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Abstract. We consider discontinuous as well as continuous Galerkin methods for the

time discretization of a class of nonlinear parabolic equations. We show existence and

local uniqueness and derive optimal order optimal regularity a priori error estimates. We

establish the results in an abstract Hilbert space setting and apply them to a quasilinear

parabolic equation.

1. Introduction

The interest for time Galerkin and corresponding space–time finite element methods has

been linked during the last decade to the development of adaptivity of mesh selection for

evolution PDE’s. Certain issues as, e.g., a posteriori estimates, estimates of optimal order

and regularity, fully discrete schemes with mesh modification, etc., have been extensively

considered in the framework of Continuous and Discontinuous Galerkin methods, cf., e.g.,

[14, 9, 10, 21, 16, 17, 18, 4, 22]. This is probably partly due to the fact that in principle

space–time Galerkin methods provide freedom for (almost) arbitrary selection of the space

time mesh, [14], and partly due merely to the fact that, as in the elliptic case, the properties

of variational methods can be studied in an easier, more systematic and clearer way

than properties of their pointwise counterparts, i.e., finite difference methods. Still many

issues related to the above problems are to be investigated, mainly for nonlinear evolution

PDE’s. The purpose of this paper is to provide a rather comprehensive a priori analysis

of variational in time methods, and in particular of the Discontinuous and Continuous

Galerkin methods, for a wide class of nonlinear parabolic equations. It turns out that the

limitations of the approach of [9, 10] that was further developed (although from a different

perspective) for nonlinear problems in [4] can be overcomed by adopting a direct approach

based on energy type variational arguments.
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We will discretize initial value problems of the form: find u : [0, T ] → D(A) satisfying

(1.1)

{

u′(t) + F (t, u(t)) = 0, 0 < t < T,

u(0) = u0,

with F (t, v) = Av−B(t, v), A a positive definite, selfadjoint, linear operator on a Hilbert

space (H, (·, ·)) with domain D(A) dense in H, B(t, ·) : D(A) → H, t ∈ [0, T ], a (possibly)

nonlinear operator, and u0 ∈ H. Subsequently, we will precisely describe the properties of

B and therefore also of F. Essentially the assumption that F admits the above splitting

is made for purely technical reasons, in fact our framework, see below, covers a wide class

of nonlinear parabolic equations.

The time Galerkin methods. Let 0 = t0 < t1 < · · · < tN = T be a partition of [0, T ],

In := (tn, tn+1], kn := tn+1 − tn, and q ∈ N. We shall analyze the discretization of (1.1)

both by the discontinuous and the continuous Galerkin methods.

To formulate the discontinuous Galerkin method, we let Vd
q be the space of functions

that are piecewise polynomials of degree at most q− 1 in time in each In, with coefficients

in D(A1/2), i.e.,

Vd
q := {ϕ : [0, T ] → D(A1/2)/ ϕ|In(t) =

q−1
∑

j=0

vjt
j}.

The elements of Vd
q are allowed to be discontinuous at the nodes tn, but are taken to be

continuous to the left there. The time discrete discontinuous Galerkin approximation U

to u is defined as follows: We seek U ∈ Vd
q such that

(1.2)

∫

In

[(U ′, v) + (F (t, U), v)] dt + (Un+ − Un, vn+) = 0 ∀v ∈ Vq(In) ,

for n = 0, . . . , N − 1. Here U(0) = u(0), vn := v(tn), vn+ := limt↓tn v(t) and Vq(In) :=

{ϕ|In : ϕ ∈ Vd
q }.

To formulate the continuous Galerkin method, we let the space Vc
q consist of continuous

functions that are piecewise polynomials of degree at most q − 1 in time in each In, with

coefficients in D(A1/2), i.e.,

Vc
q := {ϕ ∈ C([0, T ];D(A1/2)) : ϕ|In(t) =

q−1
∑

j=0

vjt
j}.

The time discrete continuous Galerkin approximation U to u is defined as follows: We

seek U ∈ Vc
q such that

(1.3)

∫

In

[(U ′, v) + (F (t, U), v)] dt = 0 ∀v ∈ Vq−1(In) ,

for n = 0, . . . , N − 1.
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We emphasize that both the discontinuous and continuous Galerkin methods are inde-

pendent of the particular splitting of F in the form F (t, v) = Av−B(t, v); in applications

F is given and the splitting is only used for the analysis of the methods.

The problem framework. We let V := D(A1/2) and denote the norms in H and V by | · |
and ‖ ·‖, ‖v‖ := |A1/2v|, respectively. We assume that ‖ ·‖ dominates | · | in V. We identify

H with its dual, and let V ′ be the dual of V, V ⊂ H ⊂ V ′. We still denote by (·, ·) the

duality pairing between V ′ and V, and by ‖ · ‖⋆ the dual norm on V ′, ‖v‖⋆ := |A−1/2v|.
We assume that B(t, ·) can be extended to an operator from V into V ′. A natural

condition for (1.1) to be locally of parabolic type is the one-sided local Lipschitz condition

on B(t, ·),

(1.4) (B(t, v)−B(t, w), v − w) ≤ λ̄‖v − w‖2 + µ̄|v − w|2 ∀v,w ∈ Tu

in a tube Tu, Tu := {v ∈ V : mint ‖u(t) − v‖ ≤ 1}, around the solution u, uniformly in t,

with a constant λ̃ less than one. It is easily seen that (1.4) can be written in the form of

a G̊arding–type inequality,

(1.4′) (F (t, v) − F (t, w), v − w) ≥ (1− λ̄)‖v − w‖2 − µ̄|v − w|2 ∀v,w ∈ Tu .

For some of our results this mild condition will be sufficient. Our main results, however,

are derived under the following, stronger, local Lipschitz condition

(1.5) ‖B(t, v)−B(t, w)‖⋆ ≤ λ‖v − w‖+ µ|v − w| ∀v,w ∈ Tu

with a constant λ less than one and a constant µ. The tube Tu is defined here in terms

of the norm of V for concreteness. The analysis may be modified to yield error estimates

under conditions analogous to (1.5) for v and w belonging to tubes defined in terms of

other norms, not necessarily the same for both arguments. It is actually more natural

to have two tubes, because in the error analysis one of the arguments in (1.5) will be a

time interpolant of the exact solution (or a time interpolant of an elliptic projection of

the exact solution in the fully discrete case) for which estimates in stronger norms might

be available, and the other argument will be the approximate solution; it is advantageous

to define the second tube in terms of weak norms since this allows the derivation of error

estimates under mild meshconditions, cf. [2], [3], [1], and Section 6.

In particular the above framework covers the following class of quasilinear equations:

Let Ω ⊂ R
d, d = 1, 2, 3, be a bounded interval or a bounded domain with smooth boundary

∂Ω. For T > 0 we seek a real–valued function u, defined on Ω̄× [0, T ], satisfying














ut = div
(

c(x, t, u)∇u+ g(x, t, u)
)

+ f(x, t, u) in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],

u(·, 0) = u0 in Ω,

with c : Ω̄ → (0,∞), f : Ω̄× [0, T ]×R → R, g : Ω̄× [0, T ]×R → R
d, and u0 : Ω̄ → R given

smooth functions.
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Let U := [−1 + minx,t u, 1 + maxx,t u], c⋆ > 0 and c⋆ be such that

c⋆ ≤ c(x, t, y) ≤ c⋆ ∀x ∈ Ω̄, t ∈ [0, T ], y ∈ U .
We set

a :=
c⋆ + c⋆

2
, b(x, t, y) := c(x, t, y) − a,

A := −a∆, B(t, v) := div
(

b(·, t, v)∇v
)

+ div g(·, t, y) + f(·, t, y).
Then, V = H1

0 = H1
0 (Ω) and the norm ‖ · ‖ in V, ‖v‖ =

√
a |∇v|, is equivalent to the

H1−norm. Let

λ := sup{|b(x, t, y)|/a : x ∈ Ω, t ∈ [0, T ], y ∈ U};
it is shown in section 5 that λ = 1 − c⋆

a < 1 and that (1.5) is satisfied, in appropriately

defined tubes.

Condition (1.5), with appropriately small λ, is used in [3], see also [2] for a similar but

more stringent condition, for the analysis of implicit–explicit multistep schemes for (1.1),

and in [1] for the analysis of more general linearly implicit methods. In these papers, A

and B are discretized in different ways and their knowledge is crucial. In contrast, in this

paper both A and B are discretized in the same way; thus for the methods only F matters

while for the analysis solely the existence of A and B suffices.

Description of the results. In this paper we present a comprehensive a priori analysis

of variational in time methods, and in particular of the Discontinuous and Continuous

Galerkin methods, for the above class of nonlinear parabolic equations. Our approach

is related to the one of [16, 17] in the sense that we still use the properties of Radau

and Gauss-Legendre quadrature rules that are naturally associated to Discontinuous and

Continuous Galerkin methods. On the other hand the proofs in this paper are based on

entirely variational arguments and in particular on novel stability lemmata, cf. Lemma

2.1, Corollary 2.1 and Lemma 5.1. These lemmata allow us to gain the necessary control

in L2(In;H) that is missing in order for the energy method to be successfully applied. The

lack of control in L2(In;H) is also the reason that the proof of [24] for the linear case is

not easily extendable to nonlinear equations. (Note the interesting relation between the

test functions we choose in Lemma 2.1, Corollary 2.1 and Lemma 5.1.)

First, we show existence and local uniqueness of the Galerkin approximations. We then

derive optimal order a priori error estimates. Note that the regularity required by the

exact solution is minimal and corresponds to similar estimates in [24]. The analysis is

extended also in the case of fully discrete schemes, i.e., the combination of Galerkin time

stepping methods with discretization in space. For simplicity we do not consider here

schemes combined with mesh modification in space, but our results can be extended to

this case by appropriately adopting ideas from [18] to our case. We derive our results

in an abstract Hilbert space setting and apply them to a concrete example, namely to a

quasilinear parabolic equation.

We consider the continuous and discontinuous Galerkin methods as base schemes for the

discretization of nonlinear parabolic equations. In many cases to obtain implementable
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methods further discretization of the base schemes, such as linearization and approxima-

tion of integrals by quadrature rules, may be required. The additional complications in

the analysis that are due to such discretizations are not addressed in this paper.

The paper is organized as follows: In Section 2 we show existence and uniqueness of

the discontinuous Galerkin approximations for a modified equation with globally Lips-

chitz continuous nonlinearity. Our proofs are variational and simplify those in [16]. These

results combined with the error estimates yield existence and local uniqueness of the dis-

continuous Galerkin approximations for problem (1.1). Section 3 is devoted to the a

priori error analysis for the discontinuous Galerkin method. In Section 4 we consider fully

discrete schemes, i.e., we combine the discontinuous Galerkin time stepping with space

discrete schemes. The continuous Galerkin method is analyzed in Section 5: we prove

existence and local uniqueness of continuous Galerkin approximations and derive optimal

order error estimates. The results are presented in a more condensed way, avoiding details

for arguments already used in the analysis of the discontinuous Galerkin method. In addi-

tion we do not include the analysis for fully discrete continuous Galerkin approximations

since our results can be extended to fully discrete schemes in a similar fashion as in the

discontinuous Galerkin case presented in Section 4. In Section 6 we briefly discuss the

application of the abstract results to a quasilinear parabolic equation.

2. The DG Case: Existence and Uniqueness

In this section we show existence and uniqueness of the discontinuous Galerkin approx-

imations for a modified equation. This serves as an intermediate step and will be used

in the sequel to establish existence and local uniqueness of the discontinuous Galerkin

approximations for our original equation.

We assume that B(t, ·) can be modified to yield an operator B̄(t, ·) : V → V ′ coinciding

with B(t, ·) in the tube Tu, B̄(t, v) = B(t, v) for all t ∈ [0, T ] and all v ∈ Tu, and satisfying

the global Lipschitz condition, cf. (1.5),

(2.1) ‖B̄(t, v) − B̄(t, w)‖⋆ ≤ λ‖v −w‖ + µ|v − w| ∀v,w ∈ V .

The discontinuous Galerkin method for the modified equation

(2.2)

{

u′(t) +Au(t) = B̄(t, u(t)), 0 < t < T,

u(0) = u0,

is to seek U ∈ Vd
q satisfying

(2.3)

∫

In

[(U ′, v) + (AU, v)] dt + (Un+ − Un, vn+) =

∫

In

(B̄(t, U), v) dt ,

for all v ∈ Vq(In), for n = 0, . . . , N − 1. Here U(0) = u(0). It is easily seen that the

solution u of (1.1) is also a solution of (2.2); further, (2.1) yields easily uniqueness of

(smooth) solutions of (2.2).
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In this section we show existence and uniqueness of the solution of the scheme (2.3).

Later on we will see that U ∈ Tu and will easily conclude existence and local uniqueness of

the solution of scheme (1.2). Existence and uniqueness of discontinuous Galerkin approx-

imations for the nonlinear Schrödinger equation were established in [16]. Our approach is

motivated by the one in [16], simplifies it and relies on the following auxiliary result.

Lemma 2.1. Let 0 < τ1 < · · · < τq = 1 and w1, . . . , wq be the abscissae and the weights

of the Radau quadrature rule in [0, 1], p ∈ Pq−1 and p̃ ∈ Pq−1 be the interpolant of ϕ,

ϕ(t) := p(t)/t, at the Radau points. Then

(2.4)

∫ 1

0
p′p̃dt+ p(0)p̃(0) =

1

2

[

|p(1)|2 +
q
∑

i=1

wi|τ−1
i p(τi)|2

]

;

in particular,

(2.5)

∫ 1

0
p′p̃dt+ p(0)p̃(0) ≥ 1

2

[

|p(1)|2 +
∫ 1

0
|p|2dt

]

.

Proof. Let v ∈ Pq−2 be given by v(t) := p(t)−p(0)
t , i.e., be such that p(t) = p(0) + tv(t);

then, obviously, ϕ(t) = v(t) + p(0)1t . Therefore, polynomial p̃ can be written in the form

p̃ = v+p(0)Λ with Λ ∈ Pq−1 the interpolant of
1
t at the Radau points, i.e., Λ(τi) =

1
τi
, i =

1, . . . , q. To start with, we first note that it is easily seen that

(2.6)

∫ 1

0
p′p̃dt =

1

2

∫ 1

0
v2dt+

1

2
|v(1)|2 + p(0)

[

∫ 1

0
tv′(t)Λ(t) dt+

∫ 1

0
v(t)Λ(t) dt

]

.

Now, for s ∈ Pq−1, using the exactness of the Radau quadrature formula, we have
∫ 1

0
ts′(t)Λ(t) dt =

∫ 1

0
s′(t) dt = s(1)− s(0) ;

in particular

(2.7)

∫ 1

0
tv′(t)Λ(t) dt = v(1) − v(0)

and

(2.8)

∫ 1

0
tΛ′(t)Λ(t) dt = 1− Λ(0) .

Since also vΛ is integrated exactly by the Radau quadrature formula, using (2.7) in (2.6),

we get

(2.9)

∫ 1

0
p′p̃dt =

1

2

∫ 1

0
v2dt+

1

2
|v(1)|2 + p(0)

[

v(1)− v(0) +

q
∑

i=1

wiv(τi)τ
−1
i

]

.

Since,

p(0)p̃(0) = p(0)v(0) + Λ(0) p(0)2 ,

v(1) = p(1)− p(0) ,



A PRIORI ANALYSIS FOR GALERKIN METHODS 7

and v2 is integrated exactly by the Radau quadrature formula, relation (2.9) can be written

as
∫ 1

0
p′p̃dt+ p(0)p̃(0) =

1

2
|p(1)|2 +

(

Λ(0) − 1

2

)

p(0)2

+
1

2

q
∑

i=1

wi[v(τi)
2 + 2v(τi)τ

−1
i p(0)] .

(2.10)

Now, in view of (2.8),

Λ(0) = 1− 1

2

∫ 1

0
t(Λ2)′(t)dt =

1

2
+

1

2

∫ 1

0

(

Λ(t)
)2
dt ,

i.e.,

(2.11) Λ(0) − 1

2
=

1

2

q
∑

i=1

wiτ
−2
i .

Using (2.11) in (2.10) and then the fact that
(

p(0)
)2
τ−2
i +

(

v(τi)
)2

+ 2p(0)v(τi)τ
−1
i = |τ−1

i p(τi)|2 ,

we obtain (2.4). Further,

∫ 1

0
p′p̃dt+ p(0)p̃(0) ≥ 1

2

[

|p(1)|2 +
q
∑

i=1

wi|p(τi)|2
]

=
1

2

[

|p(1)|2 +
∫ 1

0
|p(t)|2dt

]

. �

�

A second proof to Lemma 2.1 is given in the Appendix. A change of variables shows

that the results of Lemma 2.1 transform to the interval [tn, tn+1] as follows:

Corollary 2.1. Let p ∈ Pq−1 be a polynomial in [tn, tn+1], ϕ(t) := knp(t)/(t − tn), and

p̃ ∈ Pq−1 be the interpolant of ϕ at the Radau points tn,i, i = 1, . . . , q, shifted to [tn, tn+1],

tn,i := tn + knτi. Then

(2.12)

∫ tn+1

tn
p′p̃dt+ p(tn)p̃(tn) =

1

2

[

|p(tn+1)|2 +
q
∑

i=1

wi|τ−1
i p(tn,i)|2

]

and

(2.13)

∫ tn+1

tn
p′p̃dt+ p(tn)p̃(tn) ≥ 1

2

[

|p(tn+1)|2 + 1

kn

∫ tn+1

tn
|p|2dt

]

. �

With ||| · ||| denoting either one of the norms | · |, ‖ · ‖ or ‖ · ‖⋆, we introduce in Vq(In)

the norms | · |n, ‖ · ‖n or ‖ · ‖⋆n, by

|||v|||n :=
[

kn

q
∑

i=1

wiτ
−1
i |||v(tn,i)|||2

]1/2
.
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Let U, V ∈ Vq(In), W := U − V, and W̃ ∈ Vq(In) be the interpolant of knW (t)/(t− tn)

at the Radau points tn,i, i = 1, . . . , q. Then, we have, cf. (2.12),

(2.14i)

∫

In

(W ′, W̃ ) dt+ (W n+, W̃ n+) ≥ 1

2

[

|W n+1|2 + 1

kn
|W |2n

]

.

Further, since the Radau quadrature rule integrates polynomials of degree at most 2q − 2

exactly,

∫

In

(AW, W̃ ) dt = kn

q
∑

i=1

wi(AW (tn,i), W̃ (tn,i)) = kn

q
∑

i=1

wiτ
−1
i (AW (tn,i),W (tn,i)) ,

i.e.,

(2.14ii)

∫

In

(AW, W̃ ) dt = ‖W‖2n .

Moreover, using first (2.1) we get

(B̄(t, U)− B̄(t, V ), W̃ ) ≤
(

λ‖W‖+ µ|W |
)

‖W̃‖

and using then the fact that
(

λ‖W‖ + µ|W |
)

‖W̃‖ is integrated exactly by the Radau

quadrature rule we obtain

∫

In

(B̄(t, U)− B̄(t, V ), W̃ ) dt ≤ kn

q
∑

i=1

wi

[

λ‖W (tn,i)‖+ µ|W (tn,i)|
]

τ−1
i ‖W (tn,i)‖

= λ‖W‖2n + µkn

q
∑

i=1

wiτ
−1
i |W (tn,i)| ‖W (tn,i)‖ ;

therefore,

(2.14iii)

∫

In

(B̄(t, U)− B̄(t, V ), W̃ ) dt ≤ (λ+ ε)‖W‖2n +
µ2

4ε
|W |2n

for any positive ε.

The discontinuous Galerkin approximate solution U ∈ Vd
q is defined in In by its value

Un at tn, which has been determined from the conditions in the preceding time interval

In−1, and by (2.3).

We introduce in Vq(In) the inner product 〈·, ·〉 by

〈v,w〉 :=
∫

In

(v, w̃) dt

with w̃ ∈ Vq(In) denoting the interpolant of knw(t)/(t − tn) at the Radau points tn,i, i =

1, . . . , q. It is readily seen that 〈·, ·〉 can also be written in the form

〈v,w〉 = kn

q
∑

i=1

wiτ
−1
i (v(tn,i), w(tn,i)) .
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We now define a map G : Vq(In) → Vq(In) by

(2.15) 〈G(v), w〉 =
∫

In

[(v′, w̃) + (Av, w̃)− (B̄(t, v), w̃)] dt+ (vn+ − Un, w̃n+)

for all w ∈ Vq(In). It is easily seen that G is well defined. We establish existence and

uniqueness of the discontinuous Galerkin approximation in In, i.e., existence and unique-

ness of U ∈ Vq(In) such that G(U) = 0, by showing that G is Lipschitz continuous and

strongly monotone.

2.1. Strong monotonicity of G. Let v,w ∈ Vq(In), ϑ := v−w, and, as usual, ϑ̃ ∈ Vq(In)

be the interpolant of knϑ(t)/(t− tn) at the Radau points tn,i, i = 1, . . . , q. Then

〈G(v) − G(w), v − w〉 = 〈ϑ′, ϑ〉+ 〈Aϑ, ϑ〉 − 〈B̄(t, v) − B̄(t, w), ϑ〉 + (ϑn+, ϑ̃n+)

and, in view of (2.14), we obtain

〈G(v) − G(w), v − w〉 ≥ 1

2

(

|ϑn+1|2 + 1

kn
|ϑ|2n

)

+ (1− λ− ε)‖ϑ‖2n − µ2

4ε
|ϑ|2n

≥ 1

kn

(

1− µ2

4ε
kn
)

|ϑ|2n + (1− λ− ε)‖ϑ‖2n .

Therefore, for ε = (1 − λ)/2 and kn < 2(1 − λ)/µ2, we have the following strong mono-

tonicity property of G

(2.16) 〈G(v) − G(w), v −w〉 ≥ 1− λ

2
‖v − w‖2n ∀v,w ∈ Vq(In) .

In particular, (2.16) yields immediately uniqueness of the discontinuous Galerkin approx-

imation, for sufficiently small k, k := maxn kn.

2.2. Lipschitz continuity of G. Let v ∈ Vq(In) and ṽ ∈ Vq(In) be the interpolant of

knv(t)/(t− tn) at the Radau points tn,i, i = 1, . . . , q. Since |ṽ|2 is integrated exactly by the

Radau quadrature rule we have
∫

In

|ṽ|2 dt = kn

q
∑

i=1

wiτ
−2
i |v(tn,i)|2

and thus easily

(2.17i)

∫

In

|ṽ|2 dt ≤ τ−1
1 |v|2n .

Similarly,

(2.17ii)

∫

In

‖ṽ‖2 dt ≤ τ−1
1 ‖v‖2n .

Further, we have

ṽn+ =

q
∑

i=1

wiτ
−1
i v(tn,i)

q
∏

j=1
j 6=i

−τj
τi − τj

,
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and hence

(2.18i) |ṽn+|2 ≤ c1
kn

|v|2n .

In the sequel, we will also use the following well–known inverse inequalities

(2.18ii) |vn+|2 ≤ c2
kn

|v|2n
and

(2.18iii) |v′|n ≤ c3
kn

|v|n ;

the latter can also be written in the form

(2.18′iii)
(

∫

In

|v′(t)|2 dt
)1/2

≤ c̄3
kn

(

∫

In

|v(t)|2 dt
)1/2

.

Let now v,w, ω ∈ Vq(In) and let ω̃ ∈ Vq(In) be defined in the usual way. Then, with

ϑ := v − w,

〈G(v) − G(w), ω〉 = 〈ϑ′, ω〉+ (ϑn+, ω̃n+) +

∫

In

(Aϑ, ω̃) dt−
∫

In

(B̄(t, v) − B̄(t, w), ω̃) dt

and, in view of (2.17), (2.18) and (2.1) we easily obtain

(2.19)
〈G(v) − G(w), ω〉 ≤ Ck−1

n |v − w|n|ω|n
+ C(‖v − w‖n + |v −w|n)‖ω‖n ∀v,w, ω ∈ Vq(In) .

Assume now that | · | and ‖ · ‖ are equivalent; this is in particular the case when Vq(In)

is finite dimensional. One important example we have in mind is the fully discrete case.

Then, for fixed, sufficiently small kn, we write (2.16) and (2.19) in the form

(2.16′) 〈G(v)− G(w), v − w〉 ≥ c‖v − w‖2n ∀v,w ∈ Vq(In)

and

(2.19′) ‖G(v) − G(w)‖n ≤ L‖v − w‖n ∀v,w ∈ Vq(In) .

Using (2.16′) and (2.19′) it is an easy matter to show that F , F(v) := v − c
LG(v), is a

contraction in
(

Vq(In), ‖ · ‖n); this fact is known as Zarantonello’s fixed point theorem.

The unique fixed point of F is then the unique solution of G(v) = 0.

Alternatively, in the case of finite dimensional Vq(In), one can invoke a variant of

Brouwer’s fixed point theorem to etsablish existence of a solution of G(v) = 0.

3. The DG Case: Error Estimates

In this Section we establish optimal order estimates for u− U, U being the solution of

(2.3), under the assumption that B̄(t, ·) : V → V ′ coincides with B(t, ·) in the tube Tu,

B̄(t, v) = B(t, v) for all t ∈ [0, T ] and all v ∈ Tu, and satisfies the global Lipschitz condition

(2.1). After having established the error estimate we can show that for sufficiently small

time steps the solution of (2.3) satisfies also (1.2), and, thus, we will have error estimates

for the original equation.
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Let W ∈ Vd
q be defined by W 0 = u0 and

W n+1 = un+1,
∫

In

(u−W,v)dt = 0 ∀v ∈ Vq−1(In) ,
(3.1)

n = 0, . . . , N − 1, cf. [24], p. 185. The function W will play an important role in the error

analysis in the sequel. It is well known that W is well defined by (3.1) and satisfies the

error estimates

(3.2) |||(u−W )(t)|||2 ≤ Ck2q−1
n

∫

In

|||u(q)(s)|||2ds, t ∈ In,

with ||| · ||| standing for either one of the norms | · |, ‖ · ‖ and ‖ · ‖⋆, cf. [24]. From (3.1) we

easily obtain, for v ∈ Vq(In),
∫

In

(u′ −W ′, v)dt = −
∫

In

(u−W,v′)dt− (un −W n+, vn+) ,

i.e.,

(3.3)

∫

In

(W ′, v)dt+ (W n+ −W n, vn+) =

∫

In

(u′, v)dt ∀v ∈ Vq(In) .

With ρ := u−W and Θ := W − U, we split the error u− U in the form

u− U = ρ+Θ.

Since ρ has been estimated in (3.2), our main goal in this section will be the estimation

of Θ. We will achieve this in two stages: First we will show consistency of the numerical

scheme for W and subsequently we will show stability.

3.1. Consistency. Let R ∈ Vq(In) denote the consistency error of the discontinuous

Galerkin method for W,

(3.4)

∫

In

(R(t), v)dt =

∫

In

(W ′ +AW − B̄(t,W ), v) dt + (W n+ −W n, vn+)

for all v ∈ Vq(In). Then, in view of (3.3) and (1.1),

(3.5)

∫

In

(R(t), v)dt = −
∫

In

(Aρ, v) dt +

∫

In

(B̄(t, u)− B̄(t,W ), v) dt .

Letting v := A−1R in (3.5) and using (2.1), we have
∫

In

‖R(t)‖2⋆dt = −
∫

In

(A1/2ρ,A−1/2R) dt+

∫

In

[

λ‖ρ‖+ µ|ρ|
]

‖R‖⋆dt ,

and thus easily

(3.6)

∫

In

‖R(t)‖2⋆dt ≤ 2

∫

In

‖ρ(t)‖2dt+ 2

∫

In

[

λ‖ρ(t)‖ + µ|ρ(t)|
]2
dt .
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From (3.2) and (3.6) we obtain the consistency estimate

(3.7)

∫

In

‖R(t)‖2⋆ dt ≤ Ck2qn

∫

In

‖u(q)(t)‖2 dt .

3.2. Stability. ¿From (2.3) and (3.4) we obtain an error equation for Θ,
∫

In

(Θ′, v) dt + (Θn+, vn+) +

∫

In

(AΘ, v)dt = (Θn, vn+)

+

∫

In

(B̄(t,W )− B̄(t, U), v) dt +

∫

In

(R(t), v) dt

(3.8)

for all v ∈ Vq(In). First, letting v := 2Θ in (3.8) we obtain

|Θn+1|2+|Θn+|2 − 2(Θn,Θn+) + 2

∫

In

‖Θ‖2 dt

= 2

∫

In

(B̄(t,W )− B̄(t, U),Θ) dt + 2

∫

In

(R(t),Θ) dt .

(3.9)

Now,

(3.10i) |Θn+|2 − 2(Θn,Θn+) ≥ −|Θn|2

and

(3.10ii) 2

∫

In

(R(t),Θ) dt ≤ 1

ε

∫

In

‖R(t)‖2⋆ dt+ ε

∫

In

‖Θ‖2 dt ;

further, in view of (2.1),

(3.10iii) 2

∫

In

(B̄(t,W )− B̄(t, U),Θ) dt ≤ (2λ + ε)

∫

In

‖Θ‖2 dt+ µ2

ε

∫

In

|Θ|2 dt .

Using (3.10) in (3.9), we get

|Θn+1|2 + α

∫

In

‖Θ(t)‖2 dt ≤ |Θn|2 + µ2

ε

∫

In

|Θ(t)|2 dt+ 1

ε

∫

In

‖R(t)‖2⋆ dt ,

with α := 2(1− λ− ε), for any positive ε. Thus, choosing ε < 1− λ, we have

(3.11) |Θn+1|2 + c

∫

In

‖Θ(t)‖2 dt ≤ |Θn|2 + c̄

∫

In

|Θ(t)|2 dt+ c̄

∫

In

‖R(t)‖2⋆ dt .

The standard energy proof can not be completed since we do not have control of the term
∫

In
|Θ(t)|2 dt. To overcome this barrier we will make use of the stability Lemma 2.1 and

the corresponding Corollary 2.1. To this end, letting in (3.8) v := Θ̃, the interpolant of

knΘ(t)/(t− tn) at the Radau points tn,i, i = 1, . . . , q, we obtain, cf. (2.14) and (2.17),

1

2

[

|Θn+1|2+ 1

kn
|Θ|2n

]

+ (1− λ− ε)‖Θ‖2n ≤

µ2

4ε
|Θ|2n + (Θn, Θ̃n+) +

∫

In

(R(t), Θ̃) dt ,

(3.12)
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for any positive ε. Now,

(R(t), Θ̃) ≤ 1

4τ1ε
‖R(t)‖2⋆ + ετ1‖Θ̃‖2,

and thus

(3.13i)

∫

In

(R(t), Θ̃) dt ≤ 1

4τ1ε

∫

In

‖R(t)‖2⋆ dt+ ε‖Θ‖2n,

cf. the derivation of (2.20i); moreover

(3.13ii) (Θn, Θ̃n+) ≤ c1|Θn|2 + 1

4kn
|Θ|2n ,

cf. (2.20ii). Using (3.13) in (3.12) we get

|Θn+1|2 + 1

2

( 1

kn
− µ2

ε

)

|Θ|2n + α‖Θ‖2n ≤ 2c1|Θn|2 + 1

2τ1ε

∫

In

‖R(t)‖2⋆ dt ,

with α = 2(1− λ− 2ε), for any positive ε. Hence, in view of the equivalence of the norms

||| · |||n and
( ∫

In
||| · |||2 dt

)1/2
in Vq(In) with constants independent of In, with ||| · ||| standing

for either one of the norms | · | and ‖ · ‖, we have, for ε < (1 − λ)/2 and kn sufficiently

small,

(3.14) |Θn+1|2 + c

kn

∫

In

|Θ(t)|2 dt+ c

∫

In

‖Θ(t)‖2 dt ≤ c1|Θn|2 + c1

∫

In

‖R(t)‖2⋆ dt .

In particular,

(3.15)

∫

In

|Θ(t)|2 dt ≤ Ckn|Θn|2 + Ckn

∫

In

‖R(t)‖2⋆ dt .

Using (3.15) in (3.11), we obtain

|Θn+1|2 + c

∫

In

‖Θ(t)‖2 dt ≤ (1 + Ckn)|Θn|2 + C

∫

In

‖R(t)‖2⋆ dt

and this yields easily

(3.16) |Θn|2 +
∫ tn

0
‖Θ(t)‖2 dt ≤ ceCtn

[

|Θ0|2 +
∫ tn

0
‖R(t)‖2⋆ dt

]

.

3.3. Convergence.

3.3.1. Error estimation at the nodes. In view of (3.7) and the fact that Θ(0) = 0, from

(3.16) we obtain

(3.17) |Θ(tn)|2 ≤ ceCtn
n−1
∑

j=0

k2qj

∫

Ij

‖u(q)(t)‖2dt .

Now, since ρ vanishes at the nodes of the partition, see (3.1), (3.17) yields immediately

the desired estimate at the nodes

(3.18) max
0≤n≤N

|(u− U)(tn)|2 ≤ ceCT
N−1
∑

j=0

k2qj

∫

Ij

‖u(q)(t)‖2dt .
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3.3.2. Error analysis in L∞(H). Combining the inverse inequality

(3.19) |Θ|2L∞(In;H) ≤ ck−1
n |Θ|2L2(In;H)

with (3.15) and using (3.7) and (3.17), we easily conclude

(3.20) |Θ|2L∞(In;H) ≤ ceCtn+1

n
∑

j=0

k2qj

∫

Ij

‖u(q)(t)‖2dt .

Finally, (3.2) and (3.20) yield the desired uniform in time error estimate

max
0≤t≤T

|(u− U)(t)|2 ≤c max
0≤n≤N−1

(

kqnmax
t∈In

|u(q)(t)|
)2

+ ceCT
N−1
∑

j=0

k2qj

∫

Ij

‖u(q)(t)‖2dt .
(3.21)

3.3.3. Error analysis in L2(V ). In view of (3.7) and the fact that Θ(0) = 0, from (3.16)

we obtain

(3.22)

∫ T

0
‖Θ(t)‖2 dt ≤ C

N−1
∑

j=0

k2qj

∫

Ij

‖u(q)(t)‖2dt .

Finally, (3.2) and (3.22) yield the desired error estimate

(3.23)

∫ T

0
‖(u− U)(t)‖2 dt ≤ C

N−1
∑

j=0

k2qj

∫

Ij

‖u(q)(t)‖2dt .

3.3.4. Error analysis for the original equation. Our analysis up to this point concerns

the discontinuous Galerkin approximation U, see (2.3), to the modified equation (2.2).

Here, we give our main result, namely error estimates for the discontinuous Galerkin

approximation to the original equation (1.1).

Theorem 3.1. Let the solution u of (1.1) be sufficiently smooth and U ∈ Vd
q be a discon-

tinuous Galerkin approximation to (1.1), i.e., a solution of (1.2). Let k := min0≤n≤N−1 kn.

Then, under the meshcondition “k2qk−1 sufficiently small” we have the error estimate

max
0≤t≤T

|(u− U)(t)|2 ≤ C max
0≤n≤N−1

(

kqnmax
t∈In

|u(q)(t)|
)2

+ C
N−1
∑

j=0

k2qj

∫

Ij

‖u(q)(t)‖2dt .
(3.24)

Proof. Let for the time being U be the discontinuous Galerkin approximation to the mod-

ified equation (2.2). First, from (3.2) we conclude, for k sufficiently small,

(3.25) max
0≤t≤T

‖(u−W )(t)‖ ≤ 1

2
.
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Further, from (3.22) and the analogous to (3.19) inverse inequality, we get

(3.26) max
0≤t≤T

‖(W − U)(t)‖2 ≤ Ck2qk−1 ,

and thus, under our meshcondition,

(3.27) max
0≤t≤T

‖(W − U)(t)‖ ≤ 1

2
.

It immediately follows from (3.25) and (3.27) that U ∈ Tu. Therefore, the discontinuous

Galerkin approximation U to the modified equation (2.2) is also a (locally unique) dis-

continuous Galerkin approximation to the original equation (1.1), and (3.24) follows from

(3.21). � �

Remark 3.1. The constants in this and previous sections as well as conditions like “k

sufficiently small” do not directly depend on the particular choice of the operators A

and B; they only depend on λ, µ, the discretization scheme and on various norms of the

solution u. This fact will play a crucial role in the analysis of fully discrete schemes in the

next section.

4. The DG case: Fully discrete schemes

In this section we consider fully discrete schemes; we combine the discontinuous Galerkin

time stepping with space discrete schemes. We establish optimal order error estimates.

For the space discretization we use a family Vh, 0 < h < 1, of finite dimensional sub-

spaces of V. For simplicity, we will use the same finite dimensional space Vh throughout the

interval [0, T ]; the analysis can be modified to take into account possible changes of this

space. In this section the following discrete operators will play an essential role: Define

Po : V
′ → Vh, Ah : V → Vh and Bh(t, ·) : V → Vh by

(Pov, χ) = (v, χ) ∀χ ∈ Vh

(Ahϕ,χ) = (Aϕ,χ) ∀χ ∈ Vh

(Bh(t, ϕ), χ) = (B(t, ϕ), χ) ∀χ ∈ Vh.

The space discrete problem corresponding to (1.1) is to seek a function uh : [0, T ] → Vh

satisfying

(4.1)

{

u′h(t) +Ahuh(t) = Bh(t, uh(t)), 0 < t < T,

uh(0) = u0h,

with u0h ∈ Vh a given approximation to u0.

To construct a fully discrete scheme, we discretize (4.1) in time by the discontinuous

Galerkin method. With the notation of the previous sections and

Vd
qh := {ϕ : [0, T ] → Vh/ ϕ|In(t) =

q−1
∑

j=0

wjt
j} ,
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the fully discrete approximation Uh ∈ Vd
qh to u is defined by

(4.2)

∫

In

[(U ′
h, v) + (Fh(t, Uh), v)] dt + (Un+

h − Un
h , v

n+) = 0 ∀v ∈ Vqh(In) ,

for n = 0, . . . , N − 1, with Fh(t, v) := Ahv −Bh(t, v) and Uh(0) = u0h.

Let B(t, ·) : V → V ′ be differentiable, and assume that the linear operator M(t),

M(t) := A−B′(t, u(t)) +σI, is uniformly positive definite, for an appropriate constant σ.

Following [3], we introduce the ‘elliptic’ projection Rh(t) : V → Vh, t ∈ [0, T ], by

(4.3) PoM(t)Rh(t)v = PoM(t)v.

We will show consistency of the space discrete scheme for Wh,Wh(t) := Rh(t)u(t); to this

end we shall use approximation properties of the elliptic projection operator Rh(t). We

assume that Rh(t) satisfies the estimates

(4.4) |u(t)−Wh(t)|+ hd/2‖u(t)−Wh(t)‖ ≤ Chr,

and

(4.5) | d
dt
[u(t)−Wh(t)]| ≤ Chr,

with two integers r and d, 2 ≤ d ≤ r. Note here that d corresponds to the order of the

operator A, e.g., if A is a second order elliptic operator, as in Section 5, then d = 2. We

further assume that

(4.6)

∫ T

0
‖ dq

dtq
Wh(t)]‖2 dt ≤ C .

For consistency purposes, we assume for the nonlinear part the estimate

(4.7) ‖B(t, u(t)) −B(t,Wh(t))−B′(t, u(t))(u(t) −Wh(t))‖⋆ ≤ Chr.

Let Eh(t) ∈ Vh denote the consistency error of the space discrete equation (4.1) for Wh,

(4.8) Eh(t) := W ′
h(t) +AhWh(t)−Bh(t,Wh(t)), 0 ≤ t ≤ T.

From the definition of Wh we easily conclude

(AhWh(t), χ) = (Au(t) −
[

B′(t, u(t)) − κI
]

(u(t)−Wh(t)), χ) ∀χ ∈ Vh.

Therefore, using (1.1),

Eh(t) =W ′
h(t)− Pou

′(t) + σ
[

Pou(t)−Wh(t)
]

+ Po

[

B(t, u(t))−B(t,Wh(t))−B′(t, u(t))(u(t) −Wh(t))
]

,

and, in view of (4.4), (4.5) and (4.7), we easily obtain the following optimal order estimate

for the consistency error Eh,

(4.9) max
0≤t≤T

‖Eh(t)‖⋆ ≤ Chr.

The main result in this paper concerning the discontinuous Galerkin method is given

in the following theorem:
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Theorem 4.1. Let the solution u of (1.1) be sufficiently smooth. Assume we are given

an initial approximation U0
h = u0h ∈ Vh to u0 such that

(4.10) |u0 − u0h| ≤ Chr.

Then, for k and h sufficiently small, there exists a locally unique solution Uh ∈ Vd
qh to

(4.2); further, there exists a constant C, independent of k and h, such that, for k2qk−1

and h2rk−1 sufficiently small, we have the error estimate

(4.11) max
0≤t≤T

|(u− Uh)(t)|2 ≤ C
[

h2r +
N−1
∑

j=0

k2q+1
j

]

.

Proof. Existence and local uniqueness follow easily from our analysis in Section 2. To

prove the error estimate, let first ρ := u−Wh; according to (4.4) we have

(4.12) max
0≤t≤T

|ρ(t)| ≤ Chr .

Further, according to (4.4),

(4.13) max
0≤t≤T

‖ρ(t)‖ ≤ Chr−
d
2

and thus, for h sufficiently small, Wh(t) ∈ Tu, t ∈ [0, T ]. Now, let B̄h(t, ·) : V → Vh be

defined by

(B̄h(t, ϕ), χ) = (B̄(t, ϕ), χ) ∀χ ∈ Vh,

and W̄h ∈ Vd
qh be such that

(4.14)

∫

In

[(W̄ ′
h, v) + (F̄h(t, W̄h), v)] dt + (W̄ n+

h − W̄ n
h , v

n+) = 0 ∀v ∈ Vqh(In) ,

for n = 0, . . . , N − 1, with B̂h(t, v) := B̄h(t, v) + Eh(t), F̄h(t, v) := Ahv − B̂h(t, v) and

W̄h(0) = W 0
h , i.e., W̄h is a modified fully discrete discontinuous Galerkin approximation

corresponding to equation (4.8). Then, according to (3.21), and in view of (3.7) and (4.6),

(4.15) max
0≤t≤T

|(Wh − W̄h)(t)|2 ≤ C

N−1
∑

j=0

k2q+1
j .

Further,

(4.16) max
0≤t≤T

‖(Wh − W̄h)(t)‖2 ≤ Ck2qk−1 ,

cf. (3.26). In view of (4.12) and (4.15), it remains to estimate Θ := W̄h − Uh. We

now temporarily change the meaning of Uh and let it denote the modified discontinuous

Galerkin approximation,

(4.17)

∫

In

[(U ′
h, v) + (AhUh, v)] dt + (Un+

h − Un
h , v

n+) =

∫

In

(B̄h(t, Uh), v) dt
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for all v ∈ Vqh(In), for n = 0, . . . , N − 1, with Uh(0) = u0h; subsequently, after having

established the desired error estimate we will show that Uh is also a solution to (4.2).

From (4.14) and (4.17), we obtain

(4.18) |Θn|2 +
∫ tn

0
|Θ(t)|2 dt ≤ ceCtn

[

|Θ0|2 +
∫ tn

0
‖Eh(t)‖2⋆ dt

]

,

see (3.16). Now, Θ0 = (W 0
h−u0)+(u0−u0h); thus, in view of (4.12) and (4.10), |Θ0| ≤ Chr,

and, using also (4.9), (4.18) yields

(4.19) |Θn|2 +
∫ tn

0
|Θ(t)|2 dt ≤ Ch2r.

Further,
∫

In

|Θ(t)|2 dt ≤ Ckn|Θn|2 + Ckn

∫

In

‖Eh(t)‖2⋆ dt ,

see (3.15), and thus, in view of (3.19), (4.19) and (4.9),

(4.20) max
0≤t≤T

|Θ(t)| ≤ Chr .

Moreover, from (4.19) we obtain

(4.21) max
0≤t≤T

‖Θ(t)‖2 ≤ Ch2rk−1 .

Now, it easily follows from (4.13), (4.16) and (4.21) that, for k2qk−1 and h2rk−1 sufficiently

small, Uh(t) ∈ Tu, t ∈ [0, T ], and thus that Uh is a discontinuous Galerkin approximation

to the original equation, i.e., it satisfies (4.2). Finally, (4.12), (4.15) and (4.20) yield the

error estimate (4.11) and the proof is complete. � �

5. The continuous Galerkin method

In this section we analyze the continuous Galerkin method for problem (1.1). We show

existence and local uniqueness of the continuous Galerkin approximations and establish

optimal order error estimates. Let us emphasize that in this section no error estimates in

L2(V ) are derived, and thus the tube Tu is defined in terms of the norm of H, Tu := {v ∈
V : mint |u(t)− v| ≤ 1}, see Remark 5.1.

5.1. Existence and Uniqueness. We begin by showing existence and uniqueness of the

continuous Galerkin approximations for a modified equation. As before, this serves as an

intermediate step and will be used in the sequel to establish existence and local uniqueness

of the continuous Galerkin approximations for our original equation.

Existence and uniqueness of continuous Galerkin approximations for the nonlinear

Schrödinger equation were established in [17]. The approach in [17] is based on prop-

erties of Gauss–Legendre quadrature formulae and interpolation. Our approach is direct

and simplifies the proofs of [17].
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We assume that B(t, ·) can be modified to yield an operator B̄(t, ·) : V → V ′ coinciding

with B(t, ·) in the tube Tu, B̄(t, v) = B(t, v) for all t ∈ [0, T ] and all v ∈ Tu, and satisfying

globally a one-sided Lipschitz condition, cf. (1.4),

(5.1) (B̄(t, v) − B̄(t, w), v − w) ≤ λ̄‖v − w‖2 + µ̄|v − w|2 ∀v,w ∈ V .

The continuous Galerkin method for the modified equation

(5.2)

{

u′(t) +Au(t) = B̄(t, u(t)), 0 < t < T,

u(0) = u0,

is to seek U ∈ Vq satisfying

(5.3)

∫

In

[(U ′, v) + (AU, v)] dt =

∫

In

(B̄(t, U), v) dt ∀v ∈ Vq−1(In)

for n = 0, . . . , N − 1. Here U(0) = u(0). It is easily seen that the solution u of (1.1) is also

a solution of (5.2); further, (5.1) yields easily uniqueness of (smooth) solutions of (5.2).

Next, we shall show existence and uniqueness of the solution of the scheme (5.3). Later

on, we will see that U ∈ Tu and will easily conclude existence and local uniqueness of the

solution of scheme (1.3).

The continuous Galerkin approximate solution U ∈ Vc
q is defined in In by its value U(tn)

at tn (which has been determined from the conditions in the preceding time interval In−1)

and by (5.3). Now, since U(tn) is considered given, U can be written in In in the form

(5.4) U(t) = U(tn) + (t− tn)W (t), t ∈ In, with W ∈ Vq−1(In).

We now consider W ∈ Vq−1(In) our unknown and use (5.4) to rewrite (5.3) as
∫

In

[(W,v) + (t− tn)(W ′, v) + (AU(tn), v) + (t− tn)(AW, v)] dt

=

∫

In

(B̄(t, U(tn) + (t− tn)W ), v) dt ∀v ∈ Vq−1(In) .

(5.5)

Let Pq−2 denote the L2 orthogonal projection operator onto Vq−1(In). It is then easily

seen that (5.5) can be written in the form

(5.6) G(W ) = 0

with G : Vq−1(In) → Vq−1(In),

G(v) := v + (t− tn)v′ +AU(tn) + Pq−2

(

(t− tn)Av
)

− Pq−2B̄(t, U(tn) + (t− tn)v) .
(5.7)

To establish existence and uniqueness of the continuous Galerkin approximation in In,

i.e., existence and uniqueness of W ∈ Vq−1(In) at which G vanishes, we show that G is

Lipschitz continuous and strongly monotone.
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With ||| · ||| denoting either one of the norms | · |, ‖ · ‖ or ‖ · ‖⋆, for the analysis of the

continuous Galerkin method, we introduce in Vq(In) the norms | · |n, ‖ · ‖n or ‖ · ‖⋆n, by

|||v|||n :=
(

∫

In

|||v(t)|||2 dt
)1/2

.

Obviously, | · |n is induced by the inner product 〈·, ·〉,

〈v,w〉
∫

In

(v,w) dt .

In the sequel, we will make use of the inverse inequality

(5.8) kn|||v|||2ndt ≤ c

∫

In

(t− tn)|||v|||2dt ,

cf. [24].

5.1.1. Strong monotonicity of G. Let v,w ∈ Vq−1 and ϑ := v − w. Now,
∫

In

(t− tn)(ϑ′, ϑ) dt =
1

2

∫

In

(t− tn)
d

dt
|ϑ|2 dt

=
1

2

[

(t− tn)|ϑ(t)|2
]t=tn+1

t=tn
− 1

2

∫

In

|ϑ|2 dt ,

i.e.,

(5.9) 〈(t− tn)ϑ′, ϑ〉 = 1

2
kn|ϑ(tn+1)|2 − 1

2
‖ϑ‖2n .

Further, it immediately follows from (5.1) that

(5.10) (B̄(t, U(tn) + (t− tn)v)− B̄(t, U(tn) + (t− tn)w), ϑ) ≤ (t− tn)
[

λ̄‖ϑ‖2 + µ̄|ϑ|2
]

.
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be continuous Galerkin approximations, corresponding to the same partition of the time

interval [0, T ], with the same initial value u(0). We will inductively show that U and V

coincide. Assume that U and V coincide in In−1. Then, obviously,

(5.11) U(tn) = V (tn)

and, consequently,

(5.12) ∀t ∈ [tn, tn+1] (U − V )(t) = (t− tn)w(t)

with w ∈ Vq−1(In). Subtracting
∫

In

[(V ′, v) + (AV, v)] dt =

∫

In

(B̄(t, V ), v) dt ∀v ∈ Vq−1(In)

from (5.3), we obtain
∫

In

[((U − V )′, v) + (A(U − V ), v)] dt =

∫

In

(B̄(t, U)− B̄(t, V
)

, v) dt

for all v ∈ Vq−1(In); thus, in view of (5.12), we have

(5.13)

∫

In

[(w, v) + (t− tn)(w′, v) + (t− tn)(Aw, v)] dt =

∫

In

(B̄(t, U)− B̄(t, V ), v) dt ,

for all v ∈ Vq−1(In).

Now,
∫

In

(t− tn)(w′, w) dt =
1

2

∫

In

(t− tn)
d

dt
|w|2 dt

=
1

2

[

(t− tn)|w(t)|2
]t=tn+1

t=tn
− 1

2

∫

In

|w|2 dt ,

i.e.,

(5.14)

∫

In

(t− tn)(w′, w) dt =
1

2
kn|w(tn+1)|2 − 1

2

∫

In

|w|2 dt .

In view of (5.7), relation (5.6), for v = w, can be written in the form

1

2

∫

In

|w|2 dt+ 1

2
kn|w(tn+1)|2 +

∫

In

(t− tn)‖w‖2 dt

=

∫

In

(B̄(t, U)− B̄(t, V ), w) dt .

(5.15)

Now, in view of (5.5) and (5.1),

(5.16) (B̄(t, U)− B̄(t, V ), w) ≤ (t− tn)
[

λ̃‖w‖2 + µ̃|w|2
]

.

From (5.8) and (5.9) we obtain

1

2

∫

In

|w|2 dt+ 1

2
kn|w(tn+1)|2 +

∫

In

(t− tn)‖w‖2 dt

≤ λ̃

∫

In

(t− tn)‖w‖2 dt+ µ̃

∫

In

(t− tn)|w|2 dt ;
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hence,

(5.17)
1

2

∫

In

|w|2 dt+ 1

2
kn|w(tn+1)|2 ≤ µ̄

∫

In

(t− tn)|w|2 dt .

For kn sufficiently small, such that 2µ̄ kn < 1, (5.10) yields w = 0, and we conclude

uniqueness of the continuous Galerkin approximation.

5.1.2. Existence. The continuous Galerkin approximate solution U ∈ Vc
q is defined in In

by its value U(tn) at tn (which has been determined from the conditions in the preceding

time interval In−1) and by (5.3). Now, since U(tn) is considered given, U can be written

in In in the form

(5.18) U(t) = U(tn) + (t− tn)W (t), t ∈ In, with W ∈ Vq−1(In).

We now consider W ∈ Vq−1(In) our unknown and use (5.11) to rewrite (5.3) as
∫

In

[(W,v) + (t− tn)(W ′, v) + (AU(tn), v) + (t− tn)(AW, v)] dt

=

∫

In

(B̄(t, U(tn) + (t− tn)W ), v) dt ∀v ∈ Vq−1(In) .

(5.19)

Let Pq−2 denote the L2 orthogonal projection operator onto Vq−1(In). It is then easily

seen that (5.12) can be written in the form

(5.20) G(W ) = 0

with G : Vq−1(In) → Vq−1(In),

G(v) := v + (t− tn)v′ +AU(tn) + Pq−2

(

(t− tn)Av
)

− Pq−2B̄(t, U(tn) + (t− tn)v) .
(5.21)

We will use a variant of Brouwer’s fixed–point theorem to show existence of a W at which

G vanishes, i.e., existence of a solution of (5.13). For v ∈ Vq−1(In) we have
∫

In

(G(v), v)dt =
∫

In

[

|v|2 + (t− tn)(v′, v) + (AU(tn), v)

+ (t− tn)‖v‖2 − (B̄(t, U(tn) + (t− tn)v), v)
]

dt ,

i.e.,
∫

In

(G(v),v)dt =
∫

In

[

|v|2 + (t− tn)(v′, v) + (AU(tn), v) + (t− tn)‖v‖2

− (B̄(t, U(tn) + (t− tn)v)− B̄(t, U(tn)), v) − (B̄(t, U(tn)), v)
]

dt .

(5.22)

Now,

(AU(tn), v) ≥ −‖U(tn)‖ ‖v‖ ≥ − 1

4εkn
‖U(tn)‖2 − εkn‖v‖2,

and, in view of the inverse inequality

kn

∫

In

‖v‖2dt ≤ c

∫

In

(t− tn)‖v‖2dt ,
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cf. [24], we have

(5.16i)

∫

In

(AU(tn), v) dt ≥ − 1

4ε
‖U(tn)‖2 − cε

∫

In

(t− tn)‖v‖2dt .

Similarly,

(5.16ii)

∫

In

(B̄(t, U(tn)), v) dt ≥ − 1

4εkn

∫

In

‖B̄(t, U(tn))‖2 dt− cε

∫

In

(t− tn)‖v‖2 dt .

Therefore, with

ϕn(t) :=
1

4εkn

[

‖U(tn)‖2 + ‖B̄(t, U(tn))‖2
]

,

in view of (5.1) and (5.7), we easily obtain from (5.15),
∫

In

(G(v), v)dt ≥1

2

∫

In

|v|2dt+ 1

2
kn|v(tn+1)|2 + (1− λ̄− 2cε)

∫

In

(t− tn)‖v‖2dt

− µ̄

∫

In

(t− tn)|v|2dt−
∫

In

ϕn(t)dt ,

and thus, for ε sufficiently small,
∫

In

(G(v), v)dt ≥
∫

In

[1

2
− µ̄(t− tn)

]

|v|2dt−
∫

In

ϕn(t)dt .

Hence, for kn sufficiently small such that 4µ̄ kn ≤ 1, we have

(5.17)

∫

In

(G(v), v) dt ≥
∫

In

[1

4
|v|2 − ϕn(t)

]

dt .

Consequently, for v ∈ Vq−1 such that |v(t)| ≥ 2
√

ϕn(t), for all t ∈ In, we have
∫

In

(G(v), v) dt ≥ 0.

Since 〈·, ·〉 :=
∫

In
(·, ·) dt is an inner product in Vq−1(In), existence of a continuous Galerkin

approximation in In, for sufficiently small kn, follows from a variant of Brouwer’s fixed–

point theorem if Vq−1(In) is finite dimensional, for instance in the fully discrete case.

5.2. Error Estimates. We shall establish optimal order estimates for u−U, U being the

solution of (5.3), under the assumption that B̄(t, ·) : D(A) → H coincides with B(t, ·)
in the tube Tu, B̄(t, v) = B(t, v) for all t ∈ [0, T ] and all v ∈ Tu, and satisfies the global

Lipschitz condition (2.1). After having established the error estimate we can show that

for sufficiently small time steps the solution of (5.3) satisfies also (1.3), and, thus, we will

have error estimates for the original equation.

Let W ∈ Vc
q be defined by

W (0) = u(0),
∫ T

0
(u′ −W ′, v′)dt = 0, ∀v ∈ Vc

q ,
(5.18)
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cf. [5]. The function W will play an important role in the error analysis. With

(5.19) v(t) :=







(u−W )(tn)t, 0 ≤ t ≤ tn,

(u−W )(tn)tn, tn < t ≤ T,

relation (5.18) yields W (tn) = u(tn), i.e., W has the following interpolation property

(5.20) W (tn) = u(tn), n = 0, . . . , N.

It is then easily seen that the restriction of W in In could have been alternatively defined

by

W (tn) = u(tn), W (tn+1) = u(tn+1),
∫

In

(u′ −W ′, v)dt = 0 ∀v ∈ Vq−1(In) .
(5.21)

Existence, uniqueness and the error estimate

(5.22) |||(u−W )(t)|||2 ≤ Ck2q−1
n

∫

In

|||u(q)(s)|||2ds, t ∈ In,

with ||| · ||| standing for either one of the norms | · |, ‖ · ‖ and ‖ · ‖⋆, can be established by

standard arguments, cf. (3.1) and (3.2).

With ρ := u−W and Θ := W − U, we split the error u− U in the form

u− U = ρ+Θ.

Since ρ has been estimated in (5.21), our main goal in this Section will be the estimation

of Θ. We will achieve this in two stages: First we will show consistency of the numerical

scheme for the interpolant W and subsequently we will show stability.

5.3. Consistency. Let R ∈ Vq−1(In) denote the consistency error of the continuous

Galerkin method (5.3) for W,

(5.23) R = W ′ + Pq−2

(

AW − B̄(·,W )
)

.

Let v ∈ Vq−1(In). Then,
∫

In

(R, v) dt =

∫

In

(W ′ +AW − B̄(t,W ), v) dt ,

and thus, in view of (1.1) and (5.21),

(5.24)

∫

In

(R, v) dt = −
∫

In

(Aρ, v) dt +

∫

In

(B̄(t, u)− B̄(t,W ), v) dt .

Letting v := A−1R in (5.23) and using (2.1) we have
∫

In

‖R(t)‖2⋆dt = −
∫

In

(A1/2ρ,A−1/2R)dt+

∫

In

[

λ‖ρ‖+ µ|ρ|
]

‖R(t)‖⋆dt ,
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and thus easily

(5.25)

∫

In

‖R(t)‖2⋆dt ≤ 2

∫

In

‖ρ(t)‖2dt+ 2

∫

In

[

λ‖ρ(t)‖ + µ|ρ(t)|
]2
dt .

From (5.21) and (5.25) we obtain the consistency estimate

(5.26)

∫

In

‖R(t)‖2⋆dt ≤ Ck2qn

∫

In

‖u(q)(s)‖2ds .

5.4. Stability. ¿From (5.3) and (5.23) we obtain an error equation for Θ,
∫

In

(Θ′, v)dt+

∫

In

(AΘ, v)dt =

∫

In

(B̄(t,W )− B̄(t, U), v)dt

+

∫

In

(R(t), v)dt

(5.27)

for all v ∈ Vq−1(In). The stability analysis relies on the following auxiliary result.

Lemma 5.1. Let 0 < τ1 < · · · < τq−1 < 1 be the abscissae of the Gauss–Legendre quadra-

ture formula in [0, 1], and tn,i, tn,i := tn + knτi, i = 1, . . . , q − 1, denote the corresponding

nodes shifted to In. Let Θ ∈ Pq−1(In), and Θ̂, Θ̃ ∈ Pq−2(In) be the interpolants of Θ and

ϕ, ϕ(t) := knΘ(t)/(t− tn), at tn,i, i = 1, . . . , q − 1, respectively. Then

(5.28)

∫

In

Θ′Θ̂ dt =

∫

In

Θ′Θ dt

and

(5.29) kn

∫

In

Θ′Θ̃ dt ≥ 1

5

∫

In

|Θ|2 dt− ckn
(

|Θ(tn+1)|2 + |Θ(tn)|2
)

,

with a positive constant c.

Proof. Let w1, . . . , wq−1 denote the weights of the Gauss–Legendre quadrature formula in

[0, 1] with q−1 nodes. It is well known that the corresponding Gauss–Legendre quadrature

formula Q,

Q(v) = kn
[

w1v(t
n,1) + · · · + wq−1v(t

n,q−1)
]

,

integrates in In polynomials of degree at most 2q−3 exactly. Since Θ(τi) = Θ̂(τi), obviously

Q(Θ′Θ) = Q(Θ′Θ̂), and (5.28) follows. To show (5.29), we first write Θ in the form

Θ(t) = Θ(tn) + (t− tn)Z(t),

with Z ∈ Pq−2(In),

Z(t) =
1

t− tn
[Θ(t)−Θ(tn)].

Then

ϕ(t) = knZ(t) + Θ(tn)
kn

t− tn
.
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Therefore, with Λ ∈ Pq−2(In) denoting the inteprolant of kn/(t−tn) at tn,i, i = 1, . . . , q−1,

i.e.,

Λ(tn,i) =
1

τi
, i = 1, . . . , q − 1,

Θ̃ may be written in the form Θ̃ = knZ +Θ(tn)Λ. Now, cf. (5.7),
∫

In

Θ′(t)Z(t) dt =

∫

In

[

Z(t) + (t− tn)Z ′(t)
]

Z(t) dt

=
1

2
kn|Z(tn+1)|2 + 1

2

∫

In

|Z|2dt ,

i.e.,

(5.30) kn

∫

In

Θ′(t)Z(t) dt =
1

2
|Θ(tn+1)−Θ(tn)|2 + 1

2
kn

∫

In

|Z|2dt .

Further, from the definition of Z we easily get

(5.31)

∫

In

|Θ|2dt ≤ 2kn|Θ(tn)|2 + 2k2n

∫

In

|Z|2dt .

Relations (5.30) and (5.31) yield immediately

(5.32) k2n

∫

In

Θ′(t)Z(t) dt ≥ 1

2
kn
[

|Θ(tn+1)−Θ(tn)|2 − |Θ(tn)|2
]

+
1

4

∫

In

|Θ|2dt .

Next, we shall estimate
∫

In
Θ′Λdt. We rewrite this term in the form

∫

In

Θ′Λ dt = −
∫

In

ΘΛ′ dt+Θ(tn+1)Λ(tn+1)−Θ(tn)Λ(tn) ,

and use the fact that Λ and knΛ
′ are uniformly bounded to obtain

(5.33) kn|
∫

In

Θ′Θ(tn)Λ dt| ≤ ε

∫

In

|Θ|2dt+ kn
[

c|Θ(tn+1)|2 + cε|Θ(tn)|2
]

for any positive ε. Choosing ε ≤ 1/20 in (5.33), from (5.32) and (5.33) we easily conclude

that (5.29) is valid and the proof is complete. �

Letting v = Θ̂ ∈ Vq−1(In) in (5.27) be the interpolant of Θ at tn,i, i = 1, . . . , q − 1, and

using (5.28), we have
∫

In

(Θ′,Θ)dt+

∫

In

(AΘ, Θ̂)dt =

∫

In

(B̄(t,W )− B̄(t, U), Θ̂)dt

+

∫

In

(R(t), Θ̂)dt .

(5.34)

In view of the exactness of the Gaussian quadrature rule, the left-hand side can be written

in the form

(5.35)

∫

In

(Θ′,Θ)dt+

∫

In

(AΘ, Θ̂)dt =
1

2

[

|Θn+1|2 − |Θn|2
]

+ kn

q−1
∑

i=1

wi‖Θ(tn,i)‖2 .
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To estimate the first term on the right-hand side of (5.34), we first note that using (2.1)

we have

(B̄(t,W )− B̄(t, U), Θ̂) ≤ ‖B̄(t,W )− B̄(t, U)‖⋆ ‖Θ̂‖
≤ λ‖Θ‖ ‖Θ̂‖+ µ|Θ| ‖Θ̂‖

≤
[

λ‖Θ‖ ‖Θ̂‖+ 1

2
µε‖Θ̂‖2

]

+
1

2ε
µ|Θ|2 ;

since the first term on the right-hand side is integrated exactly by the Gaussian quadrature

formula, we obtain

(5.36)

∫

In

(B̄(t,W )− B̄(t, U), Θ̂)dt ≤
(

λ+
1

2
µε
)

kn

q−1
∑

i=1

wi‖Θ(tn,i)‖2 + 1

2ε
µ

∫

In

|Θ|2dt .

Further, ‖Θ̂‖2 is integrated exactly by the Gaussian quadrature formula, and the second

term on the right-hand side of (5.34) can be estimated in the form

(5.37)

∫

In

(R(t), Θ̂)dt ≤ 1

2ε

∫

In

‖R(t)‖2⋆dt+
1

2
εkn

q
∑

i=1

wi‖Θ(tn,i)‖2 .

Using (5.35), (5.36) and (5.37) in (5.34), we obtain

(5.38) |Θn+1|2 + αkn

q−1
∑

i=1

wi‖Θ(tn,i)‖2 ≤ |Θn|2 + µε

∫

In

|Θ|2dt+ 1

ε

∫

In

‖R(t)‖2⋆dt

with α := 2(1− λ)− (µ+ 1)ε and µε :=
1
εµ; we assume in the sequel that ε is sufficiently

small such that α be positive.

Next, we would like to estimate |Θ|L2(In;H) =
( ∫

In
|Θ|2dt

)1/2
. Letting v := Θ̂ ∈ Vq−1(In)

in (5.27) be the interpolant of kn
1

t−tnΘ(t) at tn,i, i = 1, . . . , q, and using (5.29), we have

1

5

∫

In

|Θ|2dt+ kn

∫

In

(AΘ, Θ̃)dt ≤ ckn
(

|Θn+1|2 + |Θn|2
)

+ kn

∫

In

(B̄(t,W )− B̄(t, U), Θ̃)dt+ kn

∫

In

(R(t), Θ̃)dt .

(5.39)

Now, in view of the exactness of the Gaussian quadrature formula,

(5.40)

∫

In

(AΘ, Θ̃)dt = kn

q−1
∑

i=1

wi

τi
‖Θ(tn,i)‖2 .

Further,

(5.41)

∫

In

(B̄(t,W )− B̄(t, U), Θ̃)dt ≤ λkn

q−1
∑

i=1

wi

τi
‖Θ(tn,i)‖2 + µ

∫

In

|Θ| ‖Θ̃‖dt .
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From (5.39), (5.40) and (5.41), we obtain

1

5

∫

In

|Θ|2dt+ k2n(1− λ)

q−1
∑

i=1

wi

τi
‖Θ(tn,i)‖2

≤ ckn
(

|Θn+1|2 + |Θn|2
)

+ µkn

∫

In

|Θ| ‖Θ̃‖dt+ kn

∫

In

‖R(t)‖⋆ ‖Θ̃‖dt .
(5.42)

Now, ‖Θ̃‖2 is integrated exactly by the Gaussian quadrature formula, and we have

∫

In

‖Θ̃‖2dt = kn

q−1
∑

i=1

wi

τ2i
‖Θ(tn,i)‖2 ;

hence

(5.43)

∫

In

‖Θ̃‖2dt ≤ 1

τ1
kn

q−1
∑

i=1

wi

τi
‖Θ(tn,i)‖2 .

Further,

µ|Θ| ‖Θ̃‖ ≤ µ2

2ετ1
|Θ|2 + τ1ε

2
‖Θ̃‖2 ,

and, in view of (5.43), we obtain

(5.44) µ

∫

In

|Θ| ‖Θ̃‖dt ≤ µ2

2ετ1

∫

In

|Θ|2dt+ ε

2
kn

q−1
∑

i=1

wi

τi
‖Θ(tn,i)‖2 .

Similarly,

(5.45)

∫

In

‖R(t)‖⋆ ‖Θ̃‖dt ≤ 1

2ετ1

∫

In

‖R(t)‖2⋆dt+
ε

2
kn

q−1
∑

i=1

wi

τi
‖Θ(tn,i)‖2 .

From (5.42), (5.44) and (5.45) we get

(

1− 5µ2

2ετ1
kn
)

∫

In

|Θ|2dt+ 5k2n(1− λ− ε)

q−1
∑

i=1

wi

τi
‖Θ(tn,i)‖2

≤ ckn
(

|Θn+1|2 + |Θn|2
)

+
5

2ετ1
kn

∫

In

‖R(t)‖2⋆ dt ;
(5.46)

therefore, for ε < 1− λ and kn sufficiently small,

(5.47)

∫

In

|Θ|2dt ≤ ckn
(

|Θn+1|2 + |Θn|2
)

+ ckn

∫

In

‖R(t)‖2⋆ dt .

From (5.38) and (5.47), we easily obtain, for kn sufficiently small,

(5.48) |Θn+1|2 + kn

q−1
∑

i=1

wi‖Θ(tn,i)‖2 ≤ (1 + Ckn)|Θn|2 + C

∫

In

‖R(t)‖2⋆ dt
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and this yields easily

(5.49) |Θn|2 +
n−1
∑

ℓ=0

kℓ

q−1
∑

i=1

wi‖Θ(tℓ,i)‖2 ≤ ceCtn
[

|Θ0|2 +
∫ tn

0
‖R(t)‖2⋆dt

]

,

cf. (3.16).

5.5. Convergence.

5.5.1. Error estimation at the nodes. In view of (5.26) and the fact that Θ(0) = 0, from

(5.49) we obtain

(5.50) |Θ(tn)|2 ≤ ceCtn
n−1
∑

j=0

k2qj

∫

Ij

‖u(q)(t)‖2dt .

Now, since ρ vanishes at the nodes of the partition, see (5.20), (5.50) yields immediately

the desired estimate at the nodes

(5.51) max
0≤n≤N

|(u− U)(tn)|2 ≤ ceCT
N−1
∑

j=0

k2qj

∫

Ij

‖u(q)(t)‖2dt .

5.5.2. Error analysis in L∞(H). Combining the inverse inequality

|Θ|2L∞(In;H) ≤ ck−1
n |Θ|2L2(In;H),

cf. (3.19), with (5.47) and using (5.26) and (5.50), we easily conclude

(5.52) |Θ|2L∞(In;H) ≤ ceCtn+1

n
∑

j=0

k2qj

∫

Ij

‖u(q)(t)‖2dt .

Finally, (5.22) and (5.52) yield the desired uniform in time error estimate

max
0≤t≤T

|(u− U)(t)|2 ≤ C max
0≤n≤N−1

(

kqn max
t∈In

|u(q)(t)|
)2

+ CecT
N−1
∑

j=0

k2qj

∫

Ij

‖u(q)(t)‖2dt .
(5.53)

Up to this point in this section U is considered a continuous Galerkin approximation

for the modified equation (5.2). However, it immediately follows from (5.53) that, for suf-

ficiently small k, we have U ∈ Tu; therefore U is also a continuous Galerkin approximation

for the original equation (1.1).

Remark 5.1. In contrast to the discontinous Galerkin method, error estimates in L2(V )

for the continuous Galerkin method are not directly obtained. The essential reason for this

difference between the two methods might be the fact that the continuous Galerkin method

has less advantageous smoothing properties than the discontinuous Galerkin method, cf.
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[24]. Concerning our approach, estimates in L2(V ) do not follow at once for the continuous

Galerkin approximations, since the expression

(5.54)

(

kn

q−1
∑

i=1

wi‖v(tn,i)‖2
)1/2

cf., e.g., (5.38), is a seminorm in Vq(In) rather than a norm. An expression of the form

(5.54) is a norm in Vq(In) equivalent to

(
∫

In

‖v(t)‖2dt
)1/2

if the sum contains at least q terms. In concrete applications one might derive estimates

in ‖ · ‖ at an additional point in the interval In and then combine this with our results to

obtain estimates in L2(V ). The lack of estimates in L2(V ) is the reason for the definition

of the tube Tu in terms of the norm of H in this section. As noted in the introduction, in

applications the choice of the appropriate tube depends on the concrete problem. Thus

in the analysis of fully discrete schemes the inclusion of the approximate solution to the

appropriate tube is verified using the estimates obtained, certain inverse inequalities, and

appropriate meshconditions, cf. Section 6 for example. For the continuous Galerkin

method in the fully discrete case the meshconditions needed can be relaxed by obtaining

extra control of the error in the norm of V at an additional point in the interval In
(different from tn,i, i = 1, . . . , q − 1). The implementation of this task depends on the

particular application.

6. Application to a quasilinear equation

In this section we shall briefly discuss the application of our abstract results to a class

of quasilinear equations: Let Ω ⊂ R
ν , ν = 1, 2, 3, be a bounded domain with smooth

boundary ∂Ω. For T > 0 we seek a real–valued function u, defined on Ω̄× [0, T ], satisfying

(6.1)















ut = div
(

c(x, t, u)∇u+ g(x, t, u)
)

+ f(x, t, u) in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],

u(·, 0) = u0 in Ω,

with c : Ω̄ → (0,∞), f : Ω̄× [0, T ]×R → R, g : Ω̄× [0, T ]×R → R
ν , and u0 : Ω̄ → R given

smooth functions. We are interested in approximating smooth solutions of this problem,

and assume therefore that the data are smooth and compatible such that (6.1) gives rise

to a sufficiently regular solution.

For the discretization of (6.1) by implicit–explicit finite element multistep methods we

refer to [3]; other applications are included in [2].

Let Hs = Hs(Ω) be the usual Sobolev spaces of order s, and ‖ · ‖Hs be the norm of Hs.

The inner product in H := L2(Ω) is denoted by (·, ·), and the induced norm by | · |; the
norm of Ls(Ω), 1 ≤ s ≤ ∞, is denoted by ‖ · ‖Ls .
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Let U := [−1 + minx,t u, 1 + maxx,t u], and

T̃u := {v ∈ V ∩ L∞ : min
t

‖u(t) − v‖L∞ ≤ 1},

T̂u := {v ∈ V ∩W 1
∞ : min

t
‖u(t)− v‖W 1

∞

≤ 1}.
Let c⋆ > 0 and c⋆ be such that

c⋆ ≤ c(x, t, y) ≤ c⋆ ∀x ∈ Ω̄, t ∈ [0, T ], y ∈ U .
We set

a :=
c⋆ + c⋆

2
, b(x, t, y) := c(x, t, y) − a,

A := −a∆, B(t, v) := div
(

b(·, t, v)∇v
)

+ div g(·, t, y) + f(·, t, y).
Then, obviously, V = H1

0 = H1
0 (Ω) and the norm ‖ · ‖ in V, ‖v‖ =

√
a |∇v|, is equivalent

to the H1−norm.

Let now

λ := sup{|b(x, t, y)|/a : x ∈ Ω, t ∈ [0, T ], y ∈ U};
it is then easily seen that λ = 1− c⋆

a < 1.

For v,w, ϕ ∈ V,

(B(t,v)−B(t,W ), ϕ) =

− (b(·, t, w)∇(v − w),∇ϕ) − ([b(·, t, v) − b(·, t, w)]∇v,∇ϕ)

− (g(·, t, v) − g(·, t, w),∇ϕ) + (f(·, t, v) − f(·, t, w), ϕ) ,
and we easily see that

(6.2) ‖B(t, v)−B(t, w)‖⋆ ≤ λ‖v − w‖+ µ|v −w| for all v ∈ T̂u, w ∈ T̃u ;

thus, a stability condition of the form (1.5) is satisfied for v ∈ T̂u and w ∈ T̃u.

Further,

B′(t, v)w =div(b(·, t, v)∇w) + div(∂3b(·, t, v)w∇v)

+ div(∂3g(·, t, v)w) + ∂3f(·, t, v)w,
and, therefore, A − B′(t, u(t)) + σI is, for an appropriate constant σ, uniformly positive

definite in H1
0 .

Let Vh be the subspace of V defined on a regular finite element partition Th of Ω,

and consisting of piecewise polynomial functions of degree at most r − 1, r ≥ 2. Let hK
denote the diameter of an element K ∈ Th, and h := maxK∈Th hK . We define the elliptic

projection operator Rh(t), Rh(t) : V → Vh, t ∈ [0, T ], by

([a(·) + b(·, t, u(·, t))]∇(v −Rh(t)v),∇χ)

+ ([∂3b(·, t, u(·, t))]∇u(·, t) + ∂3g(·, t, u(·, t))](v −Rh(t)v),∇χ)

− ([∂3f(·, t, u(·, t)) − σ](v −Rh(t)v), χ) = 0 ∀χ ∈ Vh.

It is well known from the error analysis for elliptic equations that

(6.3) |v −Rh(t)v|+ h‖v −Rh(t)v‖ ≤ Chr‖v‖Hr , v ∈ Hr ∩H1
0 ,
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i.e., the estimate (4.4) is satisfied with d = 2. Further,

(6.4) | d
dt
[u(·, t) −Rh(t)u(·, t)]| ≤ Chr,

and

(6.5) | d
q

dtq
Rh(t)v|+ h‖ dq

dtq
Rh(t)v‖ ≤ Chr‖v‖Hr , v ∈ Hr ∩H1

0 ,

cf., e.g., [6]; thus (4.5) and (4.6) are valid. We further assume, cf. [23], that

(6.6) sup
t

‖u(·, t) −Rh(t)u(·, t)‖W 1
∞

≤ 1

2
.

Next, we will verify (4.7). We have

B(t, u(t)) −B(t, Rh(t)u(t))−B′(t, u(t))(Rh(t)u(t)− u(t)) =

= −
∫ 1

0
τB′′

(

t, Rh(t)u(t)− τ [Rh(t)u(t)− u(t)]
)

dτ [Rh(t)u(t) − u(t)]2
(6.7i)

and

B′′(t, v)w2 =div(∂2
3b(·, t, v)w2∇v) + 2div(∂3b(·, t, v)w∇w)

+ div(∂2
3g(·, t, v)w2) + ∂2

3f(·, t, v)w2.
(6.7ii)

It easily follows from (6.7) and (6.3), in view of (6.6), that

(6.8) ‖B(t, u(t)) −B(t, Rh(t)u(t)) −B′(t, u(t))(u(t) −Rh(t)u(t))‖H−1 ≤ Chr,

i.e., (4.7) is satisfied.

We further assume we are given an initial approximation u0h ∈ Vh to u0 such that

(6.9) |u0 − u0h| ≤ chr.

The discontinuous Galerkin scheme. We define Uh ∈ Vd
qh, Uh(0) = u0h, recursively by the

fully discrete discontinuous Galerkin scheme
∫

In

[(U ′
h, v) + (c(·, t, Uh)∇Uh + g(·, t, Uh),∇v)− (f(·, t, Uh)∇Uh, v)] dt

+ (Un+
h − Un

h , v
n+) = 0 ∀v ∈ Vqh(In) ,

(6.10)

for n = 0, . . . , N − 1. Then, Theorem 4.1 yields, in view of (6.6), for sufficiently small k

and provided that the approximate solutions Uh(t), t ∈ [0, T ], are in T̃u, the error estimate

(6.11) max
0≤t≤T

|(u− Uh)(t)|2 ≤ C
[

h2r +
N−1
∑

j=0

k2q+1
j

]

.

To ensure that Uh(t) ∈ T̃u, t ∈ [0, T ], we define h := minK∈Θ hK and will distinguish

three cases: ν = 1, ν = 2 and ν = 3.
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i. ν = 1. First, since the H1−norm dominates the L∞−norm in one space dimension,

we have

max
0≤t≤T

‖Θ(t)‖L∞ ≤ C max
0≤t≤T

‖Θ(t)‖,

and thus, according to (4.21),

max
0≤t≤T

‖Θ(t)‖2L∞ ≤ Ch2rk−1.

Therefore, for k−1k2q and k−1h2r sufficiently small, in view of (6.6), Uh(t) ∈ T̃u, t ∈ [0, T ].

We easily conclude that the convergence result holds.

ii. ν = 2. First, we note that

‖χ‖L∞ ≤ C| log(h)|1/2‖χ‖H1 ∀χ ∈ Vh,

cf. [24], p. 68. It is then easily seen that the convergence result holds, if k and h are

chosen such that | log(h)|k2qk−1 and | log(h)|h2rk−1 are sufficiently small.

iii. ν = 3. In this case,

‖χ‖L∞ ≤ Ch−1/2‖χ‖H1 ∀χ ∈ Vh,

and the result (6.11) holds, provided that k2qh−1k−1 and h2rk−1h−1 are sufficiently small.

The continuous Galerkin scheme. The fully discrete continuous Galerkin scheme is defined

by seeking Uh ∈ Vc
qh, Uh(0) = u0h, recursively by

∫

In

[(U ′
h, v) + (c(·, t, Uh)∇Uh + g(·, t, Uh),∇v)− (f(·, t, Uh)∇Uh, v)] dt = 0

∀v ∈ V(q−1)h(In) ,

(6.12)

for n = 0, . . . , N − 1. Then, the fully discrete version of the analysis in Section 5, yields

for sufficiently small k and provided that the approximate solutions Uh(t), t ∈ [0, T ], are

in T̃u, the error estimate

(6.13) max
0≤t≤T

|(u− Uh)(t)|2 ≤ C
[

h2r +

N−1
∑

j=0

k2q+1
j

]

.

To ensure that Uh(t) ∈ T̃u, t ∈ [0, T ], as before we distinguish the cases: ν = 1, ν = 2

and ν = 3. It is to be noted that in the continuous Galerkin case we do not gain at once

control of the norm
∫ T
0 ‖Θ(t)‖dt, Remark 5.1. Thus alternatively we shall use the inverse

inequality

‖χ‖L∞ ≤ Ch−ν/2|χ| ∀χ ∈ Vh,

concluding that the result (6.13) holds, provided that k2qh−ν and h2rh−ν are sufficiently

small. The derivation of estimate for
∫ T
0 ‖Θ(t)‖dt in the fully discrete case that will lead

to milder meshconditions, is of course a feasible task but we will not insist on it in the

present work.
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Appendix A. Second proof of Lemma 2.1

Since pp̃′ is integrated exactly by the Radau quadrature rule, we have

(A.1)

∫ 1

0
pp̃′dt =

q
∑

i=1

wip(τi)p̃
′(τi) .

Obviously, with ℓ1, . . . , ℓq ∈ Pq−1 denoting the Lagrange polynomials associated with

τ1, . . . , τq,

p̃ =

q
∑

j=1

ϕ(τj)ℓj ,

and (A.1) yields
∫ 1

0
pp̃′dt =

q
∑

i,j=1

wiℓ
′
j(τi)τiϕ(τi)ϕ(τj) .

Therefore,
∫ 1

0
pp̃′dt =

q
∑

i,j=1

wiℓ
′
j(τi)ℓi(τi)τiϕ(τi)ϕ(τj) ,

i.e.,

∫ 1

0
pp̃′dt =

q
∑

i=1

wiℓ
′
i(τi)ℓi(τi)τi|ϕ(τi)|2

+

q
∑

1≤i<j≤q

[

wiℓ
′
j(τi)ℓi(τi)τi + wjℓ

′
i(τj)ℓj(τj)τj

]

ϕ(τi)ϕ(τj) .

Now, for 1 ≤ i < j ≤ q,

wiℓ
′
j(τi)ℓi(τi)τi + wjℓ

′
i(τj)ℓj(τj)τj =

∫ 1

0

[

ℓ′j(t)ℓi(t) + ℓj(t)ℓ
′
i(t)
]

tdt

= ℓi(1)ℓj(1) −
∫ 1

0
ℓi(t)ℓj(t)dt = 0 ,

and the second sum vanishes. Similarly,

wiℓ
′
i(τi)ℓi(τi)τi =

1

2
[ℓi(1) − wi] ,

and thus
∫ 1

0
pp̃′dt =

1

2

[

|ϕ(1)|2 −
q
∑

i=1

wi|ϕ(τi)|2
]

,

and (2.4) follows. Further,

∫ 1

0
p′p̃dt+ p(0)p̃(0) ≥ 1

2

[

|p(1)|2 +
q
∑

i=1

wi|p(τi)|2
]

=
1

2

[

|p(1)|2 +
∫ 1

0
|p(t)|2dt

]

. �
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