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Abstract. We consider initial value problems for semilinear parabolic equations,

which possess a dispersive term, nonlocal in general. This dispersive term is not

necessarily dominated by the dissipative term. In our numerical schemes, the time

discretization is done by linearly implicit schemes. More specifically, we discretize

the initial value problem by the implicit–explicit Euler scheme and by the two–

step implicit–explicit BDF scheme. In this work, we extend the results in [2, 3],

where the dispersive term (if present) was dominated by the dissipative one and

was not integrated implicitly. We also derive optimal order error estimates. We

provide various physically relevant applications of dispersive–dissipative equations

and systems fitting in our abstract framework.

1. Introduction

1.1. Dispersive–dissipative systems. We consider the time discretization of initial

value problems of the form

(1.1)

{
u′(t) + Lu(t) = B

(
t, u(t)

)
, 0 < t < T,

u(0) = u0,

with u : [0, T ] → H, where
(
H, (·, ·)

)
is a complex Hilbert space, and L, B are

unbounded (in general) operators on H, with L linear and B nonlinear. Problem

(1.1) is assumed to possess a smooth solution.

In particular, we assume that L is normal1. We also assume that

(1.2) Re (Lv, v) ≥ σ(v, v), for every v ∈ D(L),

with a positive constant σ. Let

A =
1

2
(L + L?) and D =

1

2
(L − L?)
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1A densely defined linear operator L : D(L) → H is said to be normal if LL? = L?L, where L?

is the adjoint of L. The last equality implies that D(LL?) = D(L?L). In fact, if L is normal, then

D(L) = D(L?), and D(LL?) is dense in H. See Kato [12, Chapter V, §3.8].
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denote the symmetric and the anti–symmetric part of L, respectively. Clearly, in view

also of (1.2), we have

(Av, v) ≥ σ(v, v) and Re (Dv, v) = 0, for all v ∈ D(L).

The symmetric operator A extends to a self–adjoint (still denoted by A) since it is

semi–bounded (cf. Friedrichs extension; see for example Lax [15, Chapter 33.3]). In

fact, A is positive definite.

Let | · | be the norm of H and ‖ · ‖ the norm of the space V = D(A1/2), which is

defined by ‖v‖ := |A1/2v|. We identify H with its dual, and denote by V ′ the dual of

V, again by (·, ·) the duality pairing between V ′ and V, and by ‖ · ‖? the dual norm

on V ′, ‖v‖? := |A−1/2v|.
Let Tu be a tube of radius one around the solution u,

Tu :=
{
v ∈ V : min

0≤t≤T
‖v − u(t)‖ ≤ 1

}
.

We assume that the (nonlinear in general) operator B(t, ·) : D(L) → H can be

extended to an operator from V into V ′, for every t∈ [0, T ]. We also require a local

Lipschitz condition of the form

(1.3) ‖B(t, v) − B(t, w)‖? ≤ λ‖v − w‖ + µ|v − w| for all v, w ∈ Tu,

to hold, uniformly in t ∈ [0, T ], with two constants λ and µ. Depending on the dis-

cretization scheme, it is essential for our analysis that λ be sufficiently small; in any

case we assume that λ is less than one, λ < 1.

The tube Tu is here defined in terms of the norm of V for concreteness. In the

fully discrete case, if the discretization in space is based on the finite element method,

the proofs can be easily modified to yield error estimates under some mild mesh

conditions; the weaker the norm in terms of which Tu is defined, the milder are the

required mesh conditions; cf. [3] for details. In particular, if Tu is defined in terms of

the norm of H, no mesh–condition at all is needed.

In our applications, H is a Sobolev space Hs(X), where X is a Euclidean space

or a torus and s ∈ R, A is an elliptic operator of the spatial variable x, D is a

dispersive pseudo–differential operator of x, i.e., an operator with a symbol of the

form D̂(ξ) = iK(ξ), where K is a real–valued function, and B(t, ·) is a nonlinear

function of u and partial derivatives of u, with respect to x, of orders at most the

order of A.

A typical example of such systems is the dispersively modified Kuramoto–Sivashi-

nsky equation

(1.4) ut + uux + uxx + νuxxxx + Du = 0,

with 2π−periodic initial data, where ν is a positive constant. In this case H =

Hs(T 1), where T 1 is the unit circle (or the 1−dimensional torus), and s a suitable
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real number. The operator D is a linear dispersive pseudo–differential operator defined

by

(D̂v)` = if(`) v̂`,

where f : Z → R. The global well–posedness of the corresponding periodic initial

value problem is derived from the work of Tadmor [21]. Equation (1.4) has been

derived in the context of interfacial hydrodynamics, when

(1.5) f(`) =
`2I1(`)

`I2
1 (k) − `I2

0 (`) + 2I0(`)I1(`)
,

where Iν = Iν(`) denotes the modified Bessel function of the first kind of order ν (see

[11, 18]). A special case of (1.4) is the Kawahara equation

(1.6) ut + uux + uxx + δuxxx + νuxxxx = 0,

which has been derived in the context of falling film flows (see [9, 13, 23]). Another

special case of (1.4) is the Benney–Lin equation

(1.7) ut + uux + uxx + δuxxx + νuxxxx + εuxxxxx = 0,

which has been derived in the context of one–dimensional evolution of long waves of

sufficiently small amplitude in various problems in fluid dynamics (see for example

[6, 16]). Global well–posedness of the initial value problem for (1.7) with initial data

in Hs(R), s ≥ 0, has been established by Biagioni & Linares [7].

Further examples will be given in Section 4.

Remark 1.1. It is assumed, for simplicity, that the operator L is normal. This

requirement is also dictated by the applications we have in mind (see Section 4).

Nevertheless, our abstract results are valid under a relaxed requirement, namely that

L is maximal monotone (maximal accretive) and D(L) = D(L?). Recall that an

operator L : D(L) → H is called monotone, if (Lv, v) ≥ 0, for all v ∈ D(L), and

it is called maximal monotone if moreover I + L is onto H, where I is the identity

operator in H. In fact, if L is maximal monotone, then D(L) is dense in H, L is

closed and I + σL is onto H, for all positive σ; see [8].

1.2. Implicit–explicit (α, β, γ)−schemes. Let (α, β) and (α, γ) be an implicit and

an explicit, respectively, q−step scheme, characterized by the polynomials

α(ζ) =

q∑

i=0

αiζ
i, β(ζ) =

q∑

i=0

βiζ
i, γ(ζ) =

q−1∑

i=0

γiζ
i.

We then combine the schemes (α, β) and (α, γ), and construct an implicit–explicit

(α, β, γ)−scheme for the discretization of the differential equation in (1.1). The linear
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part of the equation is discretized by the implicit scheme (α, β) and the nonlinear

part by the explicit scheme (α, γ),

q∑

i=0

αi U
n+i + k

q∑

i=0

βi LUn+i = k

q−1∑

i=0

γi B(tn+i, Un+i),

for i = 0, . . . , N − q.

Let us first focus on the case of vanishing dispersive operator D = 0. This case

has been extensively studied in [2] and [3]; see also [1] for a wider class of schemes.

Assume that the implicit scheme (α, β) is strongly A(0)−stable. Then the quantity

K(α,β,γ),

K(α,β,γ) := sup
x>0

max
ζ∈S1

∣∣∣ xγ(ζ)(
α + xβ

)
(ζ)

∣∣∣,

with S1 the unit circle in C, is finite. The implicit–explicit (α, β, γ)−scheme is locally

stable in Tu, if

(1.8) λ <
1

K(α,β,γ)

.

Moreover, condition (1.8) is sharp in the following sense: For any λ > 1/K(α,β,γ), there

exists a (linear) operator B in (1.1) satisfying (1.3), such that the implicit–explicit

(α, β, γ)−scheme is unstable for (1.1); see [3].

For other classes of implicit–explicit schemes for semilinear parabolic equations

we refer to [14, 17, 20]; see also the standard monograph for numerical methods for

parabolic equations [22] and references therin.

Our goal here is to extend the results of [3] to problem (1.1). Unfortunately, the

schemes analyzed in [3] are in general unstable, when approximating the solutions of

(1.1), if the order of the anti–symmetric operator D is higher than the order of the

self–adjoint operator A. Motivated by the results for vanishing D in [3], we assume

in the sequel that (α, β) is strongly A(0)−stable and that condition (1.8) is satisfied.

Furthermore, due to the presence of the dispersive operator D, we assume that the

scheme (α, β) is A−stable; we need this condition for stability even in the absence of

the nonlinear term (B = 0). Consequently, according to the second Dahlquist barrier,

the highest attainable order of the scheme (α, β) is two. As a result, in contrast with

[3], we confine ourselves to low order schemes; more precisely, we shall only analyze

the implicit–explicit Euler and the implicit–explicit two-step BDF schemes.

The paper is organized as follows: In Section 2 we consider the implicit–explicit

Euler scheme for (1.1). Section 3 is devoted to the second order implicit–explicit BDF

scheme. Finally, in Section 4 we apply our abstract results to four examples, a sim-

ple system of ODEs, the dispersively modified Kuramoto–Sivashinsky equation, the

Topper–Kawahara equation and to systems of Kuramoto–Sivashinsky type equations.
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2. Implicit–explicit Euler scheme

In this section we analyze the discretization of (1.1) by the implicit–explicit Euler

scheme. Throughout this section, we assume that λ in (1.3) is less than one, λ < 1.

Let N ∈ N, k := T/N be the time step, tn := nk, n = 0, . . . , N, and u a solution

of (1.1). We combine the implicit and explicit Euler schemes for discretizing (1.1) in

time, and define approximations Un to un := u(tn) by

(2.1)

{
Un+1 + kLUn+1 = Un + kB(tn, Un), n = 0, . . . , N − 1,

U0 = u0;

thus we discretize the linear part of the equation by the implicit Euler scheme and

the nonlinear part by the explicit Euler scheme.

We assume that

(2.2) sup
0<t<T

∥∥∥ d

dt
B
(
t, u(t)

)∥∥∥
?

≤ C,

for a suitable constant C.

2.1. Existence and uniqueness of approximations. We shall show that, given

Un ∈D(L), there exists a unique Un+1 ∈D(L) such that

(2.3) Un+1 + kLUn+1 = Un + kB(tn, Un).

Clearly, whenever Un ∈D(L), the right–hand side of (2.3) defines an element W n =

Un + kB(tn, Un) of the space H. Therefore, existence and uniqueness of approxima-

tions reduces to proving that the operator I + kL : D(L) → H, with I the identity

operator in H, is one–to–one in D(L) and onto H, for every k > 0.

One–to–one: Let u∈D(L) be such that (I + kL)u = 0. Then

0 = Re
(
(I + kL)u, u

)
=
(
(I + kA)u, u

)
= (u, u) + k(Au, u) ≥ (u, u),

which implies that u = 0.

Onto: We shall prove that R(I+kL), the range of I+kL, is a closed subspace of H,

which is dense in H, and therefore it coincides with H. If R(I+kL) is not dense in H,

then the subspace
(
R(I + kL)

)⊥
contains non–zero elements. Let v∈

(
R(I + kL)

)⊥
.

Then (
(I + kL)u, v

)
= 0,

for all u∈D(L), which implies that2 v∈D(L?). Thus

0 =
(
(I + kL)u, v

)
=
(
u, (I + kL?)v

)
,

2Note that if T : D(T ) → H is an unbounded (densely defined) operator in H, then its adjoint

is defined on the set

D(T ?) =
{
v ∈ H : there exists w ∈ H such that (T u, v) = (u, w), for every u ∈ D(T )

}
.
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for all u∈D(L). Since D(L) is dense in H, then (I+kL?)v = 0, which in turn implies

that v = 0. (In order to prove that I + kL? is one–to–one we use the argument of

the proof that I + kL is one–to–one and the fact that L?? = L, since L is closed.)

It remains to show that R(I + kL) is closed. Let {un}n∈N ⊂ D(L) be such that

(I + kL)un → w∈H. Then

|(I + kL)(um − un)| · |um − un| ≥ Re
(
(I + kL)(um − un), um − un

)

= |um − un|2 + k Re
(
L(um − un), um − un

)

≥ (1 + kσ)|um − un|2.

Therefore,

|(I + kL)(um − un)| ≥ (1 + kσ)|um − un|,
which implies that {un}n∈N is a Cauchy sequence. The sequence {Lun}n∈N is also

a Cauchy sequence, since {(I + kL)un}n∈N is convergent. Let un → u. Since L is

closed, we have u∈D(L) and

(I + kL)u = lim
n→∞

(I + kL)un = w,

which concludes the proof that I + kL is onto.

Remark 2.1 (Resolvent estimate). The argument we used to prove existence and

uniqueness of approximations provides that the resolvent set of the operator L,

%(L) =
{
z ∈ C : zI − L : D(L) → H is 1 − 1 and onto

}
,

contains the set Uσ = {z∈C : Re z < σ}. In fact, we can easily obtain the following

bound for the norm of the resolvent of L
∥∥(zI − L)−1

∥∥ ≤ 1

σ − Re z
,

for every z∈Uσ, where ‖ · ‖ is the operator norm in H.

2.2. Consistency. Let En denote the consistency error of the implicit–explicit Euler

scheme (2.1),

(2.4) kEn = un+1 + kLun+1 − un − kB(tn, un),

n = 0, . . . , N − 1. Using the differential equation in (1.1), we express En in the form

kEn = un+1 + kB(tn+1, un+1) − ku′(tn+1) − un − kB(tn, un)

= un+1 − un − ku′(tn+1) + k
(
B(tn+1, un+1) − B(tn, un)

)

= kEn
1 + kEn

2 ,

with

En
1 :=

1

k
(un+1 − un) − u′(tn+1), En

2 := B(tn+1, un+1) − B(tn, un).
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Now,

En
1 = −1

k

∫ tn+1

tn
(s − tn) u′′(s) ds,

and the regularity assumption

sup
t∈[0,T ]

‖u′′(t)‖? < ∞,

provides that

max
0≤n≤N−1

‖En
1 ‖? ≤ C1k,

while (2.2) provides that

max
0≤n≤N−1

‖En
2 ‖? ≤ C2k,

for suitable C1, C2 > 0, and thus we obtain the desired estimate for En,

(2.5) max
0≤n≤N−1

‖En‖? ≤ Ck,

for a suitable C > 0.

2.3. Local stability. Assume that U 0, U1, . . . , UN ∈ Tu and V 0, V 1, . . . , V N ∈ Tu

are implicit–explicit Euler approximations,

(2.6)

{
Un+1 + kLUn+1 = Un + kB(tn, Un),

V n+1 + kLV n+1 = V n + kB(tn, V n),

n = 0, . . . , N − 1, with starting approximations U 0 and V 0, respectively. Let

ϑm := Um − V m and bm := B(tm, Um) − B(tm, V m),

m = 0, . . . , N. Subtracting the second relation of (2.6) from the first, we obtain

(2.7) ϑn+1 + kLϑn+1 = ϑn + kbn.

Taking here the inner product with ϑn+1, we get

|ϑn+1|2 + k‖ϑn+1‖2 = Re
(
ϑn, ϑn+1

)
+ k Re

(
bn, ϑn+1

)
.

Therefore, according to (1.3),

|ϑn+1|2 + k‖ϑn+1‖2 ≤ 1

2
|ϑn|2 +

1

2
|ϑn+1|2 + k‖bn‖? ‖ϑn+1‖

≤ 1

2
|ϑn|2 +

1

2
|ϑn+1|2 + k

(
λ‖ϑn‖ + µ|ϑn|

)
‖ϑn+1‖

≤ 1

2
|ϑn|2+ 1

2
|ϑn+1|2+ λ

2
k‖ϑn‖2+

λ

2
k‖ϑn+1‖2+

µ

2ε
k|ϑn|2+ 1

2
εµk‖ϑn+1‖2,

for any positive ε, i.e.,

(2.8) |ϑn+1|2 + (2 − λ − εµ)k‖ϑn+1‖2 ≤
(
1 +

µ

ε
k
)
|ϑn|2 + λk‖ϑn‖2.
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We now fix an ε such that 0 < ε < 2(1−λ)
µ

. Then, obviously, 2 −λ− εµ ≥ λ, and (2.8)

yields

|ϑn+1|2 + λk‖ϑn+1‖2 ≤
(
1 +

µ

ε
k
)
|ϑn|2 + λk‖ϑn‖2,

whence

(2.9) |ϑn+1|2 + λk‖ϑn+1‖2 ≤
(
1 +

µ

ε
k
)(

|ϑn|2 + λk‖ϑn‖2
)
.

Introducing in V the norm ||| · |||,

|||v||| :=
(
|v|2 + λk‖v‖2

)1/2
,

we can rewrite (2.9) in the form

|||ϑn+1|||2 ≤
(
1 +

µ

ε
k
)
|||ϑn|||2.

Thus, an obvious induction argument yields

|||ϑn|||2 ≤ e
µ

ε
nk|||ϑ0|||2,

and we conclude the desired local stability estimate

(2.10) max
1≤n≤N

|||ϑn||| ≤ e
µ

2ε
T |||ϑ0|||.

2.4. Error estimates. Let the implicit–explicit Euler approximations U 0, . . . , UN

be given by (2.1). Let en := un − Un, n = 0, . . . , N.

The main result in this section is given in the following proposition:

Proposition 2.1 (Error estimates). Let the time step k be sufficiently small. Then,

we have the local stability estimate

(2.11) |||en|||2 ≤ e
µ

ε
tn
(
|||e0|||2 +

1

ε
k

n−1∑

`=0

‖E`‖2
?

)
,

for every n = 0, . . . , N, and the error estimate

(2.12) max
0≤n≤N

|u(tn) − Un| ≤ Ck.

Proof. In view of the consistency estimate (2.5) and the fact that e0 vanishes, there

exists a constant C? such that the right–hand side of (2.11) can be estimated by C?k
2,

(2.13) e
µ

ε
T
(
|||e0|||2 +

1

ε
k

N−1∑

`=0

‖E`‖2
?

)
≤ C?k

2.

Now, obviously, (2.12) follows immediately from (2.11) and (2.13). Thus, it remains

to prove (2.11).

We will use induction, and shall proceed as in the local stability proof, to establish

(2.11). Clearly, the estimate (2.11) is valid for n = 0. Assume that it holds for n,
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0 ≤ n < N. Then, according to (2.13) and the induction hypothesis, we have, for k

small enough,

‖en‖ ≤ C? k1/2 ≤ 1,

and conclude that Un ∈ Tu.

Let

b̂n := B(tn, un) − B(tn, Un), n = 0, . . . , N.

Subtracting the implicit–explicit Euler scheme in (2.1) from (2.4), we obtain the error

equation

(2.14) en+1 + kLen+1 = en + kb̂n + kEn,

n = 0, . . . , N − 1. Taking in (2.14) the inner product with en+1, we get

|en+1|2 + k‖en+1‖2 = Re
(
en, en+1

)
+ k Re

(
b̂n, en+1

)
+ k Re

(
En, en+1

)
.

Therefore,

(2.15)
1

2
|en+1|2 + k‖en+1‖2 ≤ 1

2
|en|2 + k‖b̂n‖? ‖en+1‖ + k‖En‖? ‖en+1‖;

see the relation preceding (2.8). Now, according to (1.3), since U n ∈ Tu,

k‖b̂n‖? ‖en+1‖ ≤ k
(
λ‖en‖ + µ|en|

)
‖en+1‖

≤ λ

2
k‖en‖2 +

λ

2
k‖en+1‖2 +

µ

2ε
k|en|2 +

1

2
εµk‖en+1‖2,

and

k‖En‖? ‖en+1‖ ≤ 1

2ε
k‖En‖2

? +
1

2
εk‖en+1‖2,

for any positive ε. Thus, (2.15) yields

(2.16) |en+1|2 + (2−λ−εµ−ε)k‖en+1‖2 ≤
(
1+

µ

ε
k
)
|en|2 + λk‖en‖2+

1

ε
k‖En‖2

?.

Now, let ε be sufficiently small, such that 2 − λ − (1 + µ)ε ≥ λ; then, from (2.16) we

obtain

(2.17) |||en+1|||2 ≤
(
1 +

µ

ε
k
)
|||en|||2 +

1

ε
k‖En‖2

?.

Using the induction hypothesis, we obtain from (2.17)

|||en+1|||2 ≤
(
1 +

µ

ε
k
)
e

µ

ε
tn
(
|||e0|||2 +

1

ε
k

n−1∑

`=0

‖E`‖2
?

)
+

1

ε
k‖En‖2

?

≤ e
µ

ε
tn+1
(
|||e0|||2 +

1

ε
k

n∑

`=0

‖E`‖2
?

)
;

thus, (2.11) is valid for n + 1 as well, and the proof is complete. �
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Remark 2.2 (The case λ = 0). It is easily seen that if B satisfies (1.3) with λ = 0,

then the local stability estimates (2.10) and (2.11) take the form

(2.18) max
1≤n≤N

(
|ϑn|2 + k‖ϑn‖2

)
≤ c|ϑ0|2,

and

(2.19) |en|2 + k‖en‖2 ≤ c
(
|e0|2 + k

n−1∑

`=0

‖E`‖2
?

)
,

respectively. This is advantageous in the fully discrete case, if the space discretization

is based on the finite element method, since one can get by with weaker approximation

assumptions for the starting approximation U 0.

3. Implicit–explicit two–step BDF scheme

The two–step BDF scheme is described by the polynomials α and β,

α(ζ) =
3

2
ζ2 − 2ζ +

1

2
, β(ζ) = ζ2.

It is well known that this is a second order scheme, and it is A−stable (indeed,

G−stable) and strongly A(0)−stable. Now, for the given α, the only second order

explicit two–step scheme (α, γ) is the one with

γ(ζ) = 2ζ − 1;

see [2, Remark 3.1]. In this section we will analyze the implicit–explicit two–step BDF

scheme (α, β, γ) for (1.1). Again, the linear part of the equation will be discretized

by the implicit scheme (α, β), while the nonlinear part by the explicit scheme (α, γ).

Thus, with the notation used in Section 2, we define approximations Un to un =

u(tn) as follows: We let U 0 := u0, perform one step of the implicit–explicit Euler

scheme to compute U 1, i.e., we let U 1 be given by

(3.1) U 1 + kLU 1 = U0 + kB
(
t0, U0

)
,

and let the approximations U 2, . . . , UN be given by the implicit–explicit BDF scheme,

(3.2)
3

2
Un+2− 2Un+1+

1

2
Un+ kLUn+2 = 2kB(tn+1, Un+1) −kB(tn, Un),

or equivalently

(3

2
+ kL

)
Un+2 = 2Un+1 − 1

2
Un + 2kB(tn+1, Un+1) − kB(tn, Un).
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3.1. Existence and uniqueness of approximate solutions. We have seen in Sub-

section 2.1 that the resolvent set of the operator L contains all the negative numbers.

This implies that, for every α > 0 and v∈H, the equation

(αI + kL)u = v,

possesses a unique solution u∈D(L), which establishes the existence and uniqueness

of approximate solutions for the implicit–explicit two–step BDF scheme.

3.2. Consistency. Let En denote the consistency error of the implicit–explicit BDF

scheme (3.2),

(3.3) kEn =
3

2
un+2−2un+1+

1

2
un+kLun+2−2kB(tn+1, un+1) +kB(tn, un),

n = 0, . . . , N − 2. Using the differential equation in (1.1), we write this relation in the

form

kEn =
3

2
un+2 − 2un+1 +

1

2
un − ku′(tn+2)

+ kB(tn+2, un+2) − 2kB(tn+1, un+1) + kB(tn, un)

= kEn
1 + kEn

2

with

En
1 :=

1

k

(3

2
un+2 − 2un+1 +

1

2
un − ku′(tn+2)

)
,

En
2 := B(tn+2, un+2) − 2B(tn+1, un+1) + B(tn, un).

The quantities En
1 and En

2 can be easily rewritten in the form

En
1 = −

∫ tn+2

tn+1

(s − tn+2)u′′′(s) ds +
3

4k

∫ tn+2

tn+1

(s − tn+2)2u′′′(s) ds

+
1

4k

∫ tn+1

tn
(s − tn)2u′′′(s) ds,

En
2 =

∫ tn+2

tn+1

(tn+2 − s)
d2

dt2
B
(
s, u(s)

)
ds +

∫ tn+1

tn
(s − tn)

d2

dt2
B
(
s, u(s)

)
ds.

Therefore, under the regularity assumptions

(3.4)
∥∥u′′′(t)

∥∥
?

≤ c1 and
∥∥∥ d2

dt2
B
(
t, u(t)

)∥∥∥
?

≤ c2,

for all t∈ [0, T ], we immediately conclude that

max
0≤n≤N−2

‖En
1 ‖? ≤ 2c1k

2 and max
0≤n≤N−2

‖En
2 ‖? ≤ 2c2k

2.

Thus, we obtain the desired estimate for the consistency error En,

(3.5) max
0≤n≤N−2

‖En‖? ≤ Ck2.
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Remark 3.1 (Regularity requirement). Note that the requirements (3.4) can be re-

placed by slightly weaker C2,1−requirements on u and B(t, v). Similarly also for (2.2).

3.3. Local stability. For the scheme under investigation we have K(α,β,γ) = 3; see

[3, Remark 2.4]. Therefore, in the sequel we assume that (1.3) is satisfied and

λ <
1

3
.

Let U 0, . . . , UN ∈ Tu satisfy (3.1) and (3.2), and V 0, . . . , V N ∈ Tu satisfy

(3.6)
3

2
V n+2− 2V n+1+

1

2
V n+kLV n+2 = 2kB(tn+1, V n+1) −kB(tn, V n),

n = 0, . . . , N − 2. As in Section 2, let

ϑm := Um − V m and bm := B(tm, Um) − B(tm, V m),

m = 0, . . . , N. Subtracting (3.6) from (3.2), we obtain

(3.7)
3

2
ϑn+2 − 2ϑn+1 +

1

2
ϑn + kLϑn+2 = 2kbn+1 − kbn.

Now, it is easily seen that

(3.8)
Re
(3

2
ϑn+2 − 2ϑn+1 +

1

2
ϑn, ϑn+2

)
=

5

4
|ϑn+2|2 − |ϑn+1|2 − 1

4
|ϑn|2

− Re
(
(ϑn+2, ϑn+1) − (ϑn+1, ϑn)

)
+

1

4
|ϑn+2 − 2ϑn+1 + ϑn|2;

cf. [24]. Let us note that relation (3.8) is due to the G−stability of the BDF method

(α, β) with the positive definite matrix G,

G =
1

4

(
5 −2

−2 1

)
;

see [10, Example 6.5].

Taking in (3.7) the inner product with ϑn+2 and using (3.8), we obtain

(3.9)

5

4
|ϑn+2|2 − |ϑn+1|2 − 1

4
|ϑn|2 − Re

(
(ϑn+2, ϑn+1) − (ϑn+1, ϑn)

)

+ k‖ϑn+2‖2 ≤ 2k‖bn+1‖? ‖ϑn+2‖ + k‖bn‖? ‖ϑn+2‖.

Now, in view of (1.3), for any positive ε,

‖bn+1‖? ‖ϑn+2‖ ≤ λ‖ϑn+1‖ ‖ϑn+2‖ + µ|ϑn+1| ‖ϑn+2‖

≤ λ

2
‖ϑn+1‖2 +

λ

2
‖ϑn+2‖2 +

1

2

µ2

ε
|ϑn+1|2 +

1

2
ε‖ϑn+2‖2;

similarly,

‖bn‖? ‖ϑn+2‖ ≤ λ

2
‖ϑn‖2 +

λ

2
‖ϑn+2‖2 +

1

4

µ2

ε
|ϑn|2 + ε‖ϑn+2‖2.
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Therefore, (3.9) yields

(3.10)

5

4

(
|ϑn+2|2 − |ϑn+1|2

)
+

1

4

(
|ϑn+1|2 − |ϑn|2

)

− Re
(
(ϑn+2, ϑn+1) − (ϑn+1, ϑn)

)
+
(
1 − 3

2
λ − 2ε

)
k‖ϑn+2‖2

≤ λk‖ϑn+1‖2 +
λ

2
k‖ϑn‖2 + Cεk

(
|ϑn+1|2 + |ϑn|2

)
,

with Cε := 1
2

µ2

ε
.

Now, let ε be sufficiently small such that 1 − 2ε − 3

2
λ ≥ 3

2
λ. Then, from (3.10) we

get

(3.11)

5

4

(
|ϑn+2|2 − |ϑn+1|2

)
+

1

4

(
|ϑn+1|2 − |ϑn|2

)
− Re

(
(ϑn+2, ϑn+1) − (ϑn+1, ϑn)

)

+ k
λ

2

(
3
(
‖ϑn+2‖2 − ‖ϑn+1‖2

)
+
(
‖ϑn+1‖2 − ‖ϑn‖2

))

≤ Cεk
(
|ϑn+1|2 + |ϑn|2

)
.

Summing in (3.11) from n = 0 to n = `, we obtain

5

4

(
|ϑ`+2|2 − |ϑ1|2

)
+

1

4

(
|ϑ`+1|2 − |ϑ0|2

)
− Re

(
ϑ`+2, ϑ`+1

)
+ k

3λ

2
‖ϑ`+2‖2

≤ 2Cεk
`+1∑

n=0

|ϑn|2 + k
λ

2

(
3‖ϑ1‖2 + ‖ϑ0‖2

)
− Re

(
ϑ1, ϑ0

)
,

whence, easily,

1

4
|ϑ`+2|2 + k

3λ

2
‖ϑ`+2‖2 ≤ 3 + 2

√
2

4

(
|ϑ1|2 + |ϑ0|2

)

+ 2Cεk
`+1∑

n=0

|ϑn|2 + k
λ

2

(
3‖ϑ1‖2 + ‖ϑ0‖2

)
.

Therefore, we have

|||ϑ`+1|||2 ≤ Ck
∑̀

n=0

|ϑn|2 + c
(
|||ϑ0|||2 + |||ϑ1|||2

)
,

` = 1, . . . , N −1. Now, a straightforward application of the discrete Gronwall inequal-

ity leads to the desired local stability estimate

(3.12) |||ϑn|||2 ≤ C
(
|||ϑ1|||2 + |||ϑ0|||2

)
,

for every n = 1, . . . , N.

Now, let V 1 and V 0 be related by

(3.13) V 1 + kLV 1 = V 0 + kB(t0, V 0),
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i.e., starting with initial value V 0 we obtain V 1 by performing one step with the

implicit–explicit Euler scheme to the differential equation in (1.1); see (3.1) and (2.3).

Subtracting (3.13) from (3.1), we obtain

ϑ1 + kLϑ1 = ϑ0 + kb0;

see (2.7). Thus, we conclude

(3.14) |||ϑ1|||2 ≤
(
1 +

µ

ε
k
)
|||ϑ0|||2;

cf. (2.9). Now, (3.12) and (3.14) yield

(3.15) |||ϑn||| ≤ C|||ϑ0|||,
for every n = 1, . . . , N.

3.4. Error estimates. Let the implicit–explicit BDF2 approximations U 0, . . . , UN

be given by (3.1) and (3.2). Let

en := un − Un, b̂n := B(tn, un) − B(tn, Un),

for n = 0, . . . , N.

The main result in this section is given in the following proposition:

Proposition 3.1 (Error estimates). Let the time step k be sufficiently small. Then,

we have the local stability estimate

(3.16) |||en|||2 ≤ C
(
|||e0|||2 + |||e1|||2 + k

n−2∑

`=0

‖E`‖2
?

)
,

for every n = 0, . . . , N, and the error estimate

(3.17) max
0≤n≤N

|u(tn) − Un| ≤ Ck2.

Proof. First, we will estimate |||e1|||. Denoting by Ẽ1 the consistency error of the

first step of the backward Euler method,

kẼ1 = u1 + kLu1 − u0 − B(t0, u0),

we have, in view of (3.1),

e1 + kAe1 + kDe1 = kẼ1,

and thus

|e1|2 + k‖e1‖2 = k(Ẽ1, e1) ≤ 1

2
k2|Ẽ1|2 +

1

2
|e1|2,

whence

(3.18) |||e1|||2 ≤ k2|Ẽ1|2.
Under suitable regularity assumptions, we obtain, as in the derivation of (2.5), that

|Ẽ1| ≤ Ck,
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which combined with (3.18) provides that

(3.19) |||e1|||2 ≤ Ck4.

Now, in view of the consistency estimate (3.5), the estimate (3.19), and the fact that

e0 vanishes, there exists a constant C? such that the right–hand side of (3.16) can be

estimated by C?k
4,

(3.20) C
(
|||e0|||2 + |||e1|||2 + k

N−2∑

`=0

‖E`‖2
?

)
≤ C?k

4.

Inequality (3.17) follows immediately from (3.16) and (3.20). Thus, it remains to

prove (3.16).

We will use induction, and shall proceed as in the local stability proof, to establish

(3.16). Clearly, the estimate (3.16) is valid for n = 0 and n = 1. Assume that it

holds for n = 0, . . . , ` + 1, 0 ≤ ` ≤ N − 2. Then, according to (3.19), (3.20) and the

induction hypothesis, we have, for k small enough,

‖en‖ ≤ C?k
3/2 ≤ 1, n = 0, . . . , ` + 1,

and conclude that Un ∈ Tu, n = 0, . . . , ` + 1. Let now n = 0, . . . , ` + 1. Subtracting

the implicit–explicit BDF2 scheme in (3.2) from (3.3), we obtain the error equation

(3.21)
3

2
en+2 − 2en+1 +

1

2
en + kLen+2 = 2kb̂n+1 − kb̂n + kEn,

n = 0, . . . , ` + 1. Taking in (3.21) the inner product with en+2, we get

(3.22)

5

4
|en+2|2 − |en+1|2 − 1

4
|en|2 − Re

(
(en+2, en+1) − (en+1, en)

)

+ k‖en+2‖2 ≤ 2k‖b̂n+1‖? ‖en+2‖ + k‖b̂n‖? ‖en+2‖ + k‖En‖? ‖en+2‖;

cf. (3.8) and (3.9). Now, in view of (1.3), for any positive ε,

‖b̂n+1‖? ‖en+2‖ ≤ 1

2

(
λ‖en+1‖2 + λ‖en+2‖2 +

µ2

ε
|en+1|2 + ε‖en+2‖2

)
,

‖b̂n‖? ‖en+2‖ ≤ 1

2

(
λ‖en‖2 + λ‖en+2‖2 +

1

2

µ2

ε
|en|2 + 2ε‖en+2‖2

)
,

and

‖En‖? ‖en+2‖ ≤ 1

4ε
‖En‖2

? + ε‖en+2‖2;

cf. the estimates preceding (3.10). Therefore, (3.22) yields

(3.23)

5

4

(
|en+2|2 − |en+1|2

)
+

1

4

(
|en+1|2 − |en|2

)

− Re
(
(en+2, en+1) − (en+1, en)

)
+
(
1 − 3

2
λ − 3ε

)
k‖en+2‖2

≤ λk‖en+1‖2 +
λ

2
k‖en‖2 + Cεk

(
|en+1|2 + |en|2

)
+ C̃εk‖En‖2

?,
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with Cε := 1
2

µ2

ε
and C̃ε := 1

2ε
.

Now, let ε be sufficiently small such that 1 − 3ε − 3

2
λ ≥ 3

2
λ. Then, from (3.23) we

get

(3.24)

5

4

(
|en+2|2 − |en+1|2

)
+

1

4

(
|en+1|2 − |en|2

)
− Re

(
(en+2, en+1) − (en+1, en)

)

+ k
λ

2

(
3
(
‖en+2‖2 − ‖en+1‖2

)
+
(
‖en+1‖2 − ‖en‖2

))

≤ Cεk
(
|en+1|2 + |en|2

)
+ C̃εk‖En‖2

?.

Summing in (3.24) from n = 0 to n = m, m ≤ `, we obtain

5

4

(
|em+2|2 − |e1|2

)
+

1

4

(
|em+1|2 − |e0|2

)
− Re

(
em+2, em+1

)
+ k

3λ

2
‖em+2‖2

≤ 2Cεk
m+1∑

n=0

|en|2 + k
λ

2

(
3‖e1‖2 + ‖e0‖2

)
− Re

(
e1, e0

)
+ 2C̃εk

m∑

n=0

‖En‖2
?,

which provides that

1

4
|em+2|2 + k

3λ

2
‖em+2‖2 ≤ 3 + 2

√
2

4

(
|e1|2 + |e0|2

)

+2Cεk
m+1∑

n=0

|en|2 + k
λ

2

(
3‖e1‖2 + ‖e0‖2

)
+ 2C̃εk

m∑

n=0

‖En‖2
?.

With obvious notation, we conclude that

(3.25) |||em+2|||2 ≤ c
(
|||e0|||2 + |||e1|||2 + k

m+1∑

n=0

|||en|||2 + k
∑̀

n=0

‖En‖2
?

)
,

for every m = 0, . . . , `. The desired estimate (3.16) for n = ` + 2 follows now from

(3.25) by a straightforward application of the discrete Gronwall inequality: With

αm := k
m+1∑

n=0

|||en|||2,

we have αm+1 − αm = k|||em+2|||2, whence (3.25) yields

(3.26) αm+1 ≤ (1 + ck)αm + ck
(
|||e0|||2 + |||e1|||2 + k

∑̀

n=0

‖En‖2
?

)
,

for every m = 0, . . . , `, and, finally,

(3.27) |||e`+2|||2 ≤ c
(
|||e0|||2 + |||e0|||2 + α`+1 + k

∑̀

n=0

‖En‖2
?

)
.

Using (3.26) we can estimate α`+1; this estimate combined with (3.27) leads to the

desired estimate (3.16) for n = ` + 2 and the proof is complete. �



LINEARLY IMPLICIT SCHEMES FOR DISPERSIVE–DISSIPATIVE EQUATIONS 17

Remark 3.2 (The case λ = 0). It is easily seen that if B satisfies (1.3) with λ = 0,

then the local stability estimates (3.15) and (3.16) take the form

max
1≤n≤N

(
|ϑn|2 + k‖ϑn‖2

)
≤ c|ϑ0|2,

and

|en|2 + k‖en‖2 ≤ c
(
|e0|2 + |e1|2 + k

n−2∑

`=0

‖E`‖2
?

)
,

respectively. This is advantageous in the fully discrete case, if the space discretization

is based on the finite element method, since one can get by with weaker approximation

assumptions for the starting approximations U 0 and U1; cf. Remark 2.2. �

4. Examples

In this section we present four examples of equations satisfying our assumptions.

The first example is a simple system of ODEs; we include it to justify the stabi-

lity requirements on the implicit schemes. The other three examples, namely the

dispersively modified Kuramoto–Sivashinsky equation, the Topper–Kawahara equa-

tion and a systems of Kuramoto–Sivashinsky type equations, are physically relevant

dispersive-dissipative equations and systems.

To avoid repetitions, let us introduce the following notation: For 2π−periodic func-

tions v of one or two variables, we denote by v̂` and v̂j` their Fourier coefficients,

v(x) =
∑

`∈Z

v̂` ei`x, v(x, y) =
∑

j,`∈Z

v̂j` ei(jx+`y).

4.1. A simple finite–dimensional example. Let

A =

(
a 0

0 a

)
and D =

(
0 b

−b 0

)
,

with a, b ∈ R and a > 0. Then, the system of ODEs

(4.1) u′ + Lu = 0,

with L = A + D, satisfies our hypotheses, since the matrix A is symmetric and

positive definite, and the matrix D is anti–symmetric.

The eigenvalues of the matrix L are λ1 = a + ib and λ2 = a − ib. As a and b vary,

the eigenvalues cover the right complex half–plane. Consequently, the (α, β)−scheme

is unconditionally stable for equations of the form (4.1), if and only if it is A−stable;

our assumption on the A−stability of the (α, β)−scheme is motivated by this fact.

More generally, A in (4.1) could be any positive definite symmetric d × d matrix

and D any anti–symmetric matrix.
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4.2. The dispersively modified Kuramoto–Sivashinsky equation. A typical

infinite dimensional example of a problem of the form (1.1) is the initial value problem

for the dispersively modified Kuramoto–Sivashinsky equation

(4.2) ut + uux + uxx + νuxxxx + Du = 0,

where u = u(x, t) is 2π−periodic in x and ν a positive constant. In (4.2), D is a

linear dispersive pseudo–differential operator defined by

(D̂v)` = if(`) v̂`,

with f a given real–valued function.

We rewrite (4.2) in the form

(4.3) ut +
1

ν
u + uxx + νuxxxx + Du =

1

ν
u − uux,

and will show that (4.3) fits into our abstract framework. First, we let the operators

L and B be given by

Lv =
(1

ν
v + vxx + νvxxxx

)
+ Dv, B(v) =

1

ν
v − vvx,

and write (4.3) in the form

ut + Lu = B(u).

Let L2(T 1) be the space of 2π−periodic square integrable functions, and denote by

(·, ·) its inner product defined by

(4.4) (u, v) =
1

2π

∫ 2π

0

u(x) v(x) dx =
∑

`∈Z

û` v̂`.

Clearly,

L?v =
(1

ν
v + vxx + νvxxxx

)
− Dv.

In fact, (L̂v)` = m(`)v̂`, `∈Z, where

m(`) =
1

ν
+ `2 + ν`4 + if(`),

and (L̂?v)` = m(`)v̂`, with m the complex conjugate of m. In particular,

D(L) =
{
v ∈ L2(0, 2π) : {m(`)v̂`}`∈Z ∈ `2(Z)

}

=
{
v ∈ L2(0, 2π) : {m(`)v̂`}`∈Z ∈ `2(Z)

}
= D(L?).

Note that L is a normal operator since

D(L?L) =
{
v ∈ L2(0, 2π) : {m(`)m(`)v̂`}`∈Z ∈ `2(Z)

}
= D(LL?),

and

(L̂?Lv)` = |m(`)|2v̂` = (L̂L?v)`,
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for every v∈D(L?L). Therefore, we let the operator A be given by

(4.5) Av :=
1

ν
v + vxx + νvxxxx.

For s∈R, let Hs(T 1) denote the periodic Sobolev space of order s with norm ‖·‖Hs

defined by

‖v‖Hs :=
(∑

`∈Z

(1 + `2)s|v̂`|2
)1/2

.

Clearly, H0(T 1) = L2(T 1), and the norm induced by the inner product in (4.4),

which we shall be denoting by | · |, coincides with ‖ · ‖H0 . It is readily seen that

V := D(A1/2) = H2(T 1). Let ‖ · ‖ be the norm defined by

‖v‖ =
(
ν|vxx|2 − |vx|2 +

1

ν
|v|2
)1/2

.

This norm is in fact equivalent to ‖ · ‖H2 . Also,

(Av, v) ≥ 1

2

(
ν|vxx|2 +

1

ν
|v|2
)

for all v ∈ V ;

thus, in particular, A is positive definite; see [5].

Furthermore, obviously B : V → H. Also, with Tu the tube around the solution u

defined in terms of the norm of H, i.e.,

(4.6) Tu :=
{
v ∈ V : min

t
|v − u(t)| ≤ 1

}
,

and ‖ · ‖? the dual norm on V ′, we have

(4.7) ‖B(v) − B(w)‖? ≤ µ|v − w| for all v, w ∈ Tu,

with

µ =
1√
ν

(
2
√

π
(
1 + max

0≤t≤T
|u(t)|

)
+

√
2
)
;

see [5]. Hence, B satisfies the local Lipschitz condition (1.3) with λ = 0.

Remark 4.1. [The Kawahara equation] Of particular interest is the periodic initial

value problem for the Kawahara equation (1.6), where the dispersive term is dom-

inated by the dissipative term. This equation may be discretized by higher order

implicit–explicit multistep schemes, as we will see here. First, we write the equation

in the form

ut +
1

ν
u + uxx + νuxxxx =

1

ν
u − δuxxx − uux.

Thus, with the self–adjoint and positive definite operator A given in (4.5), D = 0,

and the nonlinear operator B,

Bv :=
1

ν
v − δvxxx − vvx,

the Kawahara equation takes the form

(4.8) ut + Au = B(u).
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By periodicity, for v, ṽ, w ∈ H2(T 1),

(
B(v) − B(ṽ), w

)
=

1

ν
(v − ṽ, w) − δ(vx − ṽx, wxx) +

1

2
(v2 − ṽ2, wx),

whence,
(
B(v) − B(ṽ), w

)
≤ 1

ν
|v − ṽ| |w| + |δ| |vx − ṽx| |wxx|

+
1

2
|v + ṽ| |v − ṽ| ‖wx‖L∞.

Now, for v∈H2(T 1),

|vx|2 =
1

2π

∫ 2π

0

vx(x) vx(x) dx = − 1

2π

∫ 2π

0

v(x) vxx(x) dx = −(v, vxx)

≤ |v| |vxx|,

whence, for any positive ε̃,

|vx| ≤ 1

4ε̃
|v| + ε̃|vxx|;

proceeding now as in the derivation of (2.15) in [5], cf. also (4.7), we easily see that

‖B(v) − B(ṽ)‖? ≤ ε‖v − ṽ‖ + Cε|v − ṽ| for all v, ṽ ∈ Tu,

with the tube Tu as in (4.6), for any positive ε and a constant Cε depending on δ, ε

and the value of max0≤t≤T |u(t)|.
Thus, all linearly implicit schemes of [1], and, in particular, the implicit–explicit

p−step BDF schemes, with p = 1, . . . , 6, see [5], are locally stable for (4.8) and

consequently suitable for the discretization of the Kawahara equation.

4.3. Topper–Kawahara equation. In the case of falling film flows, in two space

dimensions, Topper & Kawahara [23] derived a rather general evolution equation for

the liquid interface which takes the form

(4.9) ut + uux + αuxx + β∆u + γ∆2u + δ∆ux = 0,

where γ > 0, ∆ =
∂2

∂x2
+

∂2

∂y2
the Laplacian, x is in the direction of the flow, while y

is the transverse coordinate.

We consider an initial value problem for the Topper–Kawahara equation (4.9) with

periodic boundary conditions; u(x, y, t) is 2π−periodic in both variables x and y, i.e.,

u(x + 2π, y, t) = u(x, y, t) and u(x, y + 2π, t) = u(x, y, t), for all x, y ∈ R.

The 2π−periodic functions in x and y variables can be thought of as functions with

domain the two–dimensional torus T 2. For s∈R, we denote by Hs(T 2) the periodic
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Sobolev space of order s in two dimensions with norm3

(4.10) ‖v‖Hs :=
(∑

j,`∈Z

(1 + j2 + `2)s |v̂j`|2
)1/2

.

Clearly, Hs(T 2) is a Hilbert space, for every s∈R. Let H := H0(T 2) = L2(T 2). Then

the norm of H, which we shall be denoting by | · |, is induced by the inner product

(u, v) =
1

4π2

∫ 2π

0

∫ 2π

0

u(x, y) v(x, y) dx dy =
∑

j,`∈Z

ûj` v̂j`.

As in Remark 4.1, we shall see here that the Topper–Kawahara equation may be

discretized by higher order implicit–explicit multistep schemes. We first write (4.9)

in the form

(4.11) ut + cu + αuxx + β∆u + γ∆2u = −δ∆ux − uux + cu,

where c is a positive constant, which will be determined later. With the self-adjoint

operator A,

Av := γ∆2v + β∆v + αvxx + cv,

D = 0, and the nonlinear operator B,

B(v) := −δ∆vx − vvx + cv,

equation (4.11) can be written in the form

(4.12) ut + Au = B(u).

Next, let us first show that the operator A is positive definite, when c is sufficiently

large. For v∈V = H2(T 2), we have

(Av, v) = γ(∆v,∆v) − β(∇v,∇v) − α(vx, vx) + c(v, v),

i.e.,

(4.13) (Av, v) = γ|∆v|2 − β|∇v|2 − α|vx|2 + c|v|2.

Obviously,

|v|2 =
∑

j,`∈Z

|v̂j`|2, |∇v|2 =
∑

j,`∈Z

(j2 + `2) |v̂j`|2 and |∆v|2 =
∑

j,`∈Z

(j2 + `2)2 |v̂j`|2,

and using the fact that

j2 + `2 ≤ 1

4ε
+ ε(j2 + `2)2,

3Note that, if s is a non–negative integer, then ‖ · ‖Hs is equivalent to the norm defined by

‖u‖s =
( ∑

|α|≤s

∫
2π

0

∫
2π

0

|Dαu(x, y)|2 dx dy
)1/2

.
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we derive the inequality

(4.14) |∇v|2 ≤ 1

4ε
|v|2 + ε|∆v|2,

which holds for every ε > 0. Hence, from (4.13) we obtain

(Av, v) ≥
(
γ − (|β| + |α|)ε

)
|∆v|2 +

(
c − 1

4ε

)
|v|2.

Choosing here, for instance,

ε :=
γ

2(|β| + |α|) and c :=
γ

2
+

1

4ε
,

we easily see that

(Av, v) ≥ γ

2

(
|v|2 + |∆v|2

)
,

and conclude the coercivity of A,

(Av, v) ≥ γ̃‖v‖2
H2 for all v ∈ V,

for a suitable positive constant γ̃.

Finally, concerning (1.3), we let the tube Tu around the solution u be defined in

terms of the L∞−norm, i.e.,

(4.15) Tu :=
{

v ∈ V : min
t

‖v − u(t)‖L∞ ≤ 1
}
,

and denote by ‖ · ‖? the dual norm on V ′. For convenience, we split B into two parts,

B = B1 + B2, with B1(v) := −vvx + cv and B2(v) := −δ∆vx. Now, for v, ṽ, w ∈ V, we

have
(
B1(v) − B1(ṽ), w

)
=

1

2
(v2 − ṽ2, wx) + c (v − ṽ, w)

≤ 1

2
‖v + ṽ‖L∞ |v − ṽ| |wx| + c |v − ṽ| |w|

≤
(1

4
‖v + ṽ‖2

L∞ + c2
)1/2

|v − ṽ| ‖w‖H1 ,

whence, easily

(4.16) ‖B1(v) − B1(ṽ)‖? ≤ µ1|v − ṽ| for al v, w ∈ Tu,

with

µ1 =
√

γ̃
(1

4

(
2 + max

0≤t≤T
‖u(t)‖2

L∞

)2
+ c2

)1/2

.

Furthermore, by elementary calculations we obtain from (4.14)

(4.17) |vx| ≤ 1

4ε
|v| + ε‖v‖H2 ,

for any positive ε, which in turn yields that

(4.18) ‖B2(v) − B2(ṽ)‖? ≤ |δ|
(
ε|v − ṽ|H2 +

1

4ε
|v − ṽ|

)
for al v, w ∈ V.
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We infer from (4.16) and (4.18) that B satisfies the local Lipschitz condition (1.3) for

any positive λ. Hence, all implicit–explicit multistep methods considered in [3], and,

indeed, the wider class of methods considered in [1] are suitable for the discretization

of the periodic initial value problem for the Topper–Kawahara equation.

Remark 4.2. It follows immediately from (4.16) that it is possible for the Topper–

Kawahara equation as well to have a local Lipschitz condition (1.3) with λ = 0. This

can be done by considering B2 as a dispersive operator, D := B2, and, consequently,

letting B := B1. As already mentioned, this allows one to get by by less stringent

conditions on the starting approximations; see Remarks 2.2 and 3.1 as well as [1].

The price we have to pay if we choose this splitting, however, is that we have to

confine ourselves to implicit–explicit multistep schemes of first– or second–order.

4.4. Systems of Kuramoto–Sivashinsky type equations. When surfactants are

present in axisymmetric core annular flows, the spatiotemporal evolution of the inter-

face and the local surfactant concentration on it are given by the system

(4.19)

{
ut + νuxxxx + uxx + uux + Γxx + Du = 0,

Γt − ηΓxx + (uΓ )x = 0,

where u = u(x, t) denotes the scaled interfacial amplitude as before, Γ = Γ (x, t) is

the surfactant concentration at any point on the interface, D is the pseudo–differential

operator defined by

(D̂v)` = if(`) v̂`,

with f given by (1.5), and ν and η are positive diffusion constants. This equation was

derived by Kas–Danouche, Papageorgiou & Siegel [11].

For reasons that will become apparent in the sequel, we write (4.19) as

(4.20)





ut + νuxxxx + uxx +
1

ν
u + Du = −uux +

1

ν
u − Γxx,

Γt − η
(
Γxx − Γ

)
= −(uΓ )x + ηΓ,

where (x, t) ∈ R × [0,∞). We write (4.20) in the form

(4.21) ut + Lu = B(u),

where t ∈ [0,∞). As in Subsection 4.2, let Hs(T 1) be the periodic Sobolev space of

order s in one variable and ‖ · ‖Hs its norm. Let also (·, ·) be the inner product of

L2(T 1) = H0(T 1), as defined by (4.4), and | · | its induced norm.

Clearly, (Dv, v) = 0, for all v ∈ D(D) ⊂ L2(T 1). We also introduce the linear

operators A1 : H4(T 1) → L2(T 1) and A2 : H2(T 1) → L2(T 1) by

A1v := νvxxxx + vxx +
1

ν
v, A2v := −η(vxx − v).
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Obviously, both A1 and A2 are self–adjoint. Furthermore, it is easily seen that

(A1v, v) ≥ 1

2

(
ν|vxx|2 +

1

ν
|v|2
)
, for all v ∈ H2(T 1)

and

(A2v, v) = η
(
|vx|2 + |v|2

)
, for all v ∈ H1(T 1).

Hence, A1 and A2 are positive definite. Here and in the sequel we also denote by

(·, ·) the duality pairing between H−1(T 1) and H1(T 1), as well as between H−2(T 1)

and H2(T 1).

Let H := L2(T 1) × L2(T 1) and denote by 〈·, ·〉 the product inner product,

〈u,v〉 := (u1, v1) + (u2, v2),

with u1, u2, v1, v2 ∈ L2(T 1) the components of u and v, respectively. To formulate

our problem in the form (4.21) in the framework of the Hilbert space
(
H, 〈·, ·〉

)
, we

introduce the operator A : D(A) = H4(T 1) × H2(T 1) → H,

Au :=

(
A1 0

0 A2

)(
u1

u2

)
=

(
A1u1

A2u2

)
.

It is readily seen that A is self–adjoint and positive definite. Let

V := H2(T 1) × H1(T 1) = D(A1/2),

and V
′ be the dual of V , V

′ = H−2(T 1) × H−1(T 1). We denote the norms in V and

V
′ by ‖ · ‖ and ‖ · ‖?, respectively,

‖u‖ =
(
|A1/2

1 u1|2 + |A1/2
2 u2|2

)1/2
, ‖u‖? =

(
|A−1/2

1 u1|2 + |A−1/2
2 u2|2

)1/2
,

where u = (u1, u2). Furthermore, let B : D(A) → H,

B(u) = −




u1(u1)x − 1

ν
u1 + (u2)xx

(u1u2)x − ηu2


 .

Obviously, B can be extended to a map from V to V
′. With this notation, and

u1 = u, u2 = Γ, the system (4.20) can be written in the form (4.21) with

L(u) = A(u) +

(
Du1

0

)
.

Let Tu be a tube around the solution u, defined in terms of the L∞−norm,

(4.22) Tu :=
{
v ∈ V : inf

t≥0
‖vi − ui(t)‖L∞ ≤ 1, i = 1, 2

}
.

It is then easily seen that

‖B(v) − B(ṽ)‖? ≤ C|v − ṽ| for all v, ṽ ∈ Tu;
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cf. [4]. Here | · | is the norm defined by

|u| :=
(
|u1|2 + |u2|2

)1/2
,

where u = (u1, u2) ∈ L2(T 1) × L2(T 1), and the constant C depends on ν, η and the

upper bound of the L∞−norm of the components of the exact solution u; hence, B
satisfies the local Lipschitz condition (1.3) with λ = 0.

Remark 4.3 (The tubes Tu). We emphasize that in all applications in Subsections

4.2–4.4 the tubes Tu are defined in terms of norms weaker than the corresponding

norm of V ; see (4.6), (4.15) and (4.22).
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