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Abstract. We derive optimal order a posteriori error estimates for time dis-
cretizations by both the Crank–Nicolson and the Crank–Nicolson–Galerkin meth-
ods for linear and nonlinear parabolic equations. We examine both smooth and
rough initial data. Our basic tool for deriving a posteriori estimates are second
order Crank–Nicolson reconstructions of the piecewise linear approximate solu-
tions. These functions satisfy two fundamental properties: (i) they are explicitly
computable and thus their difference to the numerical solution is controlled a
posteriori, and (ii) they lead to optimal order residuals as well as to appropriate
pointwise representations of the error equation of the same form as the underlying
evolution equation. The resulting estimators are shown to be of optimal order by
deriving upper and lower bounds for them depending only on the discretization
parameters and the data of our problem. As a consequence we provide alternative
proofs for known a priori rates of convergence for the Crank–Nicolson method.

1. Introduction

In this paper we derive a posteriori error estimates for time discretizations by
Crank–Nicolson type methods for parabolic partial differential equations (p.d.e.’s).
The Crank–Nicolson scheme is one of the most popular time–stepping methods;
however, optimal order a posteriori estimates for it have not yet been derived. Most
of the (many) contributions in the last years devoted to a posteriori error control for
time dependent equations concern the discretization in time of linear or nonlinear
equations with dissipative character by the backward Euler method or by higher
order discontinuous Galerkin methods; cf., e.g., [12], [7], [8], [20], [9], [19] and [13].
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Let u and U be the exact and the numerical solution of a given problem. In a
posteriori error analysis

‖u− U‖ ≤ η(U),

we seek computable estimators η(U) depending on the approximate solution U and
the data of the problem such that (i) η(U) decreases with optimal order for the
lowest possible regularity permitted by our problem, and (ii) the constants involved
in the estimator η(U) are explicit and easily computable.

In this paper we derive optimal order estimators of various types for the Crank–
Nicolson and the Crank–Nicolson–Galerkin time–stepping methods applied to evo-
lution problems of the form: Find u : [0, T ] → D(A) satisfying

(1.1)

{

u′(t) + Au(t) = B(t, u(t)), 0 < t < T,

u(0) = u0,

with A : D(A) → H a positive definite, selfadjoint, linear operator on a Hilbert space
(H, (·, ·)) with domain D(A) dense in H, B(t, ·) : D(A) → H, t ∈ [0, T ], a (possibly)
nonlinear operator, and u0 ∈ H. The structural assumption (6.1) on B(t, ·) implies
that problem (1.1) is parabolic.

A main novel feature of our approach is the Crank–Nicolson reconstruction Û of
the numerical approximation U. This function satisfies two fundamental properties:
(i) it is explicitly computable and thus its difference to the numerical solution is
controlled a posteriori, and (ii) it leads to an appropriate pointwise representation
of the error equation, of the same form as the original evolution equation. Then
by employing techniques developed for the underlying p.d.e. we conclude the final
estimates. Of course, depending on the stability methods that are used, we obtain
different estimators. The resulting estimators are shown to be of optimal order by
deriving upper bounds for them, depending only on the discretization parameters
and the data of our problem. As a consequence we provide alternative proofs for
a priori estimates, depending only on the data and corresponding known rates of
convergence for the Crank–Nicolson method.

The above idea is related to earlier work on a posteriori analysis of time or space
discrete approximations of evolution problems [19, 18, 17]. It provides the means
to show optimal order error estimates with energy as well as with other stability
techniques. An alternative approach for a posteriori analysis of time dependent
problems, based on the direct comparison of u and U via parabolic duality, was
considered in [12], [7], [20], [9] for p.d.e.’s and in [11], [10] for ordinary differential
equations (o.d.e.’s). In particular Estep and French [10] considered the continuous
Galerkin method for o.d.e’s. Its lowest order representative corresponds to a variant
of the Crank–Nicolson method —the Crank–Nicolson–Galerkin method— consid-
ered also in this paper. A posteriori bounds with energy techniques for Crank–
Nicolson methods for the linear Schrödinger equation were proved by Dörfler [6] and
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for the heat equation by Verfürth [22]; the upper bounds in [6], [22] are of suboptimal
order.

Most of this paper is devoted to linear parabolic equations, namely B(t, u(t)) =
f(t) for a given forcing function f. The general nonlinear problem (1.1) is only briefly
discussed in the last section. The paper is organized as follows. We start in Section 2
by introducing the necessary notation, the Crank–Nicolson and the Crank–Nicolson–
Galerkin (CNG) methods for the linear problem (2.1). We then observe that the
direct use of standard piecewise linear interpolation at the approximate nodal values,
see (2.3), would lead to suboptimal estimates as in [6] and [22]. The Crank–Nicolson

and Crank–Nicolson–Galerkin reconstructions Û are, instead, continuous piecewise
quadratic functions which are defined in (2.9) and (2.22), respectively. In Section

3 we estimate Û − U. Section 4 is devoted to the a posteriori error analysis for
linear equations. Error estimates are obtained by using energy techniques, as well
as Duhamel’s principle. Both estimators lead to second order convergence rates.
Note the interesting similarity of the estimator obtained by Duhamel’s principle to
those established in the literature by parabolic duality. In Section 5 we discuss the
form of estimators in the case of nonsmooth initial data. In Section 6 we finally
conclude with the case of nonlinear equations.

2. Crank–Nicolson methods for linear equations

Most of this paper focuses on the case of a linear equation,

(2.1)

{

u′(t) + Au(t) = f(t), 0 < t < T,

u(0) = u0,

with f : [0, T ] → H. Let 0 = t0 < t1 < · · · < tN = T be a partition of [0, T ],
In := (tn−1, tn], and kn := tn − tn−1.

2.1. The Crank–Nicolson method. For given {vn}Nn=0 we will use the notation

∂̄vn :=
vn − vn−1

kn
, vn−

1

2 :=
1

2
(vn + vn−1), n = 1, . . . , N.

The Crank–Nicolson nodal approximations Um ∈ D(A) to the values um := u(tm)
of the solution u of (2.1) are defined by

(2.2) ∂̄Un + AUn− 1

2 = f(tn−
1

2 ), n = 1, . . . , N,

with U0 := u0. Since the error um − Um is of second order, to obtain a second–
order approximation U(t) to u(t), for all t ∈ [0, T ], we define the Crank–Nicolson
approximation U : [0, T ] → D(A) to u by linearly interpolating between the nodal
values Un−1 and Un,

(2.3) U(t) = Un− 1

2 + (t− tn−
1

2 )∂̄Un, t ∈ In.
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Let R(t) ∈ H,

(2.4) R(t) := U ′(t) + AU(t)− f(t), t ∈ In,

denote the residual of U, i.e., the amount by which the approximate solution U
misses being an exact solution of (2.1). Now

U ′(t) + AU(t) = ∂̄Un + AUn− 1

2 + (t− tn−
1

2 )A∂̄Un, t ∈ In,

whence, in view of (2.2),

U ′(t) + AU(t) = f(tn−
1

2 ) + (t− tn−
1

2 )A∂̄Un, t ∈ In.

Therefore, the residual can also be written in the form

(2.5) R(t) = (t− tn−
1

2 )A∂̄Un + [f(tn−
1

2 )− f(t)], t ∈ In.

Obviously, R(t) is an a posteriori quantity of first order, even in the case of a
scalar o.d.e. u′(t) = f(t), although the Crank–Nicolson scheme yields second-order
accuracy. Since the error e := u − U satisfies e′ + Ae = −R, applying energy
techniques to this error equation, as in [6], [22], leads inevitably to suboptimal
bounds.

2.2. Crank–Nicolson reconstruction. To recover the optimal order we introduce
a Crank–Nicolson reconstruction Û of U, namely a continuous piecewise quadratic
polynomial in time Û : [0, T ] → H defined as follows. First, we let ϕ : In → H be

the linear interpolant of f at the nodes tn−1 and tn−
1

2 ,

(2.6) ϕ(t) := f(tn−
1

2 ) +
2

kn
(t− tn−

1

2 )[f(tn−
1

2 )− f(tn−1)], t ∈ In,

and define a piecewise quadratic polynomial Φ by Φ(t) :=
∫ t

tn−1 ϕ(s)ds, t ∈ In, i.e.,

(2.7) Φ(t) = (t− tn−1)f(tn−
1

2 )−
1

kn
(t− tn−1)(tn − t)[f(tn−

1

2 )− f(tn−1)].

As will become evident in the sequel, an important property of Φ is that

(2.8) Φ(tn−1) = 0, Φ(tn) = knf(t
n− 1

2 ) =

∫

In

f(tn−
1

2 )dt.

We now introduce the Crank–Nicolson reconstruction Û of U by

(2.9) Û(t) := Un−1 −

∫ t

tn−1

AU(s) ds+ Φ(t) ∀t ∈ In .

We can interpret this formula as the result of formally replacing the constants Un− 1

2

and f(tn−
1

2 ) in (2.2) by their piecewise linear counterparts U and ϕ, and next inte-
grating −AU + ϕ from tn−1 to t. Consequently

Û ′(t) + AU(t) = ϕ(t), ∀t ∈ In.
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Evaluating the integral in (2.9) by the trapezoidal rule, we obtain

(2.10) Û(t) = Un−1 −
1

2
(t− tn−1)A[U(t) + Un−1] + Φ(t) ∀t ∈ In ,

which can also be written as

Û(t) = Un−1 − A[(t− tn−1)Un−1 +
1

2
(t− tn−1)2∂̄Un] + Φ(t) ∀t ∈ In .

Obviously Û(tn−1) = Un−1. Furthermore, in view of (2.8) and (2.2), we have

Û(tn) = Un−1 − knAU
n− 1

2 + Φ(tn)

= Un−1 + kn[−AU
n− 1

2 + f(tn−
1

2 )] = Un−1 + kn∂̄U
n = Un.

Thus, Û and U coincide at the nodes t0, . . . , tN ; in particular, Û : [0, T ] → H is
continuous.

Remark 2.1 (Choice of ϕ). Let t̃ ∈ In. Since f(t) = f(t̃)+f ′(t̃)(t− t̃)+O(k2n), t ∈ In,
it is easily seen that the only affine functions ϕ satisfying

sup
t∈In

|f(t)− ϕ(t)| = O(k2n)

are the ones of the form

ϕ(t) = f(t̃) +
[

f ′(t̃) +O(kn)
]

(t− t̃) +O(k2n).

Obviously
∫

In

ϕ(t)dt = knf(t̃) +
1

2

[

f ′(t̃) +O(kn)
]{

(tn − t̃)2 − (tn−1 − t̃)2
}

+O(k3n);

therefore, for f ′(t̃) 6= 0, the requirement
∫

In
ϕ(t)dt = knf(t̃) leads to t̃ = tn−

1

2 and

ϕ(t) = f(tn−
1

2 ) +
[

f ′(tn−
1

2 ) +O(kn)
]

(t− tn−
1

2 ).

These comments demonstrate the special features of the midpoint method among
the one-stage Runge–Kutta methods.

Furthermore, our choice (2.6) is motivated by the fact that for all affine functions

ϕ on In we have
∫

In
ϕ(s)ds = knϕ(t

n− 1

2 ), whence the requirement
∫

In
ϕ(s)ds =

knf(t
n− 1

2 ), see (2.8), is satisfied if and only if ϕ interpolates f at tn−
1

2 . Now, to
ensure that ϕ(t) is a second order approximation to f(t), we let ϕ interpolate f at

an additional point tn,⋆ ∈ [tn−1, tn]; of course, in the case tn,⋆ = tn−
1

2 , ϕ is the affine

Taylor polynomial of f around tn−
1

2 . In the sequel we let tn,⋆ := tn−1. �

In view of (2.9) and (2.6), we have

(2.11) Û ′(t) + AU(t) = f(tn−
1

2 ) +
2

kn
(t− tn−

1

2 )[f(tn−
1

2 )− f(tn−1)], t ∈ In;
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therefore, the residual R̂(t) of Û ,

(2.12) R̂(t) := Û ′(t) + AÛ(t)− f(t), t ∈ In,

can be written in the form

(2.13)
R̂(t) = A[Û(t)− U(t)]

+
{

f(tn−
1

2 ) +
2

kn
(t− tn−

1

2 )[f(tn−
1

2 )− f(tn−1)]− f(t)
}

, t ∈ In.

We will see later that the a posteriori quantity R̂(t) is of second order; compare with
(2.5).

2.3. The Crank–Nicolson–Galerkin method. Next we consider the discretiza-
tion of (2.1) by the Crank–Nicolson–Galerkin method. The Crank–Nicolson–Galer-
kin approximation to u is defined as follows: We seek U : [0, T ] → D(A), continuous
and piecewise linear in time, which interpolates the values {Un}Nn=0 given by

(2.14) ∂̄Un + AUn− 1

2 =
1

kn

∫

In

f(t)dt, n = 1, . . . , N,

with U0 = u0. This function U can be expressed in terms of its nodal values,

(2.15) U(t) = Un− 1

2 + (t− tn−
1

2 )∂̄Un, t ∈ In.

For t ∈ In, U
′(t) = ∂̄Un, and (2.14) takes the form

(2.16) U ′(t) + AUn− 1

2 =
1

kn

∫

In

f(t)dt, n = 1, . . . , N.

Now, 1
kn

∫

In
ψ(t)dt is the L2 orthogonal projection of a function ψ onto the space

of constant functions on In, and
∫

In
U(t)dt = knU

n− 1

2 ; therefore (2.16) yields the
pointwise equation for the Crank–Nicolson–Galerkin approximation

(2.17) U ′(t) + P0AU(t) = P0f(t) ∀t ∈ In,

with P0 denoting the L2 orthogonal projection operator onto the space of constant
functions in In. Equivalently, as it is customary, this method can be seen as a finite
element in time method, [4],

(2.18)

∫

In

[

(U ′, v) + (AU, v)
]

dt =

∫

In

(f, v)dt ∀v ∈ D(A) .

For a priori results for general Continuous Galerkin methods for various evolution
p.d.e’s cf. [3, 4, 14, 15].

Let R(t),

(2.19) R(t) := U ′(t) + AU(t)− f(t),
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denote the residual of U. In view of (2.17), the residual can also be written in the
form

(2.20) R(t) = A[U(t)− P0U(t)]− [f(t)− P0f(t)].

However, this residual is not appropriate for our purposes, since, even in the case of
an o.d.e. u′(t) = f(t), R(t) can only be of first order, although our approximations
are piecewise polynomials of degree one.

2.4. Crank–Nicolson–Galerkin reconstruction. To recover the optimal order
O(k2n), we introduce the Crank–Nicolson–Galerkin reconstruction Û of the approx-

imate solution U, namely the continuous and piecewise quadratic function Û :
[0, T ] → H defined by

(2.21) Û(t) := Un−1 −

∫ t

tn−1

[AU(s)− P1f(s)] ds ∀t ∈ In.

Hence

(2.22) Û(t) = Un−1 −
1

2
(t− tn−1)A[U(t) + Un−1] +

∫ t

tn−1

P1f(s)ds, t ∈ In ,

with P1 denoting the L2 orthogonal projection operator onto the space of linear
polynomials in In; that Û(t) is continuous, namely Û(tn) = Un, is a consequence of
∫

In
P1f =

∫

In
f. Obviously, Û satisfies the following pointwise equation:

(2.23) Û ′(t) + AU(t) = P1f(t) ∀t ∈ In;

compare with (2.17). In view of (2.23), the residual R̂(t),

(2.24) R̂(t) := Û ′(t) + AÛ(t)− f(t),

of Û can also be written as

(2.25) R̂(t) = A[Û(t)− U(t)] + [P1f(t)− f(t)], t ∈ In.

R̂(t) is an a posteriori quantity and, as we will see in Section 3, it is of second order
at least in some cases.

3. Estimation of Û − U

In this section we will estimate Û−U for both the Crank–Nicolson and the Crank–
Nicolson–Galerkin methods; also we will derive representations of Û − U that will
be useful in the sequel.

We let V := D(A1/2) and denote the norms in H and in V by | · | and ‖ · ‖,
‖v‖ := |A1/2v| = (Av, v)1/2, respectively. We identify H with its dual, and let V ⋆ be
the dual of V ( V ⊂ H ⊂ V ⋆ ). We still denote by (·, ·) the duality pairing between
V ⋆ and V, and by ‖ · ‖⋆ the dual norm on V ⋆, ‖v‖⋆ := |A−1/2v| = (v, A−1v)1/2.
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3.1. The Crank–Nicolson method. From (2.10) we obtain

Û(t)− U(t) = Un−1 − U(t)−
1

2
(t− tn−1)A[U(t) + Un−1] + Φ(t)

= −(t− tn−1)∂̄Un −
1

2
(t− tn−1)A[U(t) + Un−1] + Φ(t) .

Therefore, in view of (2.2),

Û(t)− U(t) = (t− tn−1)
[

AUn− 1

2 − f(tn−
1

2 )
]

−
1

2
(t− tn−1)A[U(t) + Un−1] + Φ(t)

= −
1

2
(t− tn−1)A[U(t)− Un] + Φ(t)− (t− tn−1)f(tn−

1

2 ) ,

whence, using (2.7), for t ∈ In,

(3.1) Û(t)− U(t) = (t− tn−1)(tn − t)
(1

2
A∂̄Un −

1

kn
[f(tn−

1

2 )− f(tn−1)]
)

,

from which we immediately see that maxt∈In |Û(t)− U(t)| = O(k2n).

3.2. The Crank–Nicolson–Galerkin method. Subtracting (2.15) from (2.22),
and utilizing (2.14), for t ∈ In we obtain

(3.2)

Û(t)− U(t) =
1

2
(t− tn−1)(tn − t)A∂̄Un

−
t− tn−1

kn

∫

In

f(s)ds+

∫ t

tn−1

P1f(s)ds.

Now, it is easily seen that

(3.3) (P1f)(t) =
1

kn

∫

In

f(s)ds+
12

k3n
(t− tn−

1

2 )

∫

In

f(s)(s− tn−
1

2 )ds,

and (3.2) can be rewritten in the form

(3.4) Û(t)− U(t) = (t− tn−1)(tn − t)
(1

2
A∂̄Un −

6

k3n

∫

In

f(s)(s− tn−
1

2 )ds
)

.

Therefore, U and Û coincide at the endpoints of In, and, consequently, at all nodes
t0, . . . , tN . From (3.4) we immediately see that maxt∈In |Û(t)− U(t)| = O(k2n).

Let us write both (3.1) and (3.4) in the form

(3.5) Û(t)− U(t) =
1

2
(t− tn−1)(tn − t)

(

A∂̄Un − ρf,n
)

;

here ρf,n = ρCN
f,n for the Crank–Nicolson method and ρf,n = ρCNG

f,n for the Crank–
Nicolson–Galerkin method, respectively, with

(3.6) ρCN
f,n :=

2

kn

[

f(tn−
1

2 )− f(tn−1)
]
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and

(3.7) ρCNG
f,n :=

12

k3n

∫

In

f(s)(s− tn−
1

2 )ds =
12

k3n

∫

In

(

f(s)− f(tn−
1

2 )
)

(s− tn−
1

2 )ds.

Consequently, both ρCN
f,n and ρCNG

f,n depend on the first derivative of f .

4. Smooth data error estimates

Let the errors e and ê be defined by e := u−U and ê := u− Û . Subtracting (2.11)
or (2.23), respectively, from the differential equation in (2.1), we obtain

(4.1) ê′(t) + Ae(t) = Rf (t),

with Rf = RCN
f for the Crank–Nicolson method and Rf = RCNG

f for the Crank–
Nicolson–Galerkin method, respectively, defined by

(4.2) RCN
f (t) := f(t)−

{

f(tn−
1

2 ) +
2

kn
(t− tn−

1

2 )[f(tn−
1

2 )− f(tn−1)]
}

, t ∈ In,

and

(4.3) RCNG
f (t) := f(t)− P1f(t), t ∈ In.

We make the following further regularity assumption on Û , defined in (2.9) and
(2.21):

Û(t) ∈ V, ∀t ∈ [0, T ].

4.1. Energy estimates. Taking in (4.1) the inner product with ê(t), we obtain

(4.4)
1

2

d

dt
|ê(t)|2 +

(

Ae(t), ê(t)
)

=
(

Rf (t), ê(t)
)

.

Now,
(

Ae(t), ê(t)
)

=
1

2

(

‖e(t)‖2 + ‖ê(t)‖2 − ‖ê(t)− e(t)‖2
)

and
(

Rf(t), ê(t)
)

≤ ‖Rf(t)‖
2
⋆ +

1

4
‖ê(t)‖2 ;

therefore, (4.4) yields

(4.5)
d

dt
|ê(t)|2 + ‖e(t)‖2 +

1

2
‖ê(t)‖2 ≤ ‖Û(t)− U(t)‖2 + 2‖Rf(t)‖

2
⋆ .

We recall that ‖v‖ = |A1/2v| and ‖v‖⋆ = |A−1/2v|.
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4.1.1. Upper bound. Since ê(0) = 0, integration of (4.5) from 0 to t ≤ T yields

(4.6)

|ê(t)|2 +

∫ t

0

(

‖e(s)‖2 +
1

2
‖ê(s)‖2

)

ds

≤

∫ t

0

‖Û(s)− U(s)‖2 ds+ 2

∫ t

0

‖Rf(s)‖
2
⋆ ds .

From (4.6) we easily conclude

(4.7)

max
0≤τ≤t

{

|ê(τ)|2 +

∫ τ

0

(

‖e(s)‖2 +
1

2
‖ê(s)‖2

)

ds
}

≤

∫ t

0

‖Û(s)− U(s)‖2 ds+ 2

∫ t

0

‖Rf (s)‖
2
⋆ ds .

Next, let β be given by

(4.8) β :=

∫ 1

0

t2(1− t)2dt =
1

30
;

then, obviously,
∫

In

(t− tn−1)2(tn − t)2dt = β k5n .

With this notation, in view of (3.5), we have

(4.9)

∫ tm

0

‖Û(t)− U(t)‖2 dt ≤
β

2

m
∑

n=1

k5n

(

|A3/2∂̄Un|2 + ‖ρf,n‖
2
)

.

4.1.2. Lower bound. Obviously,

‖Û(s)− U(s)‖ ≤ ‖e(s)‖+ ‖ê(s)‖

and thus

(4.10) ‖Û(s)− U(s)‖2 ≤ 3
(

‖e(s)‖2 +
1

2
‖ê(s)‖2

)

.

In particular, combining the upper and lower bounds, we have

(4.11)

1

3

∫ t

0

‖Û(s)− U(s)‖2 ds ≤

∫ t

0

(

‖e(s)‖2 +
1

2
‖ê(s)‖2

)

ds

≤

∫ t

0

‖Û(s)− U(s)‖2 ds+ 2

∫ t

0

‖Rf(s)‖
2
⋆ ds .

Invoking (4.6), this shows that |ê(t)|2 is dominated by
∫ t

0

(

‖e(s)‖2 + 1
2
‖ê(s)‖2

)

ds,

the energy norm error, plus data oscillation
∫ t

0
‖Rf(s)‖

2
⋆ds. We will next estimate

the lower bounds above in terms of Un and data in analogy to the upper bound in
(4.9). To this end we first note that (3.5) yields

‖Û(t)− U(t)‖2 ≥
1

4
(t− tn−1)2(tn − t)2

(1

2
|A3/2∂̄Un|2 − ‖ρf,n‖

2
)

,
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whence, in view of (4.8), we have

(4.12)

∫ tm

0

‖Û(s)− U(s)‖2 ds ≥
β

8

m
∑

n=1

k5n |A
3/2∂̄Un|2 −

β

4

m
∑

n=1

k5n ‖ρf,n‖
2 .

Therefore, (4.11), (4.9) and (4.12) imply

(4.13)

β

24

m
∑

n=1

k5n |A
3/2∂̄Un|2 −

β

12

m
∑

n=1

k5n ‖ρf,n‖
2

≤

∫ tm

0

(

‖e(s)‖2 +
1

2
‖ê(s)‖2

)

ds

≤
β

2

m
∑

n=1

k5n

(

|A3/2∂̄Un|2 + ‖ρf,n‖
2
)

+ 2

∫ tm

0

‖Rf(s)‖
2
⋆ ds .

Note that error bounds of this type are customary in the a posteriori analysis of
elliptic problems in which data oscillation appear with different signs in the upper
and lower bounds. On the other hand, if f is constant, then the lower and upper
bounds are exactly the same up to a constant:

(4.14)

β

24

m
∑

n=1

k5n |A
3/2∂̄Un|2 ≤

∫ tm

0

(

‖e(s)‖2 +
1

2
‖ê(s)‖2

)

ds

≤
β

2

m
∑

n=1

k5n |A
3/2∂̄Un|2 .

Let us also note that, in the case of f constant, in view of (3.5), the estimate (4.11),
for t = tm, can be written in the form of (4.14) with the lower bound multiplied by
2 and the upper bound by 1/2.

Remark 4.1 (Optimality of the lower bound). The pointwise lower bound

(4.15) |(Û − U)(s)| ≤ |e(s)|+ |ê(s)|, s ∈ [0, T ],

cannot be expected to be of exactly second order for all s, since Û − U vanishes
at the nodes t0, . . . , tN . However, we can conlcude from (4.15) the following lower
bound in the ‖ · ‖L∞(H)−norm, with ‖v‖L∞(H) := maxt∈[0,T ] |v(t)| :

(4.16) ‖Û − U‖L∞(H) ≤ ‖e‖L∞(H) + ‖ê‖L∞(H).

For the trivial case that the exact solution u is an affine function, and so is f , then
both the Crank–Nicolson approximation U and the Crank–Nicolson reconstruction
Û coincide with u; thus (4.16) is an equality. Next consider the case of u nonaffine.
In view of (3.1), we have

|(Û − U)(tn−
1

2 )| =
k2n
4

∣

∣

∣

1

2
A∂̄Un −

1

kn

[

f(tn−
1

2 )− f(tn−1)
]

∣

∣

∣
.
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Now, for smooth data, we have, as kn → 0,

1

2
A∂̄Un −

1

kn

[

f(tn−
1

2 )− f(tn−1)
]

→
1

2

[

Au′(tn−1)− f ′(tn−1)
]

= −
1

2
u′′(tn−1).

If u′′(tn−1) 6= 0, we then have ‖Û − U‖L∞(H;In) ≥ ck2n with a positive constant c.
This is the generic situation.

That the lower bound in the L2(V )−norm is of the same form as the upper bound,
in the case of f constant, can be seen from (4.14). Otherwise, let us note that, in
view of (3.1) and (4.8),

‖Û − U‖2L2(V ) = β
N
∑

n=1

k5n

∥

∥

∥

1

2
A∂̄Un −

1

kn

[

f(tn−
1

2 )− f(tn−1)
]

∥

∥

∥

2

and, assuming that the partition is quasiuniform and letting k := maxn kn,

‖Û − U‖2L2(V ) ≥ cβk4
N
∑

n=1

kn

∥

∥

∥

1

2
A∂̄Un −

1

kn

[

f(tn−
1

2 )− f(tn−1)
]

∥

∥

∥

2

.

Now, as k → 0,

N
∑

n=1

kn

∥

∥

∥

1

2
A∂̄Un −

1

kn

[

f(tn−
1

2 )− f(tn−1)
]

∥

∥

∥

2

→
∥

∥

∥

1

2
u′′
∥

∥

∥

2

L2(V )
,

whence, if u is not affine,

(4.17) ‖Û − U‖L2(V ) ≥ Ck2. �

Remark 4.2 (Alternative estimate in L∞(H)). Combining (4.10) and (4.6) we can
replace the factor 1 on the right-hand side of (4.7) by 2

3
, if we only want to estimate

the first term on the left-hand side of (4.7). Indeed, in view of (4.10), from (4.6) we
obtain

|ê(t)|2 +
1

3

∫ t

0

‖Û(s)− U(s)‖2 ds

≤ |ê(t)|2 +

∫ t

0

(

‖e(s)‖2 +
1

2
‖ê(s)‖2

)

ds

≤

∫ t

0

‖Û(s)− U(s)‖2 ds+ 2

∫ t

0

‖Rf(s)‖
2
⋆ ds ,

i.e.,

|ê(t)|2 ≤
2

3

∫ t

0

‖Û(s)− U(s)‖2 ds+ 2

∫ t

0

‖Rf (s)‖
2
⋆ ds ,

and thus

(4.18) max
0≤τ≤t

|ê(τ)|2 ≤
2

3

∫ t

0

‖Û(s)− U(s)‖2 ds+ 2

∫ t

0

‖Rf(s)‖
2
⋆ ds . �
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The following stability estimate for the Crank–Nicolson scheme will be useful in
the convergence proof:

Lemma 4.1 (Stability). Let {Un}Nn=0 be the Crank–Nicolson approximations for

(2.1),

(4.19) ∂̄Un + AUn− 1

2 = f̄n ,

where either f̄n = f(tn−
1

2 ) or f̄n = 1
kn

∫

In
f(s)ds. Then the following estimate holds

for m ≤ N :

(4.20)

m
∑

n=1

kn|A
3/2∂̄Un|2 + |A2Um|2 ≤ |A2U0|2 +

m
∑

n=1

kn|A
3/2f̄n|2 .

Proof. We apply A to the scheme,

A∂̄Un + A2Un− 1

2 = Af̄n ,

and take the inner product with 2knA
2(Un − Un−1) to obtain

2kn|A
3/2∂̄Un|2 + |A2Un|2 − |A2Un−1|2 = 2kn (Af̄

n, A2∂̄Un) .

Summing here from n = 1 to m, we get
m
∑

n=1

2kn|A
3/2∂̄Un|2 + |A2Um|2 = |A2U0|2 + 2

m
∑

n=1

kn(Af̄
n, A2∂̄Un),

whence the Cauchy–Schwarz and the arithmetic–geometric mean inequalities yield
m
∑

n=1

2kn|A
3/2∂̄Un|2 + |A2Um|2 ≤ |A2U0|2

+
m
∑

n=1

kn|A
3/2f̄n|2 +

m
∑

n=1

kn|A
3/2∂̄Un|2,

and the proof is complete. �

From (4.6), (4.9), (4.20) and (3.5) we conclude the following Theorem. We em-
phasize that the optimal order a priori error estimate (4.23), depending only on
the data (see below) follows from our a posteriori estimate (4.6). This shows, in
particular, that the a posteriori estimate is of optimal (second) order.

Theorem 4.1 (Error estimates). Let {Un}Nn=0 be either the Crank–Nicolson approx-

imations or the Crank–Nicolson–Galerkin approximations to the solution of problem

(2.1), e = u − U and ê = u − Û . The following a posteriori estimate is valid for

m ≤ N :

(4.21) |ê(tm)|2 +

∫ tm

0

(

‖e(s)‖2 +
1

2
‖ê(s)‖2

)

ds ≤
β

2

m
∑

n=1

k5n |A
3/2∂̄Un|2 + E [ f ]
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with β given by (4.8) and

(4.22) E [ f ] := 2

∫ tm

0

‖Rf (s)‖
2
⋆ds+

β

2

m
∑

n=1

k5n‖ρf,n‖
2.

Here Rf and ρf,n are given by (4.2) and (3.6), respectively, for the Crank–Nicolson

method, and by (4.3) and (3.7) for the Crank–Nicolson–Galerkin method. Further-

more, if U0 ∈ D(A2) and f(t) ∈ D(A3/2), then the following a priori estimate holds

for m ≤ N :

(4.23)

|ê(tm)|2+

∫ tm

0

(

‖e(s)‖2 +
1

2
‖ê(s)‖2

)

ds

≤
β

2
max

n
k4n

(

|A2U0|2 +

m
∑

n=1

kn|A
3/2f̄n|2

)

+ E [ f ],

with f̄n := f(tn−
1

2 ) for the Crank–Nicolson method, and f̄n := 1
kn

∫

In
f(s)ds for the

Crank–Nicolson–Galerkin method.

Remark 4.3 (Equivalent upper bound for CNG). In the case of the Crank–Nicolson–
Galerkin method, it is easily seen that (4.23) yields

(4.24)

|ê(tm)|2+

∫ tm

0

(

‖e(s)‖2 +
1

2
‖ê(s)‖2

)

ds

≤
β

2
max

n
k4n

(

|A2U0|2 +

∫ tm

0

|A3/2f(s)|2ds
)

+ E [ f ] . �

Remark 4.4 (Estimate for E [ f ]). As a by-product of interpolation theory, we realize
that the following optimal order estimate is valid for the error E [ f ] in the forcing
term f :

E [ f ] ≤ C
m
∑

n=1

k2n

∫

In

(

‖f ′′(s)‖2⋆ + ‖f ′(s)‖2
)

ds. �

4.2. Estimates via Duhamel’s principle. We first rewrite the relation (4.1) in
the form

(4.25) ê′(t) + Aê(t) = RÛ(t) +Rf (t)

with

(4.26) RÛ(t) := A[U(t)− Û(t)].

We will use Duhamel’s principle in (4.25). Let EA(t) be the solution operator of
the homogeneous equation

(4.27) v′(t) + Av(t) = 0, v(0) = w,
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i.e., v(t) = EA(t)w. It is well known that the family of operators EA(t) has several
nice properties, in particular it is a semigroup of contractions on H generated by
the operator A. Duhamel’s principle applied to (4.25) yields

(4.28) ê(t) =

∫ t

0

EA(t− s)
[

RÛ(s) +Rf(s)
]

ds .

In the sequel we will use the smoothing property (cf., e.g., Crouzeix [5], Thomée
[21])

(4.29) |AℓEA(t)w| ≤ CA
1

tℓ−m
|Amw| ℓ ≥ m ≥ 0 .

In addition, note that A and EA commute, i.e., AEA(t)w = EA(t)Aw. In particular,
(4.29) can also be written in the form

(4.30) |EA(t)A
ℓw| ≤ CA

1

tℓ−m
|Amw| , ℓ ≥ m ≥ 0 ,

whence |EA(t)w| ≤ CAt
−m|A−mw|. Next, using (4.28) for t = tn, we have

|ê(tn)| ≤

∫

In

∣

∣EA(t
n − s)

[

RÛ(s) +Rf(s)
]
∣

∣ds

+

∫ tn−1

0

∣

∣EA(t
n − s)

[

RÛ(s) +Rf (s)
]
∣

∣ds

≤ CA

∫

In

1

tn − s

∣

∣A−1RÛ(s)
∣

∣ds+ CA

∫

In

∣

∣Rf (s)
∣

∣ds

+ CA

∫ tn−1

0

1

tn − s

∣

∣A−1
[

RÛ (s) +Rf(s)
]
∣

∣ ds

and thus

(4.31)

|ê(tn)| ≤CA

∫

In

1

tn − s

∣

∣A−1RÛ(s)
∣

∣ds+ CA

∫

In

∣

∣Rf (s)
∣

∣ds

+ CA sup
s∈[0,tn−1]

∣

∣A−1
[

RÛ(s) +Rf(s)
]
∣

∣

∫ tn−1

0

1

tn − s
ds .

We now recall (4.26) and (3.5), namely,

(4.32) A−1RÛ(s) = U(s)− Û(s) =
1

2
(t− tn−1)(tn − t)

(

A∂̄Un − ρf,n
)

,

to obtain a bound for the first two terms on the right-hand side of (4.31),

(4.33)

∫

In

1

tn − s

∣

∣A−1RÛ(s)
∣

∣ds+

∫

In

∣

∣Rf(s)
∣

∣ds ≤
k2n
4

∣

∣A∂̄Un
∣

∣ + E1[In; f ],
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with

(4.34) E1[In; f ] :=
k2n
4

∣

∣ρf,n
∣

∣+ knmax
s∈In

∣

∣Rf(s)
∣

∣.

In addition, using again (4.32), we have

(4.35)

sup
s∈[0,tn−1]

∣

∣A−1
[

RÛ(s) +Rf (s)
]
∣

∣

∫ tn−1

0

1

tn − s
ds

≤
1

8
ln(

tn

kn
) max

1≤j≤n−1

(

k2j |A∂̄U
j |
)

+ ln(
tn

kn
) E2[ [0, t

n−1] ; f ]

with

(4.36) E2[ [0, t
n−1] ; f ] :=

1

8
max

1≤j≤n−1

(

k2j |ρf,j|
)

+ max
1≤j≤n−1

sup
s∈Ij

|A−1Rf(s)| .

We have thus proved

Theorem 4.2 (Error estimates). Let {Un}Nn=0 be either the Crank–Nicolson or the

Crank–Nicolson–Galerkin approximations to the solution of problem (2.1). Then,

with the notation of Theorem 4.1, the following a posteriori estimate is valid for

n ≤ N :

(4.37)

|ê(tn)| ≤
1

8
CA

(

2k2n|A∂̄U
n|+ ln(

tn

kn
) max

0≤j≤n−1
k2j |A∂̄U

j |
)

+ CA

(

E1[In; f ] + ln(
tn

kn
) E2[ [0, t

n−1] ; f ]
)

,

with CA the constant of (4.29) for ℓ = 1, m = 0, and the terms involving f are

defined in (4.34) and (4.36). Furthermore, if U0 ∈ D(A2), f(t) ∈ D(A3/2), and

k := max0≤j≤n kj
(

2 + ln( tn

kn
)
)1/2

, the following a priori estimate holds for n ≤ N :

(4.38)

|ê(tn)| ≤
1

8
CA k

2
{(

|A2U0|2 +

n
∑

j=1

kj|A
3/2f̄ j|2

)1/2

+ max
1≤j≤n

|Af̄ j|
}

+ CA

(

E1[In; f ] + ln(
tn

kn
) E2[ [0, t

n−1] ; f ]
)

.

Proof. It only remains to prove (4.38). It immediately follows from (4.19) that

|A∂̄Un| ≤ |A2Un− 1

2 |+ |Af̄n| ≤ max
(

|A2Un+1|, |A2Un|
)

+ |Af̄n|,

and (4.38) thus results from (4.37) in light of (4.20). �
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Remark 4.5 (Alternative bound for CNG). In the case of the Crank–Nicolson–Galerkin
method, it is easily seen that (4.38) yields

(4.39)
|ê(tn)| ≤

1

8
CAk

2
{(

|A2U0|2 +

∫ tn

0

|A3/2f(s)|2ds
)1/2

+ max
0≤s≤tn

|Af(s)|
}

+ CA

(

E1[In; f ] + ln(
tn

kn
) E2[ [0, t

n] ; f ]
)

. �

5. Estimates for initial data with reduced smoothness

In this section our objective is the derivation of a posteriori error estimates in the
case of initial data with reduced smoothness.

Since the initial value problem (2.1) can be split into one with homogeneous initial
data and one with homogeneous equation, and we are mainly concerned with the
effect of the initial data, we focus on the homogeneous initial value problem

(5.1)

{

u′(t) + Au(t) = 0, 0 < t < T,

u(0) = u0.

A typical a priori nonsmooth data estimate reads (see [21])

(5.2) |u(tn)− Un| ≤ C
( k

tn

)s

|U0|,

s being the order of the method at hand and k the constant time step, tn = nk. It is
well known that estimates of this type are available for strongly A(0)−stable sche-
mes, such as the Runge–Kutta–Radau IIA methods, and, in particular, the backward
Euler method. Similar estimates are not available for A(0)−stable schemes; a way
of securing such estimates for A(0)−stable schemes is to start the time–stepping
procedure with a few steps of a strongly A(0)−stable scheme of order s − 1 and
then proceed with the main scheme. For instance, for the Crank–Nicolson method
it suffices to perform the first two steps with the backward Euler scheme and sub-
sequently proceed with the Crank–Nicolson method. The use of the Euler scheme
as starting procedure for the Crank–Nicolson method in order to establish a priori
error estimates for nonsmooth initial data was suggested by Luskin and Rannacher
(see [21], Theorems 7.4 and 7.5). In the a posteriori error analysis we have to derive
estimates with reduced regularity requirements on the initial data, but in a form that
allows efficient monitoring of the time steps. To this end we will establish estimates
that are the a posteriori analogs of Theorems 7.4 and 7.5 of [21] for the following
modification of the scheme: We let U0 := u0 and define the approximations Um to
um := u(tm), m = 1, . . . , N, by

∂̄Un + AUn = 0, n = 1, 2,(5.3i)

∂̄Un + AUn− 1

2 = 0, n = 3, . . . , N.(5.3ii)
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Note first that, even for U0 ∈ H, due to the fact that U1 and U2 are backward Euler
approximations, we have U1 ∈ D(A) and U2 ∈ D(A2); then, obviously, Un ∈ D(A2)
for n ≥ 2. We now proceed to the definition of the reconstruction U.

5.1. Reconstruction. Given the nodal approximations U0, . . . , UN , we define the
approximation U(t) to u(t), t ∈ [0, T ], in the intervals I1 and I2 by interpolating
by piecewise constants at their right ends and at the other subintervals by linearly
interpolating between the nodal values, i.e.,

U(t) = Un, t ∈ In, n = 1, 2,(5.4i)

U(t) = Un + (t− tn)∂̄Un, t ∈ In, n = 3, . . . , N − 1(5.4ii)

(cf. (2.3)). Furthermore, we let the reconstruction Û of U be given by

(5.5) Û(t) := Un−1 −

∫ t

tn−1

AU(s) ds, t ∈ In,

i.e.,

Û(t) = Un−1 − (t− tn−1)AUn, t ∈ In, n = 1, 2,(5.6i)

Û(t) = Un−1 −
1

2
(t− tn−1)A[U(t) + Un−1], t ∈ In, 3 ≤ n ≤ N.(5.6ii)

We observe that (5.6i) coincides with the continuous piecewise linear reconstruction
of [19], whereas (5.6ii) agrees with the continuous piecewise quadratic reconstruction
(2.10) for f = 0. In view of (5.3i), we obtain

(5.7i) U(t)− Û(t) = −(tn − t)AUn, t ∈ In, n = 1, 2.

Furthermore, in view of (5.3ii),

(5.7ii) U(t)− Û(t) = −
1

2
(t− tn−1)(tn − t)A∂̄Un, t ∈ In, 3 ≤ n ≤ N

(see (3.1)). Note that, even for U0 ∈ H\D(A), Û is well defined; this would not be
the case if U1 and U2 were Crank–Nicolson approximations because then Un /∈ D(A)
for any n.

It immediately follows from (5.5) that

(5.8) ê′(t) + Ae(t) = 0, 0 < t < T ;

compare with (4.1) for f = 0. Next, we will briefly discuss some of the estimators
we obtain by applying the energy method or Duhamel’s principle to the above error
equation.
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5.2. Estimate I: Energy method. Taking in (5.8) the inner product with ê(t),
and recalling that

(

Ae(t), ê(t)
)

=
1

2

(

‖e(t)‖2 + ‖ê(t)‖2 − ‖ê(t)− e(t)‖2
)

,

we obtain

(5.9) |ê(t)|2 +

∫ t

0

(

‖ê(s)‖2 + ‖e(s)‖2
)

ds ≤

∫ t

0

‖Û(s)− U(s)‖2 ds, 0 ≤ t ≤ T,

cf. (4.6). Now, in view of (5.7i),

‖Û(t)− U(t)‖2 = (tn − t)2|A3/2Un|2, n = 1, 2;

therefore

(5.10)

∫ t2

0

‖Û(s)− U(s)‖2 ds =
1

3

(

k31|A
3/2U1|2 + k32|A

3/2U2|2
)

=
1

3

(

k31|A
1/2∂̄U1|2 + k32|A

1/2∂̄U2|2
)

.

Furthermore,

(5.11)

∫ tm

t2
‖Û(s)− U(s)‖2 ds ≤

β

2

m−1
∑

n=2

k5n|A
3/2∂̄Un|2,

with β as in (4.8). We thus deduce the upper a posteriori estimate

(5.12)

|ê(t)|2 +

∫ t

0

(

‖ê(s)‖2 + ‖e(s)‖2
)

ds ≤
1

3

(

k31|A
1/2∂̄U1|2 + k32|A

1/2∂̄U2|2
)

+
β

2

m−1
∑

n=2

k5n|A
3/2∂̄Un|2;

compare with (4.21) for f = 0. Proceeding as in subsection 4.1.2 we also get a sharp
lower bound. Note that the above estimate holds provided that U0 ∈ D(A1/2).
Further reasonable error control based on this estimate requires us to balance the
terms k1|A

1/2∂̄U1|, k2|A
1/2∂̄U2| and k2n|A

3/2∂̄Un|.

5.3. Estimate II: Duhamel principle. We next modify arguments of Sections
4.2 to obtain the final result

(5.13)
|ê(tn)| ≤

1

8
CA

{

2k2n|A∂̄U
n|

+ ln(
tn

kn
)max

(

k1|∂̄U
1|, k2|∂̄U

2| , max
2≤j≤n−1

(

k2j |A∂̄U
j |
)

)}

,

which could be compared with (4.37) for f = 0. Note that the above estimate
holds, provided that U0 ∈ H. Further reasonable error control based on this estimate
requires us to balance the terms k1|∂̄U

1|, k2|∂̄U
2| and k2n|A∂̄U

n|.
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6. Error estimates for nonlinear equations

In this section we consider the discretization of (1.1). We assume that B(t, ·) can
be extended to an operator from V into V ⋆. A natural condition for (1.1) to be
locally of parabolic type is the following local one-sided Lipschitz condition:

(6.1)
(

B(t, v)− B(t, w), v − w
)

≤ λ‖v − w‖2 + µ|v − w|2 ∀v, w ∈ Tu

in a tube Tu, Tu := {v ∈ V : mint ‖u(t)− v‖ ≤ 1}, around the solution u, uniformly
in t, with a constant λ less than one and a constant µ. With F (t, v) := Av−B(t, v),
it is easily seen that (6.1) can be written in the form of a G̊arding–type inequality,

(6.2) (F (t, v)− F (t, w), v − w) ≥ (1− λ)‖v − w‖2 − µ|v − w|2 ∀v, w ∈ Tu .

Furthermore, in order to ensure that an appropriate residual is of the correct order,
we will make use of the following local Lipschitz condition for B(t, ·) :

(6.3) ‖B(t, v)− B(t, w)‖⋆ ≤ L‖v − w‖ ∀v, w ∈ Tu

with a constant L, not necessarily less than one. Here the tube Tu is defined in
terms of the norm of V for concreteness. The analysis may be modified to yield a
posteriori error estimates under analogous conditions for v and w belonging to tubes
defined in terms of other norms, not necessarily the same for both arguments.

In the sequel the estimates are proved under the assumption that Û(t), U(t) ∈ Tu,
for all t ∈ [0, T ]. This assumption can, in some cases, be verified a posteriori under

conditional assumptions on Û and U. Thus the final result will hold, pending on
a condition that Û and U may or may not satisfy. However the validity of this
condition can be computationally verified. The derivation of these bounds requires
the use of fine properties of the specific underlying p.d.e., as was done in [16, 18],
and therefore goes beyond the scope of the present paper.

We refer to [3] for existence and local uniqueness results for the continuous
Galerkin approximations, in particular for the Crank–Nicolson–Galerkin approxi-
mations, as well as for a priori error estimates. Concrete examples of parabolic
equations satisfying (6.1) and (6.3) in appropriate tubes are given in [1] and [2].

6.1. The Crank–Nicolson–Galerkin method. We recall that this method for
(1.1) consists of seeking a function U : [0, T ] → V, continuous and piecewise linear,
such that U(0) = u(0) and

(6.4) ∂̄Un + AUn− 1

2 =
1

kn

∫

In

B(s, U(s))ds,

where Un := U(tn), Un− 1

2 := 1
2

(

Un + Un−1
)

= U(tn−
1

2 ). The Crank–Nicolson–
Galerkin approximate solution U can be expressed in terms of its nodal values Un−1

and Un,

(6.5) U(t) = Un− 1

2 + (t− tn−
1

2 )∂̄Un, t ∈ In.
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In view of (2.22), we let the Crank–Nicolson–Galerkin reconstruction Û of U be

(6.6) Û(t) := Un−1 − A

∫ t

tn−1

U(s) ds+

∫ t

tn−1

P1B(s, U(s))ds,

i.e.,

(6.7) Û(t) = Un−1 −
1

2
(t− tn−1)A[U(t) + Un−1] +

∫ t

tn−1

P1B(s, U(s))ds, t ∈ In.

It immediately follows from (6.6) that

(6.8) Û ′(t) + AU(t) = P1B(t, U(t)).

Using (6.4), it easily follows from (6.5) and (6.7) that

(6.9)

U(t)− Û(t) =−
1

2
(t− tn−1)(tn − t)A∂̄Un

+
t− tn−1

kn

∫

In

B(s, U(s))ds−

∫ t

tn−1

P1B(s, U(s))ds;

therefore, again using (6.4), we have

(6.10)

U(t)− Û(t) =
1

2
(t− tn−1)(tn − t)

(

A2Un− 1

2 −
1

kn

∫

In

AB(s, U(s))ds
)

+
t− tn−1

kn

∫

In

B(s, U(s))ds−

∫ t

tn−1

P1B(s, U(s))ds,

t ∈ In. Hence, in view of (3.3),

(6.10′)

U(t)− Û(t) =
1

2
(t− tn−1)(tn − t)

(

A2Un− 1

2 −
1

kn

∫

In

AB(s, U(s))ds
)

+
6

k3n
(t− tn−1)(tn − t)

∫

In

B(s, U(s))(s− tn−
1

2 )ds,

t ∈ In, from which we immediately see that maxt∈In |U(t)− Û(t)| = O(k2n).

6.2. The Crank–Nicolson method. The Crank–Nicolson approximations Um ∈
D(A) to the nodal values um := u(tm) of the solution u of (1.1) are defined by

(6.11) ∂̄Un + AUn− 1

2 = B(tn−
1

2 , Un− 1

2 ), n = 1, . . . , N,

with U0 := u(0). As before, we define the Crank–Nicolson approximation U to u by
linearly interpolating between the nodal values Un−1 and Un,

(6.12) U(t) = Un− 1

2 + (t− tn−
1

2 )∂̄Un, t ∈ In.



22 G. AKRIVIS, CH. MAKRIDAKIS, AND R. H. NOCHETTO

Let b : In → H be the linear interpolant of B(·, U(·)) at the nodes tn−1 and tn−
1

2 ,

(6.13)
b(t) = B(tn−

1

2 , Un− 1

2 )

+
2

kn
(t− tn−

1

2 )[B(tn−
1

2 , Un− 1

2 )− B(tn−1, Un−1)], t ∈ In.

Inspired by (2.9), we define the Crank–Nicolson reconstruction Û of U by

(6.14) Û(t) := Un−1 − A

∫ t

tn−1

U(s) ds+

∫ t

tn−1

b(s)ds, t ∈ In,

i.e.,

(6.15)
Û(t) =Un−1 −

1

2
(t− tn−1)A[U(t) + Un−1] + (t− tn−1)B(tn−

1

2 , Un− 1

2 )

+
1

kn
(t− tn−1)(tn − t)[B(tn−

1

2 , Un− 1

2 )−B(tn−1, Un−1)],

t ∈ In. Note that (6.15) reduces to (2.10) in the case B is independent of u.
It immediately follows from (6.14) that

(6.16) Û ′(t) + AU(t) = b(t), t ∈ In.

Furthermore, it is easily seen that, for t ∈ In,

(6.17)
U(t)− Û(t)

= −
1

2
(t− tn−1)(tn − t)

{

A∂̄Un −
2

kn

[

B(tn−
1

2 , Un− 1

2 )− B(tn−1, Un−1)
]

}

.

6.3. Error estimates. We now derive a posteriori error estimates for both the
Crank–Nicolson–Galerkin and the Crank–Nicolson method. Let e := u − U and
ê := u− Û . The following estimates hold under the assumption that Û(t), U(t) ∈ Tu
for all t ∈ [0, T ].

Crank–Nicolson–Galerkin method. Subtracting (6.8) from the differential equation
in (1.1), we obtain

(6.18) ê′(t) + Ae(t) = B(t, u(t))− P1B(t, U(t)),

which we rewrite in the form

(6.19) ê′(t) + Ae(t) = B(t, u(t))− B(t, U(t)) +RU(t),

with

(6.20) RU(t) = B(t, U(t))− P1B(t, U(t)).

Now,
(

B(t, u(t))− B(t, U(t)), ê(t)
)

=
(

B(t, u(t))− B(t, U(t)), e(t)
)

+
(

B(t, u(t))− B(t, U(t)), U(t)− Û(t)
)



A POSTERIORI ESTIMATES FOR THE CRANK–NICOLSON METHOD 23

and, in view of (6.1) and (6.3), elementary calculations yield

(6.21)
(

B(t, u(t))− B(t, U(t)), ê(t)
)

≤ λ‖ê(t)‖2 + µ|e(t)|2 + L‖e(t)‖ ‖(Û − U)(t)‖.

Similarly,
(

B(t, u(t))− B(t, U(t)), ê(t)
)

=
(

B(t, u(t))− B(t, Û(t)), ê(t)
)

+
(

B(t, Û(t))− B(t, U(t)), ê(t)
)

and

(6.22)
(

B(t, u(t))− B(t, U(t)), ê(t)
)

≤ λ‖ê(t)‖2 + µ|ê(t)|2 + L‖ê(t)‖ ‖(Û − U)(t)‖.

Summing (6.21) and (6.22), we obtain

(6.23)
2
(

B(t, u(t))− B(t, U(t)), ê(t)
)

≤ λ
(

‖ê(t)‖2 + ‖e(t)‖2
)

+ µ
(

|ê(t)|2 + |e(t)|2
)

+ L
(

‖ê(t)‖+ ‖e(t)‖
)

‖(Û − U)(t)‖.

Now,

|e(t)|2 ≤
(

|ê(t)|+ |(Û − U)(t)|
)2

≤ 2|ê(t)|2 + 2|(Û − U)(t)|2

and

L
(

‖ê(t)‖+ ‖e(t)‖
)

‖(Û − U)(t)‖

≤
ε

2

(

‖ê(t)‖+ ‖e(t)‖
)2

+
L2

2ε
‖(Û − U)(t)‖2

≤ ε
(

‖ê(t)‖2 + ‖e(t)‖2
)

+
L2

2ε
‖(Û − U)(t)‖2.

Consequently, from (6.23), we obtain

(6.24)

2
(

B(t, u(t))− B(t, U(t)), ê(t)
)

≤ λ
(

‖ê(t)‖2 + ‖e(t)‖2
)

+ 3µ|e(t)|2

+ 2µ|(Û − U)(t)|2 + ε
(

‖ê(t)‖2 + ‖e(t)‖2
)

+
L2

2ε
‖(Û − U)(t)‖2

for any positive ε.
Taking in (6.19) the inner product with ê(t) we obtain

(6.25)

d

dt
|ê(t)|2 + ‖e(t)‖2 + ‖ê(t)‖2 = ‖Û(t)− U(t)‖2

+ 2
(

B(t, u(t))− B(t, U(t)), ê(t)
)

+ 2
(

RU(t), ê(t)
)

,

whence, in view of (6.24),

(6.26)

d

dt
|ê(t)|2 + (1− λ− 2ε)

(

‖ê(t)‖2 + ‖e(t)‖2
)

≤ 3µ|ê(t)|2

+
(

1 +
L2

2ε

)

‖(Û − U)(t)‖2 + 2µ|(Û − U)(t)|2 +
1

ε
‖RU(t)‖

2
⋆.
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We thus easily obtain the desired a posteriori error estimate via Gronwall’s lemma

(6.27)

|ê(t)|2 + (1− λ− 2ε)

∫ t

0

e3µ(t−s)
(

‖ê(s)‖2 + ‖e(s)‖2
)

ds

≤

∫ t

0

e3µ(t−s)
[

(

1 +
L2

2ε

)

‖(Û − U)(s)‖2

+ 2µ|(Û − U)(s)|2 +
1

ε
‖RU(s)‖

2
⋆

]

ds.

Crank–Nicolson method. Subtracting (6.16) from the differential equation in (1.1),
we obtain

ê′(t) + Ae(t) = B(t, u(t))− b(t).

Therefore, (6.27) is valid for the Crank–Nicolson method as well, this time with

RU(t) := B(t, U(t))− b(t).
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