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Abstract. We consider the periodic initial value problem for the Kuramoto–Sivashinsky

(KS) equation. We approximate the solution by discretizing in time by implicit–explicit

BDF schemes and in space by a pseudo–spectral method. We present the results of

various numerical experiments.

1. Introduction

Linearly implicit methods for a class of nonlinear parabolic equations were recently

constructed and analyzed in [3], [4] and [2] under various conditions on the nonlinearity

and the schemes. These schemes are efficient and unconditionally stable. These schemes

were not implemented in [2], [3] and [4].

In this paper we focus on a concrete example, namely the periodic initial value problem

for the Kuramoto–Sivashinsky (KS) equation, and its discretization in time by combi-

nations of backward differentiation formulae (BDF) and appropriate explicit schemes.

In space we discretize by a pseudo–spectral method. In this study we implement these

schemes and present the results of various numerical experiments. Our experiments estab-

lish the p−th order of accuracy of the p−step BDF scheme and reproduce efficiently the

universal attractors of the equation. Certain quantitative characteristics of the universal

attractors are calculated with the same order of accuracy.

We consider the periodic initial value problem for the KS equation: We seek a real-

valued function u = u(x, t), defined on R× R
+
0 , satisfying

ut + uux + uxx + νuxxxx = 0 for (x, t) ∈ R× R
+
0(1.1)

u(·, 0) = u0(1.2)

with u0 : R → R a sufficiently smooth, 2π−periodic function and ν a positive parameter

playing the role of viscosity. The solution of (1.1)–(1.2) will also be 2π−periodic in space,

i.e. u(x+ 2π, t) = u(x, t) for all x ∈ R and t ≥ 0.

KS is a simple partial differential equation (PDE) exhibiting a particularly complex

dynamical behaviour as the viscosity parameter ν varies. It arises as an amplitude equation
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in long-wave, weakly nonlinear stability analysis, in a great variety of applications. For

example it arises in concentration waves in chemically reacting systems [17], in flame

propagation and reaction combustion [24], in free surface film-flows of viscous liquids, and

in the dynamics of interfaces in two-phase flows in cylindrical geometries [22]. It is one

of the simplest PDEs with a convective nonlinearity and a band of unstable modes, in

its linearized version (around zero), and thus it has served as an appropriate example on

which the general notions of inertial manifold theory are applied. This means that the

long time dynamic behaviour of KS is captured well by a finite dimensional dynamical

system, the number of degrees of freedom of which is at least as large as the number of

linearly unstable Fourier frequencies [8]. For 2π−periodic solutions the number of linearly

unstable frequencies is [ν−1/2] while the best estimate for the dimension of the inertial

manifold is O(ν−21/40) in the case of solutions of odd parity, i.e., u(−x, t) = −u(x, t) , [8].

This bound is useful in determining estimates of the Hausdorff dimension of the universal

attractor.

The boundedness of the solutions of the KS equation, for general initial data, has been

proved independently by Il’yashenko [13], Goodman [9] and Collet et al [6]. The best

estimate for the Hausdorff dimension of the attractor so far appears in [6]. In this work it

is proved that

lim sup
t→+∞

‖u(·, t)‖ ≤ c · ν−13/10,

with ‖ · ‖ denoting the L2−norm of 2π−periodic functions and c a positive constant,

independent of u0 and ν. Similar boundedness results can be derived for any Sobolev

norm of the solution. The analyticity of the solution has also been proved by Collet et al

[7]. In the case of the rescaled L−periodic KS equation

(1.3) Ut + UUx + Uxx + Uxxxx = 0 ,

it is proved that, for sufficiently large t, the function U(·, t) is analytic in a strip of width

β ≥ cL−16/25 around the real axis, which in turn implies that the high frequency part of

the spectrum has the form

|Û(j, t)| = O
(

e−cL−16/25q|j|
)

,

where Û(j, t) is the j−th Fourier coefficient of U(·, t) and q = 2π/L . A series of numerical

experiments in [7] indicate the presence of a much stronger bound, namely, that there exists

a β > 0, independent of L, such that the solutions of (1.3) satisfy

(1.4) lim sup
t→+∞

∑

j∈Z
e2βq|j| |Û(j, t)|2 < ∞

and numerical computations indicate that β ≈ 3.5. Straightforward calculations show that

if U(x, t) is a solution of (1.3), then

u(x, t) =
L

2π
U

(

L

2π
x,

L2

4π2
t

)
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is a 2π−periodic solution of the KS equation for ν =
(

2π
L

)2
. Similarly, if û(j, t) is the

j−th Fourier coefficient of u then û(j, t) = Û(j, L2

4π2 t) . Therefore (1.4) implies that

(1.5) lim sup
t→+∞

|û(j, t)| ≤ Me−β
√
ν|j| ,

for some positive constant M. This bound has been extremely useful in the present work in

the numerical experiments. The truncation of the high Fourier coefficients becomes plau-

sible and the number of the frequencies kept could be determined by (1.5). Nevertheless,

in our work, we have carried out extensive numerical experiments in order to determine

how many modes contribute numerically to the solution, as shown in Figure 1.

The KS equation has been studied numerically by many authors, see [11], [12], [14],

[16], [23], [25], [26]. While the space discretization has been consistently carried out

via spectral methods, many different methods have been used for the time discretization

including Runge–Kutta methods of different orders (for example the subroutine radau5

which is based on the Runge–Kutta–Radau IIA method of order 5 with step size control1

[10]) and a split scheme of variable time step, according to the Strang–split method,

integrating the linear and nonlinear parts separately, exploiting the fact that the linear

part can be integrated exactly in the Fourier space [25], [26]. The numerical studies have

revealed extremely interesting low-dimensional dynamic behaviour, including stationary

and travelling waves, complicated time-periodic attractors, a variety of quasi-periodic

attractors, homoclinic bursts and various chaotic attractors. Several transitions to chaos

have been reported, including the one via period doubling cascades [25], [26].

Explicit multistep or Runge–Kutta schemes are unstable for (1.1) and may be only

conditionally stable in the fully discrete case, i.e., when we discretize in space as well,

under very restrictive conditions on the size of kh−4, with k denoting the time step and

h the space discretization parameter. Implicit schemes on the other hand may be uncon-

ditionally stable but their implementation requires solving nonlinear problems at every

time step; these problems reduce to nonlinear systems in the fully discrete case. In this

paper we discretize in time by a combination of implicit and explicit schemes leading to

unconditionally stable, linearly implicit schemes.

With Av = νvxxxx+ vxx+
1
ν v and B(v) = −vvx+

1
ν v , the KS equation may be written

in the form

(1.6) ut +Au = B(u) .

We discretize the linear part vt +Av = 0 of (1.6) by p−step BDF schemes, p ≤ 6, and the

nonlinear part vt = B(v) by appropriate explicit schemes; this leads to unconditionally

stable schemes of order p.

The paper is organized as follows. In Section 2 we describe the numerical schemes

used. Time discretization is obtained via stable p−step implicit–explicit BDF methods,

1This subroutine, together with its implementations, which include the KS equation, can be found in

the web page of E. Hairer: http://www.unige.ch/math/folks/hairer/testset/testset.html
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p = 1, . . . , 6, whereas in space we use pseudo–spectral methods. In Section 3 we present

numerical experiments which establish the p−th order of accuracy of the p−step BDF

method via a suitably modified inhomogeneous problem where the solution is known. We

have carried out specific experiments in order to assess the number of modes to be used,

for different values of ν. We have also reproduced results of previously reported numerical

experiments, through extensive computations. We do obtain the same universal attractors,

at a significantly smaller cost. Finally in Section 4, we give some concluding remarks and

suggest certain other possibilities.
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Figure 1. The spectrum of the solution of KS for different values of the

parameter ν. The log-plot shows that the Fourier modes decay exponen-

tially fast; slower as ν decreases.

2. The numerical schemes

In this section we present the numerical schemes, first the time stepping schemes and

subsequently the fully discrete schemes.
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2.1. Discretization in time. For p ∈ {1, 2, 3, 4, 5, 6}, the polynomials α, β and γ are

given by

α(ζ) :=

p
∑

j=1

1

j
ζp−j(ζ − 1)j , β(ζ) := ζp and γ(ζ) := ζp − (ζ − 1)p.

Let αj and γj denote the coefficients of ζj of the polynomials α and γ, respectively. The

(α, β)−scheme described by the polynomials α and β is the p−step BDF scheme; these

schemes are strongly A(0)−stable and will be used for the discretization of the linear part

of (1.5). The explicit scheme (α, γ) will be used for the discretization of the nonlinear

part of (1.5). Let us note that this particular choice of the polynomial γ is motivated

by the fact that, for the given (α, β)−scheme, it is the only choice leading to a p−step

implicit–explicit (α, β, γ) scheme of order p, see [3].

Let T > 0, k denote the time step, N ∈ N be such that Nk = T, and tn := nk, n =

0, . . . , N. We use the (α, β, γ) scheme to define approximations Un to u(tn) by

(2.1)

p
∑

i=0

αiU
n+i + kAUn+p = k

p−1
∑

i=0

γiB(Un+i), n = 0, . . . , N − p,

for given initial approximations U0, . . . , Up−1. Since αp > 0 and the operator A is positive

definite, the approximations Up, . . . , UN are well defined by (2.1).

For p = 1, . . . , 6, the scheme (2.1) takes the following form, respectively,

(2.2) Un+1 + kAUn+1 = Un + kB(Un),

(2.3)
3

2
Un+2 + kAUn+2 = 2Un+1 − 1

2
Un + 2kB(Un+1)− kB(Un),

(2.4)

11

6
Un+3 + kAUn+3 = 3Un+2 − 3

2
Un+1 +

1

3
Un

+ 3kB(Un+2)− 3kB(Un+1) + kB(Un),

(2.5)

25

12
Un+4 + kAUn+4 = 4Un+3 − 3Un+2 +

4

3
Un+1 − 1

4
Un

+ 4kB(Un+3)− 6kB(Un+2) + 4kB(Un+1)− kB(Un),

(2.6)

137

60
Un+5 + kAUn+5 = 5Un+4 − 5Un+3 +

10

3
Un+2 − 5

4
Un+1 +

1

5
Un

+ 5kB(Un+4)− 10kB(Un+3) + 10kB(Un+2)− 5kB(Un+1) + kB(Un),
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(2.7)

147

60
Un+6 + kAUn+6 = 6Un+5 − 15

2
Un+4 +

20

3
Un+3 − 15

4
Un+2

+
6

5
Un+1 − 1

6
Un + 6kB(Un+5)− 15kB(Un+4)

+ 20kB(Un+3)− 15kB(Un+2) + 6kB(Un+1)− kB(Un).

Scheme (2.2) is obviously a combination of the implicit and the forward Euler methods.

For s ∈ N0, let Hs
per denote the periodic Sobolev space of order s, consisting of the

2π−periodic elements of Hs
loc (R), and let ‖ · ‖Hs be the norm over a period in Hs

per . The

inner product in H := L2
per = H0

per is denoted by (·, ·), and the induced norm by ‖ · ‖. As
already mentioned, we let A : H4

per → H be defined by Av := νvxxxx + vxx + 1
ν v. Then

V := D(A1/2) = H2
per , and the norm ||| · |||, |||v||| := ‖A1/2v‖, in V is given by

|||v||| =
(

ν‖vxx‖2 − ‖vx‖2 +
1

ν
‖v‖2

)1/2

.

It is easily seen that

‖vx‖2 ≤
ν

2
‖vxx‖2 +

1

2ν
‖v‖2 for all v ∈ V ;

therefore

(2.8) (Av, v) ≥ 1

2

(

ν‖vxx‖2 +
1

ν
‖v‖2

)

for all v ∈ V,

and thus, A is positive definite.

Further, let B : V → H be given by B(v) := −vvx +
1
ν v. Then,

B(v)−B(w) = −1

2
(v2 − w2)x +

1

ν
(v − w) ,

and thus by periodicity, for ω ∈ V,

(B(v) −B(w), ω) =
1

2
(v2 − w2, ωx) +

1

ν
(v − w,ω) ,

and therefore,

(2.9) (B(v) −B(w), ω) ≤ 1

2
‖v + w‖ ‖v − w‖ ‖ωx‖L∞ +

1

ν
‖v − w‖ ‖ω‖ .

Now, since ωx vanishes at some point in the interval (0, 2π), it is easily seen that

‖ωx‖L∞ ≤
√
2π ‖ωxx‖,

and (2.9) yields

(2.10) (B(v)−B(w), ω) ≤
√
2π

2
‖v + w‖ ‖v −w‖ ‖ωxx‖+

1

ν
‖v − w‖ ‖ω‖ .
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We identify H with its dual, and denote by V ′ the dual of V , again by (·, ·) the duality

pairing between V ′ and V, and by ||| · |||⋆ the dual norm on V ′. Since, obviously,
√

ν

2
‖ωxx‖ ≤ |||ω|||, 1√

2ν
‖ω‖ ≤ |||ω|||, for all ω ∈ V,

we conclude from (2.10) that

(2.11) |||B(v) −B(w)|||⋆ ≤ 1√
ν

[√
π‖v + w‖ +

√
2
]

‖v − w‖ .

Let Tu be a tube around the solution u defined in terms of the norm of H, i.e.

Tu :=
{

v ∈ V : min
t

‖u(t)− v‖ ≤ 1
}

.

Obviously, for v,w ∈ Tu, we have

‖v + w‖ ≤ 2 + 2 max
0≤t≤T

‖u(t)‖ ,

and (2.11) yields

(2.12) |||B(v)−B(w)|||⋆ ≤ µ‖v − w‖

with

(2.13) µ :=
1√
ν

[

2
√
π

(

1 + max
0≤t≤T

‖u(t)‖
)

+
√
2

]

.

Assume now that we are given starting approximations U0, . . . , Up−1 satisfying

(2.14)

p−1
∑

j=0

‖u(tj)− U j‖ ≤ Ckp .

Then, the theory of [2], see also [4] and [3], yields the optimal order error estimate

(2.15) max
0≤n≤N

‖u(tn)− Un‖ ≤ ckp.

We emphasize that (2.14) suffices here since on the right-hand side of (2.12) only the

norm ‖ · ‖ appears, i.e., in the notation of [2] we have λ = 0, and also β(ζ) = ζp, i.e., all

coefficients of β but the one of ζp vanish, see Remark 7.2 in [2].

Remark 2.1. In the experiments we will also discretize the equation

ut + uux + uxx + νuxxxx = f(x, t) in R× R
+
0 .

In this case the schemes (2.2)–(2.7) are modified by adding the term kf(tn+p) to their right-

hand sides, p being the order of the scheme. Alternatively, f could have been incorporated

into B.
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Starting approximations. For the error estimate (2.15) to hold, we need starting approx-

imations U1, . . . , Up−1, for p = 2, . . . , 6, satisfying (2.14). We present here some choices

leading to such approximations.

The first choice is based on a Taylor expansion and requires, for p > 2, the calculation of

higher-order derivatives of the initial value u0. Assume that u0 is sufficiently smooth such

that one can calculate the time derivatives u(j)(0), j = 1, . . . , p − 1, of the exact solution

at t = 0. Then, it is easily seen that U0 = u0 and U j = T p
j u(0), with

T p
j u(0) := u0 + jku(1)(0) + · · · + (jk)p−1

(p− 1)!
u(p−1)(0), j = 1, . . . , p− 1,

satisfy (2.14). This choice might be inconvenient in applications since it requires high

order time derivatives of the solution u.

Another way leading to appropriate starting approximations is the use of linearly im-

plicit Runge–Kutta schemes of order at least p − 1 for the computation of U1, . . . , Up−2,

cf. [18], [15]; Up−1 can be computed by the (p−1)−step implicit–explicit scheme. Let

us note that, due to the periodic boundary conditions, the Runge–Kutta schemes do not

suffer from order reduction in this case, cf. [1]. Also note that schemes of order p − 1,

when applied a fixed number of steps yield approximations of order p.

As already mentioned, for the second order scheme (2.3), we may compute U1 by

performing one step by the first order scheme (2.2), i.e., we let U1 be given by

(2.3–1) U1 + kAU1 = u0 + kB(u0).

Let us also briefly discuss two convenient ways leading to appropriate starting approxima-

tions for the third order scheme. In this case, we need third order starting approximations

U1 and U2. Once U1 has been calculated, we may perform one step with the second-order

scheme (2.3) to get U2. For U1, we start with the second order approximations u0+kut(0)

to u(k) and u0u0x+k
(

u0ut(0)
)

x
to u(k)ux(k), and perform one step with a linearly implicit

modified second order Crank–Nicolson scheme to obtain U1 by

(2.4–1) U1 +
1

2
kAU1 = u0 − 1

2
kAu0 + kB(u0) +

1

2ν
k2ut(0)−

1

2
k2
(

u0ut(0)
)

x
.

The next starting approximation U2 may then be calculated by

(2.4–2)
3

2
U2 + kAU2 = 2U1 − 1

2
u0 + 2kB(U1)− kB(u0).

In (2.4–1) the time derivative of u is used. An alternative way of defining a third order

approximation U1 to u(k), avoiding the use of time derivatives, is as follows: We begin

with a second order approximation Ũ1, computed by the implicit–explicit Euler scheme

(2.2),

(2.4–1′) Ũ1 + kAŨ1 = u0 + kB(u0),
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and correct it to a third order approximation by the linearly implicit Crank–Nicolson

scheme,
1

k
(U1 − u0) +

1

2
A(U1 + u0) = B(

1

2
(Ũ1 + u0)),

i.e., by

(2.4–1′′) U1 +
1

2
kAU1 = u0 − 1

2
kAu0 + kB(

1

2
(Ũ1 + u0)).

2.2. Discretization in space. The spatially 2π−periodic initial data assumption of the

initial value problem enables us to represent the solution u of the KS equation in the form

u(x, t) =
∞
∑

j=1

((αj(t) cos jx+ βj(t) sin jx) + α0(t) .

The term α0(t) remains constant due to the conservative nature of KS. On the other hand,

whenever u(x, t) is a solution then so is u(x−ct, t)+c, which allows us to assume α0(t) = 0,

for simplicity. Replacing u(·, t) by its Fourier series in the PDE we obtain

ut+uux + uxx + νuxxxx =

∞
∑

j=1

[

α′
j − (j2 − νj4)αj −Aj) cos jx+ (β′

j − (j2 − νj4)βj −Bj) sin jx
]

with

Aj = − j

2

∑

m+n=j

αmβn +
j

2

∑

m−n=j

(αmβn − αnβm)

Bj =
j

4

∑

m+n=j

(αmαn − βmβn) +
j

2

∑

m−n=j

(αmαn + βmβn) ,

for j ∈ N . Thus KS equation is transformed into an infinite dimensional system of

ordinary differential equations (ODEs):
{

α′
j = λjαj +Aj

β′
j = λjβj +Bj

for j ∈ N

and

Aj = Aj(α1, α2, ..., β1, β2, ...) and Bj = Bj(α1, α2, ..., β1, β2, ...)

and λj = j2 − νj4 are the eigenvalues of the linear operator. The algebraic growth of the

eigenvalues makes the system stiff. All the spatial Sobolev norms of the solution of the

KS equation remain bounded for all times, see [13], [9], [6]. Thus

ωj = lim sup
t→+∞

|α2
j + β2

j |
1

2 , j ∈ N ,

remain bounded for all times. In particular, the Collet et al [7] proof of the analyticity of

the solutions of the KS equation, implies that the ωj’s decay exponentially with respect

to j. They have also presented numerical evidence in [7] that the number of determining
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Fourier coefficients is proportional to ν−1/2. This work enables one to approximate the

solution of the KS equation by truncation of the higher Fourier frequencies.

By applying the Fourier transform to u(x, t) we have

d

dt
û(j) = λjû(j) − (uux)̂ (j) .

Thus for j > ν−1/2 we easily obtain

lim sup
t→+∞

|û(j)| ≤ 1

λj
lim sup
t→+∞

|(uux)̂ (j)| =
j

2λj
lim sup
t→+∞

∣

∣

∣

∣

(

u2
)ˆ
(j)

∣

∣

∣

∣

.

The above inequality provides a first (crude) estimate of the number of significant Fourier

coefficients. Nevertheless, according to our numerical experiments with various schemes,

a small multiple of [ν−1/2] suffices for calculations in double precision. In our numerical

experiments, we use at least 4ν−1/2 Fourier modes. In fact the number of modes in our

experiments is an integer of the form 2m or 3·2m, so that the FFT is efficiently implemented

for the nonlinear term.

The computed value of the nonlinear terms Aj and Bj via the pseudo–spectral method

is

AN
j = − j

2

j−1
∑

m=1

αmβj−m +
j

2

N−j
∑

m=1

(αm+jβm − αmβm+j) ,

BN
j =

j

4

j−1
∑

m=1

(αmαj−m − βmβj−m) +
j

2

N−j
∑

m=1

(αmαm+j + βmβm+j) .

Note that in the nonlinear part of the system of ODEs corresponding to high frequen-

cies in the truncated system, i.e., AN
j , BN

j , most of the contribution comes from the low

frequencies, even for j large. This implies that higher frequencies are slaved by the low

frequencies, which is one of the most typical characteristics of dissipative infinite dimen-

sional dynamical systems. Nevertheless, we wish to allow to the high frequencies, as much

freedom as possible in order to develop individual behaviour.

2.3. Fully discrete schemes. Let µj := νj4− j2 + 1
ν . We now present the fully discrete

schemes, for p = 1, . . . , 6. For p ≤ 3, we also give the starting approximations, except for

the first one which is the initial value.

The first order scheme is

(2.16)
(

1 + kµj

)

ûn+1
j =

(

1 +
1

ν
k

)

ûnj − k(ununx )̂j .

The second order scheme takes the form

(2.17–1) (1 + kµj) û
1
j =

(

1 +
1

ν
k

)

û0j − k(u0u0x)̂j ,
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cf. (2.3–1), and

(2.17)

(

3

2
+ kµj

)

ûn+2
j = 2

(

1 +
1

ν
k

)

ûn+1
j −

(

1

2
+

1

ν
k

)

ûnj−2k(un+1un+1
x )̂j+k(ununx )̂j .

The approximation u1 for the third order scheme can be calculated from

(2.18–1)

(

1 +
1

2
kµj

)

û1j =

(

1 +

(

1

ν
− 1

2
µj

)

k

)

û0j − k(u0u0x)̂j

+
1

2ν
k2
(

ut(0)
)ˆ
j
+ i

1

2
k2
(

u0ut(0)
)ˆ
j
,

cf. (2.4–1), or, alternatively, from

(2.18–1′)
(

1 + kµj

)

(ũ1)̂j =

(

1 +
1

ν
k

)

û0j − k(u0u0x)̂j

and

(2.18–1′′)

(

1 +
1

2
kµj

)

û1j =

(

1 +
1

2

(

1

ν
− µj

)

k

)

û0j+
1

2ν
(ũ1)̂j−

1

4
k
(

(ũ1+u0)(ũ1x+u0x)
)ˆ
j
,

cf. (2.4–1′) and (2.4–1′′), the approximation u2 by

(2.18–2)

(

3

2
+ kµj

)

û2j = 2(1 +
1

ν
k)û1j −

(

1

2
+

1

ν
k

)

û0j − 2k(u1u1x)̂j + k(u0u0x)̂j ,

cf. (2.4–2), and the other approximations by

(2.18)

(

11

6
+ kµj

)

ûn+3
j = 3

(

1 +
1

ν
k

)

ûn+2
j − 3

(

1

2
+

1

ν
k

)

ûn+1
j +

(

1

3
+

1

ν
k

)

ûnj

− 3k(un+2un+2
x )̂j + 3k(un+1un+1

x )̂j − k(ununx )̂j .

For the fourth, fifth and sixth order schemes we do not give specific choices of starting

approximations, but we only give the general step of the schemes. The fourth order scheme

is

(2.19)

(

25

12
+ kµj

)

ûn+4
j = 4

(

1 +
1

ν
k

)

ûn+3
j − 6

(

1

2
+

1

ν
k

)

ûn+2
j

+ 4

(

1

3
+

1

ν
k

)

ûn+1
j −

(

1

4
+

1

ν
k

)

ûnj − 4k(un+3un+3
x )̂j

+ 6k(un+2un+2
x )̂j − 4k(un+1un+1

x )̂j + k(ununx )̂j ,

the fifth order scheme is

(2.20)

(

137

60
+ kµj

)

ûn+5
j = 5

(

1 +
1

ν
k

)

ûn+4
j − 10

(

1

2
+

1

ν
k

)

ûn+3
j

+ 10

(

1

3
+

1

ν
k

)

ûn+2
j − 5

(

1

4
+

1

ν
k

)

ûn+1
j +

(

1

5
+

1

ν
k

)

ûnj − 5k(un+4un+4
x )̂j

+ 10k(un+3un+3
x )̂j − 10k(un+2un+2

x )̂j + 5k(un+1un+1
x )̂j − k(ununx )̂j ,
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Order k = 1
10 k = 1

20 k = 1
40 k = 1

80 k = 1
160 k = 1

320

1 .3639 .1979 .1034 .5291e-1 .2676e-1 .1346e-1

2 .3903e-1 .1017e-1 .2584e-2 .6505e-3 .1631e-3 .4085e-4

3 .4013e-2 .5102e-3 .6430e-4 .8070e-5 .1011e-5 .1265e-6

4 .4567e-3 .2862e-4 .1790e-5 .1119e-6 ..6997e-8 .4374e-9

5 .6826e-4 .2123e-5 .6610e-7 .2061e-8 .6437e-10 .2010e-11

6 .1245e-4 .1996e-6 .3100e-8 .4838e-10 .7578e-12 .5415e-12

Table 1. Implementation of all six schemes for a known solution: The

maximum error in the L2−norm (i.e. max0≤nk≤T ‖un − Un‖ ) of the ap-

proximate solution for various time steps is presented.

and the sixth order scheme is

(2.21)

(

147

60
+ kµj

)

ûn+6
j = 6

(

1 +
1

ν
k

)

ûn+5
j − 15

(

1

2
+

1

ν
k

)

ûn+4
j

+ 20

(

1

3
+

1

ν
k

)

ûn+3
j − 15

(

1

4
+

1

ν
k

)

ûn+2
j + 6

(

1

5
+

1

ν
k

)

ûn+1
j −

(

1

6
+

1

ν
k

)

ûnj

− 6k(un+5un+5
x )̂j + 15k(un+4un+4

x )̂j − 20k(un+3un+3
x )̂j

+ 15k(un+2un+2
x )̂j − 6k(un+1un+1

x )̂j + k(ununx )̂j .

3. Numerical experiments

In this section we present some numerical results of the implicit-explicit BDF schemes

for the KS equation. We have performed the following experiments:

3.1. Accuracy tests in a given time interval [0, T ]. We have carried out tests to

establish the p−th order accuracy, for p ∈ {1, 2, 3, 4, 5, 6} , of the corresponding p−step

scheme for various time steps. We have thus obtained bounds for the time step which is

required in order to achieve satisfactory accuracy. In these tests the numerical integration

of the scheme was performed in the interval [0, T ], for a relatively small time T . All these

experiments approximate the solution of an inhomogeneous problem of the form

(3.1)

{

ut + uxx + uux + νuxxxx = f(x, t) ,

u(x, 0) = g(x) ,

with a known solution. Both f and g are 2π−periodic in space. The exact solution of (3.1)

is taken to be u(x, t) = sin(x+t). In all experiments T was chosen to be 1 whereas ν = 1/2

and the number of modes 16. This number was determined from preliminary experiments,

see Subsection 3.3. We used six different time steps, namely k = 1
10 ,

1
20 ,

1
40 ,

1
80 ,

1
160 ,

1
320 ,
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for all six schemes. We run the experiments using a double precision FORTRAN code

(without external subroutine calls) on an IBM-6000 workstation.

Table 1 contains all the maximum errors in the L2−norm, over the interval [0, T ], for

all six schemes and all six time steps. All these data are presented in the loglog Figure

2. In both the table and the plot one can observe the p−th order of accuracy of the

p−step method. The error in the case of the time step 1
320 for the 6−step method has not

decreased as expected, since that would be beyond machine accuracy. It is noteworthy

that the computation cost of BDF methods is independent of the number of steps.

10
−2

10
−1

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

p=1
p=2
p=3
p=4
p=5
p=6

Time step

M
ax

im
u
m

er
ro
r
in

th
e
L
2
−
n
or
m

Decay of the time discretization error

Figure 2. loglog plot of the maximum errors in the L2−norm over the

interval [0, T ] for various time steps

3.2. Accuracy in the approximation of periodic attractors. We have also car-

ried out tests to establish the p−th order accuracy, of the p−step method, for p ∈
{1, 2, 3, 4, 5, 6} , of the periodic universal attractors of the KS equation for various val-

ues of the parameter ν. Indeed, certain computable characteristics of universal attractors,

such as the L2−norm in the case of travelling waves and the period, in the case of periodic
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Fourth order scheme with k = 1/500 and 32 modes
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Figure 3. Three period doubling of the L2−norm

attractors, appear to be approximated with the expected order of accuracy. Their quali-

tative characteristics are apparently obtainable with time steps larger than time steps in

any other scheme used so far.

Table 2 provides the period of the periodic attractor (see Figure 4) at ν = .13 for

different time steps and for all the p−step methods. One can easily observe, at least

for p = 1, 2, 3, that the order of accuracy in the calculation of the period is the same

as the order of accuracy of the scheme. (For p = 4, 5, 6 the calculation of the period is

unfortunately too accurate, and thus we can not observe any decay of the error.) It is

noteworthy that the period of the attractor is measured from the period of the L2−norm

of the solution. The periodicity of the Energy or the L2−norm, i.e. E(t) = ‖u(·, t)‖ , can
be seen in Figure 3. However, Figure 5 provides a much better evidence of periodicity

since it contains six phase planes of the Energy, i.e. points (E(t), E′(t)), where t∈ [T1, T2] .

The derivative of E(t) can be efficiently calculated from
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d

dt
‖u(·, t)‖2 = 2(ut, u) = 2(uux + uxx + νuxxxx, u)

= −2(ux, ux) + 2ν(uxx, uxx)

and thus

E′(t) =
ν‖uxx‖2 − ‖ux‖2

‖u‖ ,

which is computed from the Fourier modes.

The phase planes correspond to six different values of the parameter ν. Closed curves

correspond to periodic orbits. Finally, the period is measured by an extremely accurate

method, consisting of approximating E(t), near a t∗ where its derivative vanishes, by

a suitable polynomial, the coefficients of which are chosen via a weighted least square

method. Newton’s method subsequently provides the root, where the derivative of the

polynomial vanishes.

Finally, we should report that, as with previous numerical experiments, certain chaotic

phenomena have been identified. Specifically, period doubling cascade leading to chaos at

ν ≈ .121228053894 . . ., following at least 14 period–doublings. In Figure 5, five period–

doublings can be observed.

3.3. Determining the number of Fourier modes. The space discretization is achieved

by truncating the high frequencies. This is quite plausible due to the analyticity of the

solution and the exponential decay of the Fourier coefficients, see (1.5). We already have

a rough idea of the rate of decay of these Fourier modes from the numerical estimates

in [7]. Nevertheless, we have performed our own experiments in order to obtain similar

estimates, see Figure 1. These specific preliminary experiments were performed in order

to get a better idea of the number of modes with a significant numerical contribution to

the solution. (Given that our codes are in double precision.) Clearly, this number is much

larger than the number of the determining modes.

In order to achieve this, we used 64 modes and time steps significantly smaller than

the ones used later and thus enabling even the high frequencies to develop individual

behaviour. We tested the cases ν = .9, .5, .3, .2, .13, .1, .08, .05, .03 , and in each case we

kept subdividing the time step until the log−plot of the spectrum stabilized. In the case

of ν = .03 , we kept subdividing until the time step became k = 10−8 . Figure 1 provides

these log−plots for selected cases.

4. Final remarks and possible extensions

The implementation of the BDF schemes for the numerical approximation of the solution

of the KS equation has been very successful. These schemes allow us to use time steps

larger than those previously used in order to achieve the desired accuracy and reproduce

the already known asymptotic behaviour. However, when we use a larger time step for

the approximation of the solution of infinite dimensional dynamical systems, which are
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Periodic attractor at ν = .13

6−step scheme with k = 2/100 and 12 modes

Figure 4. The evolution of the spatial shape of the approximate solution

in a periodic attractor

characterized by stiffness, we lose the accurate approximation of high frequencies. Though

stability in the integration of

d

dt
ûj = λjûj + (uux)̂j ,

for j large, is immediate due to the implicit integration of the linear part, in order to

obtain good accuracy we need that

(4.1) k|λj | = ∆t|j2 − νj4| ≪ 1 ,

which is extremely restrictive. However, higher order terms, due to their exponential

decay, contribute gradually (as j grows) less to the solution and thus their relative accuracy

becomes gradually less important. This fact compensates to the inherent stiffness of the

system. Runs with extremely small time steps have been carried out with our schemes,

in order to allow high frequencies to develop individual behaviour. However, no change in
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Number of steps of the BDF-scheme

Time step p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

4/1000 1.057880776 .997326720 .996054681 .996066198 .996066355 .996066353

2/1000 1.026733486 .996380184 .996064879 .996066343 .996066353 .996066353

1/1000 1.011334827 .996144639 .996066168 .996066353 .996066353 .996066353

1/2000 1.003683672 .996085902 .996066330 .996066353 .996066353 .996066353

1/4000 .999870702 .996071238 .996066350 .996066353 .996066353 .996066353

1/8000 .997967440 .996067578 .996066353 .996066353 .996066353 .996066353

1/16000 .997016623 .996066647 .996066353 .996066353 .996066353 .996066353

1/32000 .996541420 .996066419 .996066353 .996066353 .996066353 .996066353

1/64000 .996303873 .996066372 .996066353 .996066353 .996066353 .996066353

1/128000 .996185096 .996066358 .996066353 .996066353 .996066353 .996066353

Table 2. The order of accuracy in the approximation of the attractors:

Calculated period of the periodic attactor when ν = .13.

the qualitative characteristics of the attractors was observed, and very little change in the

quantitative ones. (See Table 2.) It turns out that the high frequencies are indeed slaved.

One could assert that, ideally the largest allowed time step, is the one having the

property that, the relative error in any mode is inversely proportional to the contribution

of this mode to the solution.

In our experiments, the time steps, though significantly larger than the ones used in

previous experiments, are still small enough so that (4.1) holds for the determining modes

and in fact for many more modes than the determining ones.

These methods could be efficiently applied for the numerical approximation of most in-

finite dimensional dynamical systems. In future work the method will be used in nonlinear

evolution equations of parabolic type where the linear part can be integrated exactly.

References

1. G. Akrivis, High-order finite element methods for the Kuramoto-Sivashinsky equation, RAIRO Modél.

Math. Anal. Numér. 30 (1996) 157–183.

2. G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations, Math. Comp.

(to appear).

3. G. Akrivis, M. Crouzeix and Ch. Makridakis, Implicit–explicit multistep finite element methods for

nonlinear parabolic problems, Math. Comp. 67 (1998) 457–477.

4. G. Akrivis, M. Crouzeix and Ch. Makridakis, Implicit–explicit multistep methods for quasilinear para-

bolic equations, Numer. Math. 82 (1999) 521–541.

5. U. M. Ascher, S. J. Ruuth and B. T. R. Wetton, Implicit–explicit methods for time–dependent partial

differential equations, SIAM J. Numer. Anal. 32 (1995) 797–823.



18 G. AKRIVIS AND Y.S. SMYRLIS

9 9.5 10 10.5 11
−5

0

5

6 7 8 9 10 11
−10

−5

0

5

10

6 7 8 9 10 11
−10

−5

0

5

10

6 7 8 9 10 11
−10

−5

0

5

10

6 7 8 9 10 11
−10

−5

0

5

10

6 7 8 9 10 11
−10

−5

0

5

10

ν
=

.1
2
6

ν
=

.1
2
1
6

ν
=

.1
2
1
2
8

ν
=

.1
2
1
2
3
7

ν
=

.1
2
1
2
3

ν
=

.1
2
1
2
2
8
8

Figure 5. Phase plane of the L2−norm: Five period doublings

6. P. Collet, J.-P. Eckmann, H. Epstein and J. Stubbe, A global attracting set for the Kuramoto–

Sivashinsky equation, Comm. Math. Physics 152 (1993) 203–214.

7. P. Collet, J.-P. Eckmann, H. Epstein and J. Stubbe, Analyticity for the Kuramoto–Sivashinsky equation,

Physica D 67 (1993) 321–326.

8. P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for

Dissipative Partial Differential Equations, Springer–Verlag, New York, Appl. Math. Sciences, v. 70,

1988.

9. J. Goodman, Stability of the Kuramoto–Sivashinsky equation and related systems. Analyticity for the

Kuramoto–Sivashinsky equation, Comm. Pure Appl. Math. XLVII (1994) 293–306.

10. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential–Algebraic Prob-

lems, Second Revised Edition, Springer–Verlag, Berlin Heidelberg, Springer Series in Computational

Mathematics v. 14, 2002.

11. J. M. Hyman and B. Nicolaenko, The Kuramoto–Sivashinsky equations, a bridge between PDEs and

dynamical systems, Physica D 18 (1986) 113–126.

12. J. M. Hyman, B. Nicolaenko and S. Zaleski, Order and complexity in the Kuramoto–Sivashinsky model

of turbulent interfaces, Physica D 23 (1986) 265–292.

13. Ju. S. Il’yashenko, Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation, J.

Dynamics and Diff. Equations 4 (1992) 585–615.

14. M. S. Jolly, I. G. Kevrekides and E. S. Titi, Approximate inertial manifolds for the Kuramoto–

Sivashinsky equation: analysis and computations, Physica D 44 (1990) 38–60.



BDF METHODS FOR THE KS EQUATION 19

15. C. A. Kennedy and M. H. Carpenter, Additive Runge–Kutta schemes for convection–diffusion–reaction

equations, Appl. Numer. Math. 44 (2003) 139–181.

16. I. G. Kevrekidis, B. Nicolaenko and C. Scovel, Back in the saddle again: A computer assisted study of

Kuramoto–Sivashinsky equation, SIAM J. Appl. Math. 50 (1990) 760–790.

17. Y. Kuramoto, Diffusion–induced chaos in reaction systems, Suppl. Prog. Theor. Phys. 64 (1978) 346–

367.

18. C. Lubich and A. Ostermann, Linearly implicit time discretization of non-linear parabolic equations,

IMA J. Numer. Anal. 15 (1995) 555–583.

19. W. R. McKinney, Optimal error estimates for high order Runge-Kutta methods applied to evolutionary

equations, Ph.D. thesis, University of Tennessee, Knoxville, 1989.

20. B. Nicolaenko and B. Scheurer, Remarks on the Kuramoto–Sivashinsky equation, Physica D 12 (1984)

391–395.

21. B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of the Kuramoto–

Sivashinsky equation: Nonlinear stability and attractors, Physica D 16 (1985) 155–183.

22. D. T. Papageorgiou, C. Maldarelli and D. S. Rumschitzki, Nonlinear interfacial stability of cone-

annular film flow, Phys. Fluids A2 (1990) 340–352.

23. D. T. Papageorgiou and Y. S. Smyrlis, The route to chaos for the Kuramoto–Sivashinsky equation,

Theoret. Comput. Fluid Dynamics 3 (1991) 15–42.

24. G. I. Sivashinsky, On flame propagation under conditions of stoichiometry, SIAM J. Appl. Math. 39

(1980) 67–82.

25. Y. S. Smyrlis and D. T. Papageorgiou, Computer assisted study of strange attractors of the Kuramoto-

Sivashinsky equation, Zeitschrift für Angewandte Mathematik und Mechanik 76, number 2 (1996)

57–60.

26. Y. S. Smyrlis and D. T. Papageorgiou, Predicting chaos for infinite dimensional dynamical systems:

The Kuramoto–Sivashinsky equation, a case study, Proc. Nat. Acad. Sc. 88 (1991) 11129–11132.

27. R. Temam, Infinite–Dimensional Dynamical Systems in Mechanics and Physics, Springer–Verlag, New

York 1988.

28. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer–Verlag, Berlin Heidel-

berg, Springer Series in Computational Mathematics v. 25, 1997.

Computer Science Department, University of Ioannina, 451 10 Ioannina, Greece

E-mail address: akrivis@cs.uoi.gr

Department of Mathematics and Statistics, University of Cyprus, 1678 Nicosia, Cyprus

E-mail address: smyrlis@ucy.ac.cy


