

3 + k
,

we have

(4.9) Un = c1(z1)
n + c2(z2)

n, n ≥ 0,

with constants c1 and c2 depending only on the starting approximations U0 and U1.
From the relations c1 + c2 = U0(= 1) and c1z1 + c2z2 = U1, we obtain

(4.10) c1 =
U1 − z2
z1 − z2

and c2 = −U1 − z1
z1 − z2

,

and conclude that

(4.11) Un =
U1 − z2
z1 − z2

zn1 − U1 − z1
z1 − z2

zn2 , n ≥ 0.

Now, according to (2.20), we have ϕ̃(t) = (t − tn)
(

∂̄2Un + 1
2 ∂̄U

n
)

, t ∈ Jn, and
conclude easily

ϕ̃(t) =
t− tn

2k2
[

(2 + k)Un − (4 + k)Un−1 + 2Un−2
]

, t ∈ Jn, n ≥ 2,

whence, in view of (4.9),

(4.12) ϕ̃(t) =
t− tn

2k2

2
∑

i=1

ci
[

(2 + k)z2i − (4 + k)zi + 2
]

zn−2
i , t ∈ Jn, n ≥ 2.

Using the relation (3 + k)z2i − 4zi + 1 = 0, we easily see that

(2 + k)z2i − (4 + k)zi + 2 =
[

4(1− zi)− k(1 + zi)
]

zi, i = 1, 2;

thus, we rewrite (4.12) in the form

(4.13) ϕ̃(t) =
t− tn

2k2

2
∑

i=1

ci
[

4(1− zi)− k(1 + zi)
]

zn−1
i , t ∈ Jn, n ≥ 2.

In the sequel we will distinguish two cases: In the first case U1 is computed by
the backward Euler method and in the second by the trapezoidal scheme.

First case: Starting with the backward Euler method. Performing one step with the
backward Euler method for the initial value problem (4.7), we obtain U1 = 2/(2+ k).
Therefore, in view of (4.10), in this case we have

(4.14) c1 =
2(1 + α) + αk

2α(2 + k)
and c2 = −2(1− α)− αk

2α(2 + k)
.
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Now, it is easily seen that

(4.15)















c1
[

4(1− z1)− k(1 + z1)
]

=
1− α

2α(2 + k)
k2,

c2
[

4(1− z2)− k(1 + z2)
]

= − 1 + α

2α(2 + k)
k2.

Using (4.15), from (4.13) we easily obtain

(4.16) ϕ̃(t) =
t− tn

4α(2 + k)

[

(1− α)zn−1
1 − (1 + α)zn−1

2

]

, t ∈ Jn, n ≥ 2.

Furthermore, using (2.19) we get

(4.17) ϕ̃(t) =
1

2(2 + k)

[1 + k

3 + k
(t− t1/2) +

k

2

]

, t ∈ J1.

From (3.1), (4.17) and (4.16), we easily obtain

E2 =
k3

8(2 + k)2

[

1 +
1

3

(1 + k

3 + k

)2
+

1

3α2

N
∑

n=2

[

(1 − α)zn−1
1 − (1 + α)zn−1

2

]2
]

,

i.e.,

(4.18) E2 =
k3

8(2 + k)2

[

1 +
1

3

(1 + k

3 + k

)2
+

1

3α2

[

(1− α)2E1 − E2 + (1 + α)2E3

]

]

with

(4.19) E1 = z21
1− z2N−2

1

1− z21
, E2 = 2kz1z2

1− (z1z2)
N−1

1− z1z2
, E3 = z22

1− z2N−2
2

1− z22
.

Our next task is to determine the order of the terms E1, E2 and E3. Let us start
with E2. In view of k ≤ 1/2, from z1z2 = 1/(3 + k) we obtain 2/7 ≤ z1z2 ≤ 1/3 and
conclude easily that

E2 ≥ 2k
2

7

1

1− 2
7

[

1− (z1z2)
N−1

]

≥ 4

5
k(1− 1

3
) =

8

15
k

and

E2 ≤ 2k
1

3

1

1− 1
3

= k;

summarizing, we have

(4.20)
8

15
k ≤ E2 ≤ k.

Concerning E3, from z2 = (2− α)/(3 + k) we obtain 1/3 ≤ z2 ≤ 2/3 and conclude

E3 ≤ 4

9

1

1− 4
9

=
4

5
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and

E3 ≥ 1

9

1

1− 1
9

[

1−
(2

3

)2N−2] ≥ 1

9

9

8

(

1− 4

9

)

=
5

72
;

thus

(4.21)
5

72
≤ E3 ≤ 4

5
.

Furthermore, since k ≤ 1/2, we have 2− (2−
√
2)k ≤ 1 + α ≤ 2 and thus

(4.22)
3

2
+
√
2 ≤ (1 + α)2 ≤ 4.

From (4.21) and (4.22) we obtain

(4.23)
5

72

(3

2
+
√
2
)

≤ (1 + α)2E3 ≤ 16

5
.

Finally, as far as the order of E1 is concerned, we first note that

(4.24) 1− 1

2
k ≤ z1 ≤ 1− 1

3
k,

whence

2

3
k − 1

9
k2 ≤ 1− z21 ≤ k;

consequently, since k ≤ 1/2,

(4.25)
11

18
k ≤ 1− z21 ≤ k.

Therefore,

z21
1− z21

≤ 1
11
18k

=
18

11

1

k
and

z21
1− z21

≥
3
4

k
=

3

4

1

k
,

i.e.,

(4.26)
3

4

1

k
≤ z21

1− z21
≤ 18

11

1

k
.

Using now (4.24) and the fact that

lim
N→∞

(

1− 1

3

1

N

)N
= e−1/3 and lim

N→∞

(

1− 1

2

1

N

)N
= e−1/2

we easily conclude, in view of (4.26), that E1 is of exactly order minus one with
respect to k. Furthermore, we have

1

2
k ≤ 1− α ≤ k,

whence

(4.27)
1

4
k2 ≤ (1 − α)2 ≤ k2.
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Now, (4.27) and the previous discussion leads to the conclusion that (1 − α)2E1 is
exactly of first order.

Summarizing, E2 is exactly of third order.
Next, we show that E1 is of fourth order. Indeed, first, in this case (3.4) takes the

form

(4.28) E1 =
k4

240
k
[

2|∂̄2U2|2 +
N
∑

n=3

|∂̄2Un|2
]

.

Now, in view of (4.9),

(4.29) ∂̄2Un =
1

k2

2
∑

i=1

ci(z
2
i − 2zi + 1)zn−2

i .

Since (3 + k)z2i − 4zi + 1 = 0, we have

z2i − 2zi + 1 = [2(1− zi)− kzi]zi,

and, using (4.14), we easily see that

ci(z
2
i − 2zi + 1)2α(2 + k) = (−1)i+1k2zi, i = 1, 2;

therefore, (4.29) takes the form

(4.30) ∂̄2Un =
1

2α(2 + k)

(

zn−1
1 − zn−1

2

)

.

Hence, (4.28) yields

E1 =
k4

240(2α)2(2 + k)2
k
[

(z1 − z2)
2 +

N
∑

n=2

(

zn−1
1 − zn−1

2

)2
]

,

i.e.,

(4.31) E1 =
k4

240(2α)2(2 + k)2

[ (2α)2

(3 + k)2
k + (kE1 − E2 + kE3)

]

with E1, E2 and E3 as in (4.19). Thus, we easily conclude that E1 is of fourth order;
see the discussion following (4.19).

Second case: Starting with the trapezoidal method. Here, we will consider the dis-
cretization of (4.7) by first performing one step with the trapezoidal method and
subsequently applying the BDF2 method to compute U2, . . . , Un. It is easily seen
that U1 = (4 − k)/(4 + k), whence, in view of (4.10),

(4.32) c1 =
4(1 + α)− (1− α)k − k2

2α(4 + k)
and c2 = −4(1− α)− (1 + α)k − k2

2α(4 + k)
.

Also, the analogous calculation to the one leading to (4.15) yields in this case

(4.33)















c1
[

4(1− z1)− k(1 + z1)
]

=
1

2α(4 + k)
k3,

c2
[

4(1− z2)− k(1 + z2)
]

= − 1

2α(4 + k)
k3.
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Using (4.33), from (4.13) we easily obtain

(4.34) ϕ̃(t) =
(t− tn)k

4α(4 + k)

(

zn−1
1 − zn−1

2

)

, t ∈ Jn, n ≥ 2.

Furthermore, using (2.19) we get

(4.35) ϕ̃(t) = − k

(4 + k)(3 + k)
(t− t1/2), t ∈ J1.

From (3.1), (4.35) and (4.34), we easily obtain

E2 =
k5

24α2(4 + k)2

[ 4α2

(3 + k)2
+

N
∑

n=2

(

zn−1
1 − zn−1

2

)2
]

,

i.e.,

(4.36) E2 =
k4

24α2(4 + k)2

[ 4α2k

(3 + k)2
+ (kE1 − E2 + kE3)

]

with E1, E2 and E3 as in (4.19). In view of (4.20), (4.21) and the fact that kE1 is
of zeroth order, we conclude that E2 is of optimal order in this case, namely of order
exactly four.

5. Numerical experiments. In this section we present numerical results for
Example 4.2 for both methods (1.2) and (1.12). Our numerical calculations justify
the theoretical results of §4 and illustrate the effectivity of our a posteriori error
estimators in a simple case.

First, we use the three-point reconstruction Ũ of the approximation U ; cf. (2.12).
In Tables 5.1 and 5.2 we state the values of the parts E1 and E2 of (the square of)
our a posteriori error estimator as well as their orders in the cases U1 is computed
by the trapezoidal method and the backward Euler scheme, respectively. It is clearly
seen that while all other quantities are of optimal order four (since they estimate the
square of the error), part E2 in the case of the backward Euler scheme is of reduced
order three; this confirms the theoretical results in §4. For the computation of E1 and
E2 we employed the Gauss–Legendre quadrature formula with three nodes in each
subinterval Jn; notice that the integrand, as a polynomial of degree four, is integrated
exactly by this formula. Furthermore, we employed the same quadrature formula

to approximate the errors
∫ 1

0 |e(s)|2 ds and
∫ 1

0 |ê(s)|2 ds in the estimates (1.10) and
(1.11). Also, we denote by Err1 the square of the L2 norm (in time) of the errors,

Err1 =
1

2

∫ 1

0

(

|e(s)|2 +
1

2
|ê(s)|2

)

ds, and by Err2 the sum of Err1 and the discrete

maximum norm (in time) of ê, Err2 = max |ê(tn)|2 + Err1. The lower and upper
estimators are E1/3 and E1 + 2E2, respectively; see (1.10) and (1.11). We present the
results of this computation as well as their effectivity indices Effi,

Eff1 :=
Lower estimator

Err1
and Eff2 :=

Upper estimator

Err2

in Tables 5.3 and 5.4, again for the trapezoidal and the backward Euler schemes,
respectively. We graphically demonstrate the effectivity indices in log-log scale (with
the base of the logarithms equal to two) in Figure 5.1.

Finally, we state the corresponding results for the reconstruction Û given in (2.5)
in Tables 5.5–5.8 and in Figure 5.2.
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Table 5.1
Three-point reconstruction: Order of E1 and E2 when starting with the trapezoidal method

N E1 Order E2 Order

2 9.4482e−06 4.1992e−05
4 6.6037e−07 3.8387 4.2416e−06 3.3075
8 4.1643e−08 3.9871 3.3528e−07 3.6611
16 2.5732e−09 4.0165 2.3088e−08 3.8601
32 1.5917e−10 4.0149 1.5072e−09 3.9372
64 9.8841e−12 4.0093 9.6171e−11 3.9701
128 6.1557e−13 4.0051 6.0717e−12 3.9854
256 3.8401e−14 4.0027 3.8138e−13 3.9928
512 2.3978e−15 4.0014 2.3895e−14 3.9964
1024 1.4979e−16 4.0007 1.4953e−15 3.9982

Table 5.2
Three-point reconstruction: Order of E1 and E2 when starting with the backward Euler scheme

N E1 Order E2 Order

2 3.4014e−06 4.2517e−04
4 3.7834e−07 3.1684 7.0346e−05 2.5955
8 3.1585e−08 3.5824 1.0419e−05 2.7553
16 2.2394e−09 3.8181 1.4227e−06 2.8725
32 1.4841e−10 3.9154 1.8586e−07 2.9363
64 9.5427e−12 3.9591 2.3751e−08 2.9681
128 6.0481e−13 3.9798 3.0020e−09 2.9840
256 3.8064e−14 3.9900 3.7733e−10 2.9920
512 2.3872e−15 3.9950 4.7297e−11 2.9960
1024 1.4946e−16 3.9975 5.9203e−12 2.9980
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Table 5.3
Three-point reconstruction: Lower and upper estimators of the error and effectivity indices

when starting with the trapezoidal method

N 1
3E1 Err1 Err2 E1 + 2E2 Eff1 Eff2

2 3.1494e−06 7.4620e−06 1.8725e−05 9.3432e−05 0.4221 4.9897
4 2.2012e−07 4.8769e−07 1.9597e−06 9.1435e−06 0.4514 4.6659
8 1.3881e−08 3.2741e−08 1.5766e−07 7.1221e−07 0.4240 4.5175
16 8.5772e−10 2.1323e−09 1.0937e−08 4.8750e−08 0.4022 4.4573
32 5.3056e−11 1.3568e−10 7.1581e−10 3.1736e−09 0.3910 4.4335
64 3.2947e−12 8.5464e−12 4.5716e−11 2.0223e−10 0.3855 4.4235
128 2.0519e−13 5.3603e−13 2.8873e−12 1.2759e−11 0.3828 4.4190
256 1.2800e−14 3.3557e−14 1.8139e−13 8.0116e−13 0.3814 4.4168
512 7.9926e−16 2.0990e−15 1.1366e−14 5.0189e−14 0.3808 4.4158
1024 4.9930e−17 1.3124e−16 7.1127e−16 3.1404e−15 0.3804 4.4153

Table 5.4
Three-point reconstruction: Lower and upper estimators of the error and effectivity indices

when starting with the Euler method

N 1
3E1 Err1 Err2 E1 + 2E2 Eff1 Eff2

2 1.1338e−06 3.1789e−04 8.0369e−04 8.5374e−04 0.0036 1.0623
4 1.2611e−07 3.6681e−05 9.3291e−05 1.4107e−04 0.0034 1.5121
8 1.0528e−08 3.0576e−06 7.9768e−06 2.0869e−05 0.0034 2.6162
16 7.4647e−10 2.1793e−07 6.0875e−07 2.8476e−06 0.0034 4.6778
32 4.9470e−11 1.4509e−08 4.2307e−08 3.7186e−07 0.0034 8.7896
64 3.1809e−12 9.3540e−10 2.8199e−09 4.7512e−08 0.0034 16.8488
128 2.0160e−13 5.9372e−11 1.8274e−10 6.0045e−09 0.0034 32.8584
256 1.2688e−14 3.7394e−12 1.1651e−11 7.5470e−10 0.0034 64.7745
512 7.9574e−16 2.3461e−13 7.3687e−13 9.4597e−11 0.0034 128.3760
1024 4.9820e−17 1.4691e−14 4.6343e−14 1.1841e−11 0.0034 255.5046

Table 5.5
Reconstruction (2.5): Order of E1 and E2 when starting with the trapezoidal method

N E1 Order E2 Order

2 1.0400e−05 1.5747e−05
4 6.4597e−07 4.0089 2.5413e−06 2.6314
8 4.0247e−08 4.0045 2.2851e−07 3.4753
16 2.5128e−09 4.0015 1.6546e−08 3.7877
32 1.5701e−10 4.0004 1.1055e−09 3.9038
64 9.8121e−12 4.0001 7.1334e−11 3.9539
128 6.1324e−13 4.0000 4.5287e−12 3.9774
256 3.8327e−14 4.0000 2.8525e−13 3.9888
512 2.3955e−15 4.0000 1.7897e−14 3.9944
1024 1.4972e−16 4.0000 1.1207e−15 3.9972
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Table 5.6
Reconstruction (2.5): Order of E1 and E2 when starting with the Euler method

N E1 Order E2 Order

2 9.0349e−06 2.7041e−03
4 6.1876e−07 3.8680 4.2429e−04 2.6720
8 3.9782e−08 3.9592 6.0128e−05 2.8190
16 2.5052e−09 3.9891 8.0251e−06 2.9054
32 1.5688e−10 3.9972 1.0372e−06 2.9518
64 9.8101e−12 3.9993 1.3185e−07 2.9757
128 6.1321e−13 3.9998 1.6622e−08 2.9878
256 3.8327e−14 4.0000 2.0866e−09 2.9939
512 2.3955e−15 4.0000 2.6138e−10 2.9969
1024 1.4972e−16 4.0000 3.2707e−11 2.9985

Table 5.7
Reconstruction (2.5): Lower and upper estimators of the error and effectivity index when start-

ing with the trapezoidal method

N 1
3E1 Err1 Err2 E1 + 2E2 Eff1 Eff2

2 3.4665e−06 7.2836e−06 1.8547e−05 4.1894e−05 0.4759 2.2588
4 2.1532e−07 4.7253e−07 1.9445e−06 5.7286e−06 0.4557 2.9461
8 1.3416e−08 3.2062e−08 1.5698e−07 4.9726e−07 0.4184 3.1677
16 8.3761e−10 2.1079e−09 1.0913e−08 3.5605e−08 0.3974 3.2627
32 5.2335e−11 1.3487e−10 7.1500e−10 2.3679e−09 0.3880 3.3118
64 3.2707e−12 8.5204e−12 4.5690e−11 1.5248e−10 0.3839 3.3373
128 2.0441e−13 5.3521e−13 2.8865e−12 9.6707e−12 0.3819 3.3503
256 1.2776e−14 3.3532e−14 1.8136e−13 6.0883e−13 0.3810 3.3569
512 7.9849e−16 2.0982e−15 1.1365e−14 3.8189e−14 0.3806 3.3603
1024 4.9905e−17 1.3122e−16 7.1124e−16 2.3911e−15 0.3803 3.3619

Table 5.8
Reconstruction (2.5): Lower and upper estimators of the error and effectivity index when start-

ing with the Euler method

N 1
3E1 Err1 Err2 E1 + 2E2 Eff1 Eff2

2 3.0116e−06 3.0580e−04 7.9159e−04 5.4172e−03 0.0098 6.8434
4 2.0625e−07 3.6095e−05 9.2706e−05 8.4921e−04 0.0057 9.1602
8 1.3261e−08 3.0366e−06 7.9559e−06 1.2030e−04 0.0044 15.1203
16 8.3507e−10 2.1724e−07 6.0805e−07 1.6053e−05 0.0038 26.4004
32 5.2295e−11 1.4486e−08 4.2285e−08 2.0746e−06 0.0036 49.0615
64 3.2700e−12 9.3469e−10 2.8192e−09 2.6372e−07 0.0035 93.5427
128 2.0440e−13 5.9349e−11 1.8272e−10 3.3244e−08 0.0034 181.9447
256 1.2776e−14 3.7387e−12 1.1650e−11 4.1732e−09 0.0034 358.2005
512 7.9848e−16 2.3459e−13 7.3685e−13 5.2276e−10 0.0034 709.4492
1024 4.9905e−17 1.4691e−14 4.6342e−14 6.5414e−11 0.0034 1411.5429
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Fig. 5.1. Three-point reconstruction: Log-log graphs of the effectivity indices, of upper and

lower estimator, when starting with the Euler and the trapezoidal method, respectively
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Fig. 5.2. Reconstruction (2.5): Log-log graphs of the effectivity indices, of upper and lower

estimator, when starting with the Euler and the trapezoidal method, respectively
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