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Linearization of the finite element method for gradient flows
by Newton’s method
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The implicit Euler scheme for nonlinear partial differential equations of gradient flows is linearized by
Newton’s method, discretized in space by the finite element method. With two Newton iterations at each
time level, almost optimal order convergence of the numerical solutions is established in both the Lq(Ω)
and W 1,q(Ω) norms. The proof is based on techniques utilizing the resolvent estimate of elliptic operators
on Lq(Ω) and the maximal Lp-regularity of fully discrete finite element solutions on W−1,q(Ω).
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1. Introduction

We consider the following initial and boundary value problem for a time-dependent nonlinear partial
differential equation 

∂tu = ∇ · fff (∇u) in Ω × (0,T ],

u = 0 on ∂Ω × (0,T ],

u(·,0) = u0 in Ω ,

(1.1)

in a given convex polygon Ω ⊂ R2 or a polyhedron Ω ⊂ R3 with interior edge angles less than 3
4 π , up

to a given time T > 0, with a smooth function fff : Rd → Rd .
Problems of the form (1.1) occur in many applications, including minimal surface flows (cf. [24,

28]), with fff (p) = p/
√

1+ |p|2 , regularized models of total variation flows (cf. [8, 9, 21]), with fff (p) =
p/
√

λ 2 + |p|2 , and the L2(Ω) gradient flow:
(∂tu,υ)L2(Ω) =−E ′(u)υ for all υ in a dense and smooth subspace of H1

0 (Ω),

where E(u) =
∫

Ω
F(∇u)dx is an energy functional with a convex function F : Rd → R, and fff (p) =

∇pF(p); see [7, Section 9.6.3].
In these applications, the flux function fff satisfies the following local ellipticity condition:

∇p fff (p) is symmetric and positive definite for every p ∈ Rd . (1.2)
However, some eigenvalues of ∇p fff (p) may tend to 0 or +∞ as |p| → ∞. For example, for the flux
function fff (p) = p/

√
1+ |p|2 appearing in the minimal surface flow problem we have

∇p fff (p) =
1√

1+ |p|2
Id−

|p|2

(1+ |p|2) 3
2

p
|p|
⊗ p
|p|

, (1.3)
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with Id the d×d identity matrix; now, ∇p fff (p) is symmetric and positive definite for any p ∈ Rd ,

∇p fff (p)ξ ·ξ =
1√

1+ |p|2
|ξ |2− |p|2

(1+ |p|2) 3
2

(
p
|p|
·ξ
)2

>
1

(1+ |p|2) 3
2
|ξ |2 ∀ξ ∈ Rd ,

but the eigenvalues of ∇p fff (p) are not uniformly bounded from below by a positive constant as |p| →∞.
The nonuniform ellipticity leads to some mathematical difficulties in the numerical analysis of this
problem. In particular, uniform W 1,∞-boundedness of the numerical solutions needs to be proved in the
error estimation in order to rule out the possibility of degeneracy.

Optimal order convergence in the discrete L∞(0,T ;L2(Ω)) norm for the implicit Euler scheme,
combined with finite element spatial discretization, for the regularized total variation flow was first
proved in [8, 9] by the energy technique. The W 1,∞-boundedness of the numerical solutions was proved
by using an inverse inequality of the finite element space, which requires a stepsize restriction τ = o(h2).
Under milder conditions, convergence of the numerical solutions was proved by using a compactness
argument. Optimal order convergence in L∞(0,T ;L2(Ω)) of finite element methods with a linearized
semi-implicit Euler scheme was shown in [21]. In order to remove the stepsize restriction τ = o(h2),
the energy approach used in [21] is limited to two-dimensional problems and finite element methods
of polynomial degree r > 2. In a general d-dimensional domain, error analysis of semidiscretization in
time was presented in [16] by utilizing the discrete maximal Lp-regularity approach. However, since the
analysis in [16] is based on estimates in the Lp(0,T ;W 2,q(Ω)) norm, it cannot be extended to the case
of finite element spatial discretization (as the finite element solutions are not in W 2,q(Ω)).

This article is concerned with full discretization of (1.1) under the local ellipticity condition (1.2), by
using Newton’s iterative method to linearize the nonlinear system obtained by the implicit Euler scheme
with the piecewise linear finite element spatial discretization. We assume that the initial and boundary
value problem (1.1) admits a sufficiently regular solution, and prove almost optimal order convergence
of the numerical solutions with a fixed number of Newton iterations, say ` iterations at each time level,
in two- and three-dimensional domains without the stepsize restriction τ = o(h2).

Our idea is to split the error of the Newton iterative finite element solutions into three parts:
un

h,`(x)−u(x, tn) = [un(x)−u(x, tn)]+ [un
`(x)−un(x)]+ [un

h,`(x)−un
`(x)], (1.4)

where un denotes the time-discrete solution, and un
` and un

h,` denote the Newton iterative solutions of
the time-discrete and fully discrete nonlinear systems, respectively. An estimate of the first part on
the right-hand side of (1.4) in the Lp(0,T ;W 2,q(Ω))∩W 1,p(0,T ;Lq(Ω)) norm was obtained in [16] by
using maximal Lp-regularity of time discretizations of parabolic equations. This estimate provides a
foundation for further analysis of Newton’s iterative method (second part) and the spatial discretization
(third part).

We shall prove that the second and third parts in (1.4) are of higher order in time if the number
of Newton iterations ` is at least 2. This further helps to prove the W 1,∞-boundedness of the numer-
ical solutions. The technical tools we use are the Lp(0,T ;W 1,q(Ω)) estimate of discretized parabolic
equations, i.e., estimates (2.15)–(2.16)), and the best approximation property of finite element approx-
imations to parabolic equations in the discrete Lp(0,T ;Lq(Ω)) norm, i.e., estimate (2.18). Both tools
are consequences of the discrete maximal Lp-regularity theory [4, 10, 13–15, 17, 19, 20, 22], which is a
mathematical tool for numerical analysis of nonlinear parabolic equations; see [1, 2, 16, 18, 26]. These
articles are mainly concerned with either semidiscretization in time or semilinear parabolic equations;
the techniques cannot be applied to the strongly nonlinear problem of gradient flow with fully discrete
numerical methods, especially in the case involving linearization by Newton’s iterations.

In Section 2, we introduce the linearized Newton iterative finite element method for (1.1). Then,
we present the main theoretical result on the convergence of the numerical solutions. Using resolvent
estimates of elliptic operators on Lq(Ω), in Section 3 we establish error estimates for the time-discrete
Newton iterative solutions in W 2,q(Ω) and W 1,∞(Ω). Then, we view the fully discrete Newton iterative
solutions as spatial finite element approximations of the time-discrete Newton iterative solutions, and
estimate the difference between the two solutions in Section 4. Under this point of view, we prove
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almost optimal order convergence of the fully discrete Newton iterative finite element solutions in the
norms of W 1,q(Ω) and Lq(Ω).

2. Assumptions and main result

In this paper, we work with the following assumptions:
(a1) The domain Ω is sufficiently regular such that the W 2,q elliptic regularity holds for some d < q6 6.

In other words, for g ∈ Lq(Ω) and ai j ∈W 1,q(Ω) such that ai j = a ji and

λ
−1|ξ |2 6

d

∑
i, j=1

ai j(x)ξiξ j 6 λ |ξ |2 ∀ξ = (ξ1, . . . ,ξd) ∈ Rd ∀x ∈Ω , (2.1)

the solution υ ∈ H1
0 (Ω) of the boundary value problem for the elliptic equation

d

∑
i, j=1

∂

∂xi

(
ai j

∂υ

∂x j

)
= g in Ω ,

υ = 0 on ∂Ω ,

(2.2)

satisfies
‖υ‖W 2,p(Ω) 6 c‖g‖Lp(Ω) ∀ p ∈ [2,q], (2.3)

where c is a positive constant, which may depend on λ , q, ‖ai j‖W 1,q(Ω) and Ω .

(a2) The flux function fff ∈C3(Rd)d satisfies the local ellipticity condition (1.2).

(a3) The solution of (1.1) is sufficiently regular; more precisely,
u ∈C2([0,T ];Lq(Ω)

)
∩C
(
[0,T ];W 2,q(Ω)

)
for q as in (a1). (2.4)

Justification of these assumptions can be found in Appendix A. In particular, assumption (a1) holds
if Ω is any convex two-dimensional polygon or any three-dimensional polyhedron with interior di-
hedral angles less than 3

4 π (such as rectangular parallelepiped); assumption (a2) holds for all exam-
ples mentioned in the introduction, including the minimal surface flow, the regularized total variation
flow, and the general L2(Ω) gradient flow. Under assumptions (a1)–(a2), for any smooth initial data
u0 ∈W 2,q(Ω)∩W 1,q

0 (Ω) satisfying the compatibility condition

∇ · fff (∇u0) ∈W 2,q(Ω)∩W 1,q
0 (Ω), (2.5)

the partial differential equation (PDE) problem (1.1) has a unique solution u with regularity (2.4) up to
some finite time T > 0 (local existence of smooth solutions), and thus assumption (a3) holds.

2.1 Implicit Euler scheme and finite element method

Let N be a positive integer and consider a uniform partition tn := nτ,n = 0,1, . . . ,N, of the interval
[0,T ] with time step τ = T/N. With the starting value u0 := u0, we define a sequence of approximations
un ∈W 1,∞(Ω)∩H1

0 (Ω) to the nodal values u(tn) := u(·, tn) of the exact solution, by discretizing (1.1)
with the implicit Euler scheme,

un−un−1

τ
= ∇ · fff (∇un), n = 1, . . . ,N. (2.6)

Let (Sh)0<h<1 ⊂ H1
0 (Ω) denote a family of finite element spaces of continuous piecewise linear

polynomials corresponding to a quasi-uniform triangulation of the domain Ω , with mesh size h. The
fully discrete finite element counterpart of the implicit Euler scheme (2.6) is to seek approximations
un

h ∈ Sh to u(tn) such that(
un

h−un−1
h

τ
,υh

)
=−

(
fff (∇un

h),∇υh
)
∀υh ∈ Sh, n = 1, . . . ,N, (2.7)
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where u0
h ∈ Sh is the L2 projection of the initial value u0.

The implicit Euler scheme (2.6) and its finite element discretization (2.7) are nonlinear equations
that cannot be implemented directly. An efficient way to linearize (2.6), as well as the corresponding
fully discrete scheme (2.7), is by Newton’s method.

2.2 Linearization by Newton’s method

Let

D fff (p) := ∇p fff (p), D2 fff (p) := ∇
2
p fff (p) and D3 fff (p) := ∇

3
p fff (p) for p ∈ Rd .

Thus D2 fff (p) and D3 fff (p) are 3rd- and 4th-order tensors with components
D2 fff (p)i jk = ∂i∂ j fff k(p) and D3 fff (p)i jk` = ∂i∂ j∂k fff `(p).

Multiplication of the 3rd-order tensor D2 fff (p) with a d-dimensional vector yields a 2nd-order tensor
(i.e., matrix) with components

(D2 fff (p) ·υυυ) jk =
d

∑
i=1

υi∂i∂ j fff k(p).

Similarly, multiplication of the 3rd-order tensor D2 fff (p) with a d×d matrix M = (Mi j) yields a vector
with components

(D2 fff (p) : M)k =
d

∑
i, j=1

∂i∂ j fff k(p)Mi j.

Multiplication of the 4rd-order tensor D3 fff (p) with matrices or vectors can be defined similarly.
Let ` denote the number of Newton iterations at each time level, and set u0

` := u0. At the nth time
level, by choosing the starting value un

0 := un−1
` , Newton’s method for the semidiscrete scheme (2.6)

seeks un
m ∈W 1,∞(Ω)∩H1

0 (Ω),m = 1, . . . , `, to be the solutions of the following linear equation:

un
m−un−1

`

τ
= ∇ · fff (∇un

m−1)+∇ ·
(

D fff (∇un
m−1)∇(un

m−un
m−1)

)
. (2.8)

Similarly, at the nth time level, Newton’s method for the fully discrete nonlinear system (2.7) seeks
un

h,m ∈ Sh, m = 1,2, . . . , `, such that(un
h,m−un−1

h,`

τ
,υh

)
=−

(
fff (∇un

h,m−1),∇υh
)
−
(
D fff (∇un

h,m−1)∇(un
h,m−un

h,m−1),∇υh
)
∀υh ∈ Sh,

(2.9)

with un
h,0 := un−1

h,` , and u0
h,` the L2 projection of the initial value u0.

Alternatively, (2.9) can also be viewed as the finite element discretization of the semidiscrete Newton
iteration scheme (2.8). Based on this point of view, the error of the Newton iterative finite element
solutions given by (2.9) can be split into the three parts in (1.4) that can be estimated separately.

The main result of this paper is the following theorem.

THEOREM 2.1 Let ` > 2. Then, under assumptions (a1)–(a3), there exist positive constants τ? and h?
such that for τ 6 τ? and h 6 h? the numerical solutions given by the Newton iterative finite element
method (2.9) satisfy the following estimates

max
16n6N

‖un
h,`−u(tn)‖W 1,q(Ω) 6 cε,`(τ +h1−ε), (2.10)

max
16n6N

‖un
h,`−u(tn)‖Lq(Ω) 6 cε,`(τ +h2−ε), (2.11)

where q is the same number as in assumption (a1), ε ∈ (0,1) can be an arbitrarily small constant, and
cε,` is a constant independent of τ and n (that may depend on ε, ` and T ).



5 of 21

The rest of the theoretical part of the article is devoted to the proof of Theorem 2.1. To simplify
the notation, for a sequence (υn)k

n=0 with entries in a Banach space X we denote by δτ υn the backward
difference quotient and by

∥∥(υn)k
n=1

∥∥
Lp(X)

the discrete `p(X) norm,

δτ υ
n :=

υn−υn−1

τ
and

∥∥(υn)k
n=1
∥∥

Lp(X)
:=


( k

∑
n=1

τ‖υn‖p
X

) 1
p

if p ∈ [1,∞),

max
16n6k

‖υn‖X if p = ∞.

The main technical tool is the following theorem on discrete maximal Lp-regularity of fully discrete
finite element solutions of parabolic equations with time-dependent coefficients.

THEOREM 2.2 Let q > d and ai j = a ji ∈C([0,T ];W 1,q(Ω)), i, j = 1, . . . ,d, be functions satisfying (2.1)
and the Lipschitz condition with respect to t, uniformly in x,

sup
x∈Ω

|ai j(x, t)−ai j(x,s)|6 c|t− s|, t,s ∈ [0,T ],

and let Oι(x, t) denote the symmetric d× d matrix with entries ai j(x, t). Let φ n ∈ H1
0 (Ω) and φ n

h ∈ Sh,
n = 1, . . . ,N, be the solutions of

δτ φ
n−∇ · (Oι(·, tn)∇φ

n) = gn (2.12)
and (

δτ φ
n
h ,υh

)
+
(
Oι(·, tn)∇φ

n
h ,∇υh

)
= (gn,υh) ∀υh ∈ Sh, (2.13)

respectively, for some functions gn ∈ Ls(Ω), s∈ (1,∞), n = 1, . . . ,N, with starting data φ 0 ∈H1
0 (Ω) and

φ 0
h ∈ Sh. Thus (

δτ(φ
n−φ

n
h ),υh

)
+
(
Oι(·, tn)∇(φ n−φ

n
h ),∇υh

)
= 0 ∀υh ∈ Sh. (2.14)

Then, under assumption (a1), the following estimates are valid, when φ 0
h = φ 0 = 0, for all 1 6 k 6 N

and 1 < p < ∞:
‖(δτ φ

n
h )

k
n=1‖Lp(W−1,s(Ω))+‖(φ

n
h )

k
n=1‖Lp(W 1,s(Ω)) 6 c‖(gn)k

n=1‖Lp(W−1,s(Ω)) ∀s ∈ (1,∞), (2.15)

‖(δτ φ
n)k

n=1‖Lp(W−1,s(Ω))+‖(φ
n)k

n=1‖Lp(W 1,s(Ω)) 6 c‖(gn)k
n=1‖Lp(W−1,s(Ω)) ∀s ∈ (1,∞), (2.16)

‖(δτ φ
n)k

n=1‖Lp(Ls(Ω))+‖(φ n)k
n=1‖Lp(W 2,s(Ω)) 6 c‖(gn)k

n=1‖Lp(Ls(Ω)) ∀s ∈ (1,q], (2.17)
and

‖(φ n−φ
n
h )

k
n=1‖Lp(Ls(Ω)) 6 c‖(φ n−Phφ

n)k
n=1‖Lp(Ls(Ω))+ c‖(φ n−Rn

hφ
n)k

n=1‖Lp(Ls(Ω))

6 ch2‖(φ n)k
n=1‖Lp(W 2,s(Ω)), (2.18)

where Ph and Rn
h denote the L2 and Ritz projections onto the finite element space, respectively, with the

latter defined by

(Oι(·, tn)∇(ϕ−Rn
hϕ),∇υh) = 0 ∀υh ∈ Sh ∀ϕ ∈ H1

0 (Ω). (2.19)

REMARK 2.1 Estimates (2.15) and (2.16) can be viewed as maximal Lp-regularity on the Banach space
W−1,s(Ω) for fully discrete and semidiscrete schemes, respectively.

Under the assumptions of Theorem 2.2, the Ritz projection satisfies the following estimate (cf. [5,
(8.5.3)–(8.5.5)]):
‖ϕ−Rn

hϕ‖Ls(Ω)+h‖ϕ−Rn
hϕ‖W 1,s(Ω) 6 c‖ϕ‖W `,s(Ω)h

` ∀ϕ ∈W `,s(Ω), `= 1,2, s ∈ [2,∞). (2.20)
Theorem 2.2 is analogous to [23, Theorem 2.1]. The latter is proved in smooth domains with the

Neumann boundary condition, while the former is for convex polygonal/polyhedral domains with the
Dirichlet boundary condition under assumption (a1). A sketch of the proof for Theorem 2.2 can be
found in Appendix B.
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3. Newton’s iteration for time discretization

Under assumptions (a1)–(a3), it has been proved in [16, Theorem 2.1] that the semidiscrete solutions
un,n = 1, . . . ,N, are well defined and satisfy the following estimate:

‖(un−u(tn))N
n=1‖L∞(W 1,∞)+‖(u

n−u(tn))N
n=1‖Lp(W 2,q) 6 cp,qτ ∀ p ∈ (1,∞), (3.1)

where q is the number in assumption (a1). This further implies the following regularity estimate (for the
time-discrete solution):

max
16n6N

(
‖δτ un‖W 1,∞ +‖un‖W 2,q

)
6 c, (3.2)

where δτ un = (un− un−1)/τ . This regularity estimate plays a crucial role in our analysis of Newton’s
method applied to both the implicit Euler scheme (2.6) and its finite element discretization (2.7).

The main result of this section is the following proposition.

PROPOSITION 3.1 Let `> 2. Then, under assumptions (a1)–(a3), there exists a positive constant τ0 such
that for τ 6 τ0 the numerical solutions given by the Newton iterative scheme (2.8) satisfy the following
estimates

max
16n6N

‖un
` −un‖H1(Ω) 6 c`τ(2`+1)/2, (3.3)

max
16n6N

(
‖un

` −un‖W 1,∞(Ω)+‖u
n
` −un‖W 2,q(Ω)

)
6 c`τ(2`−1)/2, (3.4)

max
16n6N

(
τ
−1‖un

m−un
m−1‖W 1,∞(Ω)+‖u

n
m‖W 2,q(Ω)

)
6 c`, m = 1, . . . , `, (3.5)

where c` is a constant independent of τ and n (that may depend on T and `).

Proof. Taylor expanding the term on the right-hand side of the implicit Euler scheme (2.6) about
∇un

m−1, we see that the implicit Euler approximation un satisfies the relation

un−un−1

τ
= ∇ · fff (∇un

m−1)+∇ ·
(

D fff (∇un
m−1)∇(un−un

m−1)
)

+∇ ·
(∫ 1

0
D2 fff

(
(1− t)∇un

m−1 + t∇un
)
(1− t)dt ∇(un−un

m−1) ·∇(un−un
m−1)

)
.

(3.6)

Letting en
m = un

m−un and subtracting (3.6) from (2.8), we obtain
en

m

τ
= ∇ ·

(
D fff (∇un

m−1)∇en
m

)
−∇ ·

(∫ 1

0
D2 fff

(
(1− t)∇un

m−1 + t∇un
)
(1− t)dt ∇en

m−1 ·∇en
m−1

)
+

en−1
`

τ
.

(3.7)

With the second order elliptic partial differential operator
An

m−1 = ∇ ·
(
D fff (∇un

m−1)∇
)
,

relation (3.7) can be rewritten in the form

An
m−1en

m =−An
m−1

(
1
τ
−An

m−1

)−1

∇ ·
(∫ 1

0
D2 fff

(
(1− t)∇un

m−1 + t∇un
)
(1− t)dt ∇en

m−1 ·∇en
m−1

)
+

1
τ

(
1
τ
−An

m−1

)−1

An
m−1en−1

` .

(3.8)
We assume (mathematical induction assumption)

‖en−1
` ‖W 2,q(Ω) 6 τ, n = 1, . . . ,k, (3.9)

and prove that
‖ek

`‖W 2,q(Ω) 6 τ. (3.10)

To this end, we introduce a second loop of mathematical induction, namely, for 16 n6 k and 16m6 i
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we assume that
‖un

m−1‖W 1,∞(Ω) 6 ‖u
n‖W 1,∞(Ω)+1, (3.11)

‖un
m−1‖W 2,q(Ω) 6 ‖u

n‖W 2,q(Ω)+1. (3.12)
Then, we prove

‖un
i ‖W 1,∞(Ω) 6 ‖u

n‖W 1,∞(Ω)+1, (3.13)

‖un
i ‖W 2,q(Ω) 6 ‖u

n‖W 2,q(Ω)+1 (3.14)

(for the same range of n) to complete the mathematical induction. Since en
0 = en−1

` and W 2,q(Ω) ↪→
W 1,∞(Ω), it follows that (3.9) implies (3.11)–(3.12) for m = 1 (with sufficiently small τ). In the sequel,
we shall keep the generic constant c independent of n,k, i and `.

Under the induction assumptions (3.9) and (3.11)–(3.12), the coefficient matrix D fff (∇un
m−1) satisfies

the following estimates:
‖D fff (∇un

m−1)‖W 1,q(Ω) 6 c,

λ
−1|ξ |2 6 D fff (∇un

m−1)ξ ·ξ 6 λ |ξ |2 ∀ξ ∈ Rd , (3.15)
for some positive constants c and λ depending on ‖un‖W 2,q(Ω) and ‖un‖W 1,∞(Ω) (implicit Euler approxi-
mations of the exact solution of the PDE). Thus, operator An

m−1 generates a bounded analytic semigroup
on Lq(Ω) ( [27, Theorem 3.1]), satisfying the resolvent estimates (cf. [3, Theorem 3.7.11])∥∥∥∥An

m−1

(
1
τ
−An

m−1

)−1∥∥∥∥
Lq(Ω)→Lq(Ω)

6 c and
∥∥∥∥1

τ

(
1
τ
−An

m−1

)−1∥∥∥∥
Lq(Ω)→Lq(Ω)

6 c.

Therefore, (3.8) yields
‖An

m−1en
m‖Lq(Ω)

6 c
∥∥∥∥∇ ·

(∫ 1

0
D2 fff

(
(1− t)∇un

m−1 + t∇un
)
(1− t)dt ∇en

m−1 ·∇en
m−1

)∥∥∥∥
Lq(Ω)

+ c‖An
m−1en−1

` ‖Lq(Ω)

6 c
∥∥∥∥∫ 1

0
D2 fff

(
(1− t)∇un

m−1 + t∇un
)
(1− t)dt : ∇

2en
m−1 ·∇en

m−1

∥∥∥∥
Lq(Ω)

+ c
∥∥∥∥∫ 1

0
D3 fff

(
(1− t)∇un

m−1+t∇un
)

:
(
(1− t)∇2un

m−1+t∇2un
)
(1− t)dt ·∇en

m−1·∇en
m−1

∥∥∥∥
Lq(Ω)

+ c‖An
m−1en−1

` ‖Lq(Ω)

6 c‖∇2en
m−1‖Lq(Ω)‖∇en

m−1‖L∞(Ω)+(c‖∇2un
m−1‖Lq(Ω)+ c)‖∇en

m−1‖2
L∞(Ω)+ c‖An

m−1en−1
` ‖Lq(Ω),

whence (since W 2,q(Ω) ↪→W 1,∞(Ω) for q > d)
‖An

m−1en
m‖Lq(Ω) 6 c‖en

m−1‖2
W 2,q(Ω)+ c‖en−1

` ‖W 2,q(Ω). (3.16)

Under the induction assumptions (3.11)–(3.12), we have the elliptic W 2,q regularity (see assumption
(a1))

‖en
m‖W 2,q(Ω) 6 c‖An

m−1en
m‖Lq(Ω). (3.17)

Combining (3.16) and (3.17), we get
‖en

m‖W 2,q(Ω) 6 c‖en
m−1‖2

W 2,q(Ω)+ c‖en−1
` ‖W 2,q(Ω), (3.18)

whence, iterating (3.18) with respect to m we obtain
‖en

m‖W 2,q(Ω) 6 c‖en
m−1‖2

W 2,q(Ω)+ c‖en−1
` ‖W 2,q(Ω)

6 c(c‖en
m−2‖2

W 2,q(Ω)+ c‖en−1
` ‖W 2,q(Ω))

2 + c‖en−1
` ‖W 2,q(Ω)

6 2c3‖en
m−2‖4

W 2,q(Ω)+2c3‖en−1
` ‖2

W 2,q(Ω)+ c‖en−1
` ‖W 2,q(Ω)

6 21+3c1+2+4‖en
m−3‖8

W 2,q(Ω)
+21+3c1+2+4‖en−1

` ‖4
W 2,q(Ω)+2c3‖en−1

` ‖2
W 2,q(Ω)+ c‖en−1

` ‖W 2,q(Ω)
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6 · · ·6 (2c)2m‖en
0‖2m

W 2,q(Ω)+‖e
n−1
` ‖W 2,q(Ω)

(
1+

m−1

∑
j=1

(2c)2 j‖en−1
` ‖2 j−1

W 2,q(Ω)

)
,

and thus

‖en
m‖W 2,q(Ω) 6 (2cε τ

1−ε)2m
+‖en−1

` ‖W 2,q(Ω)

(
1+ c

m−1

∑
j=1

(2c)2 j−1‖en−1
` ‖2 j−1

W 2,q(Ω)

)
, (3.19)

where we have used the fact that
‖en

0‖W 2,q(Ω) = ‖u
n
0−un‖W 2,q(Ω)

= ‖un−1
` −un‖W 2,q(Ω)

6 ‖un−1
` −un−1‖W 2,q(Ω)+‖u

n−1−un‖W 2,q(Ω)

6 cε τ
1−ε , (3.20)

where ε can be arbitrarily small, with a constant cε depending on ε . In the last inequality we have used
‖un−1

` −un−1‖W 2,q(Ω) = ‖en−1
` ‖W 2,q(Ω) 6 τ , which is due to the induction assumption (3.9), and

‖un−1−un‖W 2,q(Ω) 6 ‖u
n−1−u(tn−1)‖W 2,q(Ω)+‖u(tn−1)−u(tn)‖W 2,q(Ω)+‖u(tn)−un‖W 2,q(Ω)

6 cτ
1− 1

p + cτ + cτ
1− 1

p 6 cτ
1− 1

p ,

where the last inequality is due to (3.1), in which p can be arbitrarily large and so ‖un−1−un‖W 2,q(Ω) 6

cε τ1−ε . The induction assumption (3.9) implies for sufficiently small τ (independent of m and `)
‖en

m‖W 2,q(Ω) 6 (2cε τ
1−ε)2m

+ c‖en−1
` ‖W 2,q(Ω) 6 (2cε τ

1−ε)2m
+ c‖en−1

` ‖W 2,q(Ω)

and thus

‖en
m‖W 2,q(Ω) 6 cτ, (3.21)

which further implies

‖en
m‖W 1,∞(Ω) 6 c‖en

m‖W 2,q(Ω) 6 cτ. (3.22)

For sufficiently small τ , the last two estimates imply (3.13)–(3.14), completing the second loop of
mathematical induction. Thus (3.13)–(3.14) are valid for all 16 m6 `.

By the second mathematical induction, we have shown that ‖∇un
m‖L∞ is uniformly bounded with

respect to τ for all 0 6 m 6 ` (note that ‖∇un
0‖L∞ = ‖∇un−1

` ‖L∞ ). Now, integrating (3.7) against −∇ ·(
D fff (∇un

m−1)∇en
m
)

and using Hölder’s inequality, we obtain, for 16 m6 `,

1
2τ

(
D fff (∇un

m−1)∇en
m,∇en

m
)
− 1

2τ

(
D fff (∇un

m−1)∇en−1
` ,∇en−1

`

)
+

1
2

∥∥∇ ·
(
D fff (∇un

m−1)∇en
m
)∥∥2

L2(Ω)

6 c
∥∥∥∥∇ ·

(∫ 1

0
D2 fff

(
(1− t)∇un

m−1 + t∇un
)
(1− t)dt ∇en

m−1 ·∇en
m−1

)∥∥∥∥2

L2(Ω)

6 c
∥∥∥∥∫ 1

0
D2 fff

(
(1− t)∇un

m−1 + t∇un
)
(1− t)dt : ∇

2en
m−1 ·∇en

m−1

∥∥∥∥2

L2(Ω)

+ c
∥∥∥∥∫ 1

0
D3 fff

(
(1− t)∇un

m−1 + t∇un
)

:
(
(1− t)∇2un

m−1 + t∇2un
)
(1− t)dt ·∇en

m−1 ·∇en
m−1

∥∥∥∥2

L2(Ω)

.

(3.23)
Since ‖∇un

m‖L∞ is uniformly bounded, it follows that∣∣∣D2 fff
(
(1− t)∇un

m−1 + t∇un
)∣∣∣+ ∣∣∣D3 fff

(
(1− t)∇un

m−1 + t∇un
)∣∣∣6C.
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Therefore, by using Hölder’s inequality,∥∥∥∥∫ 1

0
D2 fff

(
(1− t)∇un

m−1 + t∇un
)
(1− t)dt : ∇

2en
m−1 ·∇en

m−1

∥∥∥∥2

L2(Ω)

+ c
∥∥∥∥∫ 1

0
D3 fff

(
(1− t)∇un

m−1 + t∇un
)

:
(
(1− t)∇2un

m−1 + t∇2un
)
(1− t)dt ·∇en

m−1 ·∇en
m−1

∥∥∥∥2

L2(Ω)

6 c‖∇2en
m−1‖2

Lq(Ω)‖∇en
m−1‖2

L
2q

q−2 (Ω)

+ c(‖∇2un
m−1‖2

Lq(Ω)+‖∇
2un‖2

Lq(Ω))‖∇en
m−1‖2

L
2q

q−2 (Ω)

‖∇en
m−1‖2

L∞(Ω)

6 c‖en
m−1‖2

W 2,q(Ω)‖e
n
m−1‖2

H2(Ω)+ c‖en
m−1‖2

H2(Ω)‖e
n
m−1‖2

W 1,∞(Ω) (since H2(Ω) ↪→W 1, 2q
q−2 (Ω))

6 cτ
2‖en

m−1‖2
H2(Ω)

6 cτ
2∥∥∇ ·

(
D fff (∇un

m−2)∇en
m−1
)∥∥2

L2(Ω)
, (3.24)

with un
−1 := un

0 in the case m = 1, where we have used (3.22) in the second last inequality, and (2.3) in
the last inequality. Substituting (3.24) into (3.23) yields

1
2τ

(
D fff (∇un

m−1)∇en
m,∇en

m
)
+

1
2

∥∥∇ ·
(
D fff (∇un

m−1)∇en
m
)∥∥2

L2(Ω)

6 cτ
2∥∥∇ ·

(
D fff (∇un

m−2)∇en
m−1
)∥∥2

L2(Ω)
+

1
2τ

(
D fff (∇un

m−1)∇en−1
` ,∇en−1

`

)
6 cτ

2∥∥∇ ·
(
D fff (∇un

m−2)∇en
m−1
)∥∥2

L2(Ω)
+

1
2τ

(
(D fff (∇un

m−1)−D fff (∇un
`))∇en−1

` ,∇en−1
`

)
+

1
2τ

(
D fff (∇un

`)∇en−1
` ,∇en−1

`

)
.

Again, since ‖∇un
m‖L∞ is uniformly bounded for 06 m6 `, it follows that

|D fff (∇un
m−1)−D fff (∇un

`)|6C

and thus
1

2τ

(
D fff (∇un

m−1)∇en
m,∇en

m
)
+

1
2

∥∥∇ ·
(
D fff (∇un

m−1)∇en
m
)∥∥2

L2(Ω)

6 cτ
2∥∥∇ ·

(
D fff (∇un

m−2)∇en
m−1
)∥∥2

L2(Ω)
+ c‖∇en−1

` ‖2
L2(Ω)+

1
2τ

(
D fff (∇un

`)∇en−1
` ,∇en−1

`

)
6 cτ

2∥∥∇ ·
(
D fff (∇un

m−2)∇en
m−1
)∥∥2

L2(Ω)
+

1
2τ

(1+ cτ)
(
D fff (∇un

`)∇en−1
` ,∇en−1

`

)
.

Let Y n
m =

(
D fff (∇un

m−1)∇en
m,∇en

m
)
+ τ
∥∥∇ ·

(
D fff (∇un

m−1)∇en
m
)∥∥2

L2(Ω)
. Then, the last estimate implies

Y n
m 6 cτ

2Y n
m−1 +(1+ cτ)

(
D fff (∇un

`)∇en−1
` ,∇en−1

`

)
.

Iterations of this inequality yield
Y n

m 6 cτ
2Y n

m−1 +(1+ cτ)
(
D fff (∇un

`)∇en−1
` ,∇en−1

`

)
6 (cτ

2)2Y n
m−2 +(1+ cτ

2)(1+ cτ)
(
D fff (∇un

`)∇en−1
` ,∇en−1

`

)
6 · · ·
6 (cτ

2)mY n
0 +

[
1+ cτ

2 + · · ·+(cτ
2)m−1](1+ cτ)

(
D fff (∇un

`)∇en−1
` ,∇en−1

`

)
6 (cτ

2)m(‖∇en
0‖2

L2(Ω)+ τ‖en
0‖2

H2(Ω))+
[
1+ cτ

2 + · · ·+(cτ
2)m−1](1+ cτ)‖∇en−1

` ‖2
L2(Ω)

6 (cτ
2)m(‖∇en

0‖2
L2(Ω)+ τ‖en

0‖2
H2(Ω))+

1+ cτ

1− cτ2 ‖∇en−1
` ‖2

L2(Ω).

When τ is small enough, the last inequality implies
‖∇en

m‖2
L2(Ω) 6 (cτ

2)m(‖∇en
0‖2

L2(Ω)+ τ‖en
0‖2

H2(Ω))+(1+ cτ)‖∇en−1
` ‖2

L2(Ω). (3.25)
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In particular, setting m = ` in the last estimate and using (3.20), we obtain
‖∇en

`‖2
L2(Ω) 6 (cτ

2)`τ2 +(1+ cτ)‖∇en−1
` ‖2

L2(Ω). (3.26)

Iteration of (3.26) gives
‖∇en

`‖2
L2(Ω) 6 (cτ

2)`τ2 +(1+ cτ)‖∇en−1
` ‖2

L2(Ω)

6 (cτ
2)`τ2[1+(1+ cτ)+ · · ·+(1+ cτ)n−1]+(1+ cτ)n‖∇e0

`‖2
L2(Ω)

6 (cτ
2)`τ2n(1+ cτ)n +(1+ cτ)n‖∇e0

`‖2
L2(Ω)

6 cecT (cτ
2)`τ + cecT‖∇e0

`‖2
L2(Ω);

therefore, since e0
` vanishes,

‖∇en
`‖2

L2(Ω) 6 cc`τ2`+1. (3.27)

Note that H1(Ω) ↪→ L6(Ω) for d ∈ {2,3}. From (3.8) we see that, for q ∈ (d,6],

‖An
m−1en

m‖Lq(Ω) 6 c
∥∥∥∥∇ ·

(∫ 1

0
D2 fff

(
(1− t)∇un

m−1 + t∇un
)
(1− t)dt ∇en

m−1 ·∇en
m−1

)∥∥∥∥
Lq(Ω)

+ c
∥∥∥∥1

τ
en−1
`

∥∥∥∥
Lq(Ω)

6 c‖en
m−1‖2

W 2,q(Ω)+ cc`τ(2`−1)/2;

the derivation of the last inequality is analogous to the one of (3.16). Iteration of this estimate yields (in
analogy to the derivation of (3.19))

‖en
m‖W 2,q(Ω) 6 2m(cε τ

1−ε)2m
+ cc`τ(2`−1)/2

(
1+ c

m−1

∑
j=1

2 j(cc`τ(2`−1)/2)2 j−1
)

6 (2cε τ
1−ε)2m

+ cc`τ(2`−1)/2.

(3.28)

For sufficiently small τ , estimate (3.28) implies, for `> 2,

‖en
m‖W 1,∞(Ω)+‖e

n
m‖W 2,q(Ω) 6 cτ

3
2 , m = 1, . . . , `; (3.29)

therefore, for sufficiently small τ , we have
‖en

`‖W 2,q(Ω) 6 τ. (3.30)
This completes the first loop of mathematical induction. Thus, all these estimates hold for n = 1, . . . ,N
and m = 1, . . . , `. In particular, (3.27)–(3.29) imply (3.3)–(3.5). This completes the proof of Proposition
3.1. �

The following result is an immediate consequence of (3.1) and (3.4) by a triangle inequality.

COROLLARY 3.1 Let `> 2 and assume that the solution of the initial and boundary value problem (1.1)
satisfies (2.4). Then, there exists a positive constant τ0 such that for τ 6 τ0 the numerical solutions given
by Newton’s method (2.8) satisfy the following estimate:

max
16n6N

‖un
` −u(tn)‖W 1,∞(Ω) 6 cτ, (3.31)

where c is a constant independent of τ and n (that may depend on T and `).

REMARK 3.1 Assuming uniform ellipticity of the coefficient matrix, error estimates can be established
by the energy technique (3.23)–(3.27). This is only a small part of the proof of Proposition 3.1, which
mainly consists in deriving W 2,q and W 1,∞ error estimates in order to rule out the possibility of degen-
eracy.

4. Proof of Theorem 2.1

Theorem 2.1 is a consequence of Proposition 3.1 and the following proposition.

PROPOSITION 4.1 Let ` > 2. Then, under assumptions (a1)–(a3), there exist positive constants τ? and
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h? such that for τ 6 τ? and h6 h? the numerical solutions given by the Newton iterative finite element
method (2.9) satisfy the following estimates

max
16n6N

‖un
h,`−un

`‖W 1,q(Ω) 6 cε,`h1−ε , (4.1)

max
16n6N

‖un
h,`−un

`‖Lq(Ω) 6 cε,`(τ
2 +h2−ε), (4.2)

where ε ∈ (0,1) can be an arbitrarily small constant, and cε,` is a constant independent of τ and n (that
may depend on ε, ` and T ).

In the rest of this section, we prove Proposition 4.1.

4.1 Error equation and mathematical inductions

We recall that Ph denotes the L2 orthogonal projection onto the finite element space Sh; it satisfies the
following estimates:

‖ϕ−Phϕ‖W k,p(Ω) 6Chm−k‖ϕ‖W m,p(Ω) ∀ϕ ∈W m,p(Ω)∩H1
0 (Ω), (4.3)

for k = 0,1, m = 1,2, and 16 p6 ∞. Estimate (4.3) is a consequence of [29, Lemma 7.2].
Integrating (2.8) against a test function υh yields(

un
m−un−1

`

τ
,υh

)
=−

(
fff (∇un

m−1),∇υh
)
−
(
D fff (∇un

m−1)∇(un
m−un

m−1),∇υh
)
∀υh ∈ Sh. (4.4)

Let
en

h,m = un
h,m−un

m, θ
n
h,m = un

h,m−Phun
m and ρ

n
h,m = Phun

m−un
m.

Obviously, en
h,m = θ n

h,m +ρn
h,m; ‖ρn

h,m‖Lq(Ω) and ‖ρn
h,m‖W 1,q(Ω) can be easily estimated using (3.5) and

(4.3). Therefore, we focus on the estimation of ‖θ n
h,m‖Lq(Ω) and ‖θ n

h,m‖W 1,q(Ω). By our choice u0
h,` =

Phu0 = Phu0
` , we have θ 0

h,` = 0.
Subtracting (4.4) from (2.9) and noting that (en

h,m,υh) = (θ n
h,m,υh) for υh ∈ Sh, we obtain

1
τ
(θ n

h,m,υh) = In
1 (υh)+ In

2 (υh)+ In
3 (υh)+ In

4 (υh)+ In
5 (υh) ∀υh ∈ Sh (4.5)

with
In
1 (υh) :=−

(
fff (∇un

h,m−1)− fff (∇un
m−1),∇υh

)
,

In
2 (υh) :=−

(
D fff (∇un

m−1)∇(en
h,m− en

h,m−1),∇υh
)
,

In
3 (υh) :=−

(
(D fff (∇un

h,m−1)−D fff (∇un
m−1))∇(en

h,m− en
h,m−1),∇υh

)
,

In
4 (υh) :=−

(
(D fff (∇un

h,m−1)−D fff (∇un
m−1))∇(un

m−un
m−1),∇υh

)
,

In
5 (υh) :=

1
τ
(en−1

h,` ,υh).

Now,

In
1 (υh) =−

(∫ 1

0
D fff ((1− s)∇un

h,m−1 + s∇un
m−1)ds ∇en

h,m−1,∇υh

)
=−

(
D fff (∇un

m−1)∇en
h,m−1,∇υh

)
(4.6)

−
(∫ 1

0
(D fff ((1− s)∇un

h,m−1 + s∇un
m−1)−D fff (∇un

m−1))ds∇en
h,m−1,∇υh

)
,

whence
In
1 (υh)+ In

2 (υh) =−
(
D fff (∇un

m−1)∇θ
n
h,m,∇υh

)
+ In

6 (υh)+ In
7 (υh) (4.7)

with
In
6 (υh) :=−

(
D fff (∇un

m−1)∇ρ
n
h,m,∇υh

)
,
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In
7 (υh) :=−

(∫ 1

0
(D fff ((1− s)∇un

h,m−1 + s∇un
m−1)−D fff (∇un

m−1))ds∇en
h,m−1,∇υh

)
.

Thus, (4.5) can be rewritten as((
1
τ
−An

h,m−1

)
θ

n
h,m,υh

)
= In

3 (υh)+ In
4 (υh)+ In

5 (υh)+ In
6 (υh)+ In

7 (υh) ∀υh ∈ Sh, (4.8)

with the operator An
h,m−1 : Sh→ Sh defined via duality by

(An
h,m−1wh,υh) =−

(
D fff (∇un

m−1)∇wh,∇υh
)
∀wh,υh ∈ Sh. (4.9)

In the following, we estimate ‖en
h,m‖W 1,q(Ω) by using the error equation (4.8). To this end, we employ

two loops of mathematical induction. The first loop of mathematical induction is as follows. We assume
that

‖en−1
h,` ‖W 1,q(Ω) 6 h

d
2q+

1
2 , n = 1, . . . ,k, (4.10)

and then prove

‖ek
h,`‖W 1,q(Ω) 6 h

d
2q+

1
2 . (4.11)

To complete the first loop of mathematical induction, we employ a second loop of mathematical induc-
tion: we assume that the following estimates hold for some 16 m6 `

‖en
h,i−1‖W 1,∞(Ω) 6 h

1
4−

d
4q , i = 1, . . . ,m, n = 1, . . . ,k, (4.12)

and then prove that

‖en
h,m‖W 1,∞(Ω) 6 h

1
4−

d
4q , n = 1, . . . ,k. (4.13)

Note that (4.10) implies (4.12) with i = 1 for sufficiently small h. This is a consequence of
‖en

h,0‖W 1,∞(Ω) = ‖e
n−1
h,` ‖W 1,∞(Ω)

6 ‖θ n−1
h,` ‖W 1,∞(Ω)+‖ρ

n−1
h,` ‖W 1,∞(Ω)

6 ch−
d
q (‖en−1

h,` ‖W 1,q(Ω)+‖ρ
n−1
h,` ‖W 1,q(Ω))+ ch1− d

q ‖un−1
` ‖

C1,1− d
q (Ω)

(inverse inequality is used)

6 ch
1
2−

d
2q + ch1− d

q ‖un−1
` ‖W 2,q(Ω),

where we have used (4.10), (4.3) and W 2,q(Ω) ↪→C1,1− d
q (Ω) in the last inequality. The boundedness

of ‖un−1
` ‖W 2,q(Ω) is proved in (3.5).

We shall keep the generic constant c below to be independent of n, m and k.

4.2 Error estimate in W 1,q(Ω)

In (3.13)–(3.14) we have proved the boundedness of ‖un
m‖W 1,∞(Ω) and ‖un

m‖W 2,q(Ω) for all 0 6 m 6 `,
which imply the uniform ellipticity (3.15). Under assumption (4.12), we have the following estimates
(due to the local Lipschitz continuity of fff ):∣∣D fff (∇un

h,m−1)−D fff (∇un
m−1)

∣∣6 c|∇en
h,m−1|, n = 1, . . . ,k, (4.14)∣∣D fff ((1− s)∇un

h,m−1 + s∇un
m−1)−D fff (∇un

m−1)
∣∣6 c|∇en

h,m−1|, n = 1, . . . ,k. (4.15)
Moreover, we need the following estimates in the subsequent error estimation:∥∥∥∥1

τ

(
1
τ
−An

h,m−1

)−1

wh

∥∥∥∥
W−1,s(Ω)

6 c‖wh‖W−1,s(Ω) ∀wh ∈ Sh, ∀1 < s < ∞, (4.16)∥∥∥∥(1
τ
−An

h,m−1

)−1
wh

∥∥∥∥
W 1,s(Ω)

6 c‖wh‖W−1,s(Ω) ∀wh ∈ Sh, ∀1 < s < ∞. (4.17)

These estimates are direct consequences of (2.15): indeed, choosing k = 1 and gn = wh in (2.15) yields

τ
1
p ‖φ 1

h /τ‖W−1,s(Ω) 6 τ
1
p ‖wh‖W−1,s(Ω) and τ

1
p ‖φ 1

h ‖W 1,s(Ω) 6 τ
1
p ‖wh‖W−1,s(Ω)
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for φ 1
h =

( 1
τ
−An

h,m−1

)−1wh, which imply (4.16) and (4.17), respectively.

Substituting υh =
( 1

τ
−An

h,m−1

)−1wh into (4.8) yields, for 16 n6 k,(
θ

n
h,m,wh

)
=

7

∑
j=3

In
j

((1
τ
−An

h,m−1

)−1
wh

)
∀wh ∈ Sh, (4.18)

where ∣∣∣∣In
3

((1
τ
−An

h,m−1

)−1
wh

)∣∣∣∣
=

∣∣∣∣((D fff (∇un
h,m−1)−D fff (∇un

m−1))∇(en
h,m− en

h,m−1),∇
(1

τ
−An

h,m−1

)−1
wh

)∣∣∣∣
6 ‖D fff (∇un

h,m−1)−D fff (∇un
m−1)‖L∞(Ω)‖∇(en

h,m− en
h,m−1)‖Lq(Ω)

∥∥∥∥(1
τ
−An

h,m−1

)−1
wh

∥∥∥∥
W 1,q′ (Ω)

6 c‖∇en
h,m−1‖L∞(Ω)(‖∇en

h,m‖Lq(Ω)+‖∇en
h,m−1‖Lq(Ω))‖wh‖W−1,q′ (Ω) [(4.17) is used]

6 ch
1
4−

d
4q (‖∇en

h,m‖Lq(Ω)+‖∇en
h,m−1‖Lq(Ω))‖wh‖W−1,q′ (Ω) [(4.12) is used] (4.19)

and, similarly,∣∣∣∣In
4

((1
τ
−An

h,m−1

)−1
wh

)∣∣∣∣
=

∣∣∣∣((D fff (∇un
h,m−1)−D fff (∇un

m−1))∇(un
m−un

m−1),∇
(1

τ
−An

h,m−1

)−1
wh

)∣∣∣∣
6 c‖∇en

h,m−1‖Lq(Ω)‖∇(un
m−un

m−1)‖L∞(Ω)‖wh‖W−1,q′ (Ω)

6 cτ‖∇en
h,m−1‖Lq(Ω)‖wh‖W−1,q′ (Ω), [(3.5) is used to estimate ‖∇(un

m−un
m−1)‖L∞(Ω)] (4.20)

and∣∣∣∣In
7

((1
τ
−An

h,m−1

)−1
wh

)∣∣∣∣
6

∥∥∥∥∫ 1

0
(D fff ((1− s)∇un

h,m−1 + s∇un
m−1)−D fff (∇un

m−1))ds
∥∥∥∥

L∞(Ω)

‖∇en
h,m−1‖Lq(Ω)

∥∥∥(1
τ
−An

h,m−1

)−1
wh

∥∥∥
W 1,q′ (Ω)

6 c‖∇en
h,m−1‖L∞(Ω)‖∇en

h,m−1‖Lq(Ω)‖wh‖W−1,q′ (Ω) [(4.17) is used]

6 ch
1
4−

d
4q ‖∇en

h,m−1‖Lq(Ω)‖wh‖W−1,q′ (Ω). [(4.12) is used] (4.21)

Moreover, we have∣∣∣∣In
5

((1
τ
−An

h,m−1

)−1
wh

)∣∣∣∣= ∣∣∣∣(en−1
h,` ,

1
τ

(1
τ
−An

h,m−1

)−1
wh

)∣∣∣∣
6 ‖en−1

h,` ‖W 1,q(Ω)

∥∥∥∥1
τ

(1
τ
−An

h,m−1

)−1
wh

∥∥∥∥
W−1,q′ (Ω)

6 c‖en−1
h,` ‖W 1,q(Ω)‖wh‖W−1,q′ (Ω), [(4.16) is used] (4.22)

and ∣∣∣∣In
6

((1
τ
−An

h,m−1

)−1
wh

)∣∣∣∣= ∣∣∣∣(D fff (∇un
m−1)∇ρ

n
h,m,∇

(1
τ
−An

h,m−1

)−1
wh

)∣∣∣∣
6 c‖ρn

h,m‖W 1,q(Ω)

∥∥∥(1
τ
−An

h,m−1

)−1
wh

∥∥∥
W 1,q′ (Ω)

6 c‖ρn
h,m‖W 1,q(Ω)‖wh‖W−1,q′ (Ω)

[(4.17) is used]

6 ch‖un
m‖W 2,q(Ω)‖wh‖W−1,q′ (Ω)

. [(4.3) is used] (4.23)
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Substituting the estimates of In
j , j = 3,4,5,6,7, into (4.18) yields

|(θ n
m,wh)|6

[
c(τ +h

1
4−

d
4q )(‖en

h,m‖W 1,q(Ω)+‖e
n
h,m−1‖W 1,q(Ω))+ c‖en−1

h,` ‖W 1,q(Ω)+ ch
]
‖wh‖W−1,q′ (Ω)

,

In particular, for an arbitrary function w ∈W−1,q′(Ω), by choosing wh = Phw and using the stability of
the L2 projection on W−1,q′(Ω), we have

|(θ n
m,w)|= |(θ n

m,Phw)|6
[
c(τ+h

1
4−

d
4q )(‖en

h,m‖W 1,q(Ω)+‖e
n
h,m−1‖W 1,q(Ω))+c‖en−1

h,` ‖W 1,q(Ω)+ch
]
‖w‖W−1,q′ (Ω)

,

which implies (via the duality argument)

‖θ n
m‖W 1,q(Ω) 6 c(τ +h

1
4−

d
4q )(‖en

h,m‖W 1,q(Ω)+‖e
n
h,m−1‖W 1,q(Ω))+ c‖en−1

h,` ‖W 1,q(Ω)+ ch,

whence
‖en

h,m‖W 1,q(Ω) 6 ‖θ
n
h,m‖W 1,q(Ω)+‖ρ

n
h,m‖W 1,q(Ω)

6 c(τ +h
1
4−

d
4q )(‖en

h,m‖W 1,q(Ω)+‖e
n
h,m−1‖W 1,q(Ω))+ c‖en−1

h,` ‖W 1,q(Ω)+ ch. (4.24)
For sufficiently small τ and h, the first term on the right-hand side of (4.24) can be absorbed by the
left-hand side. Thus, estimate (4.24) reduces to

‖en
h,m‖W 1,q(Ω) 6 c(τ +h

1
4−

d
4q )‖en

h,m−1‖W 1,q(Ω)+ c‖en−1
h,` ‖W 1,q(Ω)+ ch. (4.25)

Iterating estimate (4.25) yields
‖en

h,m‖W 1,q(Ω)

6 c(τ +h
1
4−

d
4q )‖en

h,m−1‖W 1,q(Ω)+ c‖en−1
h,` ‖W 1,q(Ω)+ ch

6 c2(τ +h
1
4−

d
4q )2‖en

h,m−2‖W 1,q(Ω)+ c[1+ c(τ +h
1
4−

d
4q )](‖en−1

h,` ‖W 1,q(Ω)+h)

· · ·

6 cm(τ +h
1
4−

d
4q )m‖en

h,0‖W 1,q(Ω)+ c
m

∑
j=1

c j−1(τ +h
1
4−

d
4q ) j−1(‖en−1

h,` ‖W 1,q(Ω)+h)

6 cm(τ +h
1
4−

d
4q )m‖en

h,0‖W 1,q(Ω)+ c(‖en−1
h,` ‖W 1,q(Ω)+h)

6 ‖en−1
h,` ‖W 1,q(Ω)+ ch, (4.26)

where the last inequality requires τ and h to be sufficiently small (independent of n, m, k and `), and we
have used the identity en

h,0 = en−1
h,` . The constant c is independent of m and `. Substituting the induction

assumption (4.10) into (4.26) yields

‖en
h,m‖W 1,q(Ω) 6 ch

d
2q+

1
2 , (4.27)

and the triangle inequality implies

‖θ n
h,m‖W 1,q(Ω) 6 ‖e

n
h,m‖W 1,q(Ω)+‖ρ

n
h,m‖W 1,q(Ω) 6 ch

d
2q+

1
2 . (4.28)

The inverse inequality of the finite element space gives
‖en

h,m‖W 1,∞(Ω) 6 ‖θ
n
h,m‖W 1,∞(Ω)+‖ρ

n
h,m‖W 1,∞(Ω)

6 ch−
d
q ‖θ n

h,m‖W 1,q(Ω)+‖ρ
n
h,m‖W 1,∞(Ω)

6 ch−
d
q ‖θ n

h,m‖W 1,q(Ω)+ ch1− d
q ‖un

m‖W 2,q(Ω) 6 ch
1
2−

d
2q + ch1− d

q .

For sufficiently small h, this estimate implies (4.13). This completes the second loop of mathematical
induction. Thus, (4.13) holds for m = `, i.e.,

‖en
h,`‖W 1,∞(Ω) 6 h

1
4−

d
4q , n = 1, . . . ,k. (4.29)
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Substituting m = ` into (4.8), we rewrite the resulting equation as(
δτ θ

n
h,`−An

h,`−1θ
n
h,`,υh

)
= In

3 (υh)+ In
4 (υh)+ In

6 (υh)+ In
7 (υh) ∀υh ∈ Sh, (4.30)

where In
5 (υh) from (4.8) has been absorbed by the left-hand side of (4.30). Note that In

j , j = 3,4,6,7,

can be identified with linear functionals on W 1,q
0 (Ω). Then

‖In
3‖W−1,q(Ω) 6 ‖D fff (∇un

h,`−1)−D fff (∇un
`−1)‖L∞(Ω)‖∇(en

h,`− en
h,`−1)‖Lq(Ω)

6 c‖∇en
h,`−1‖L∞(Ω)(‖∇en

h,`‖Lq(Ω)+‖∇en
h,`−1‖Lq(Ω))

6 ch
1
4−

d
4q (‖∇en

h,`‖Lq(Ω)+‖∇en
h,`−1‖Lq(Ω)) [(4.12) is used].

This estimate agrees with the estimate of In
3 in (4.19). Similarly, from the estimates of In

4 , In
6 and In

7 in
(4.20), (4.23) and (4.21) we see that

‖In
4‖W−1,q(Ω)+‖I

n
6‖W−1,q(Ω)+‖I

n
7‖W−1,q(Ω) 6 c(τ +h

1
4−

d
4q )‖∇en

h,`−1‖Lq(Ω)+ ch.

By denoting Oι(·, tn) = D fff (∇un
`−1) and constructing Oι(·, t) as the piecewise linear interpolant of

Oι(·, tn), n = 0,1, . . . ,N, the resulting matrix Oι(·, t) satisfies the conditions of Theorem 2.2 in view of
(3.5). Since θ 0

h,` = 0, applying (2.15) of Theorem 2.2 to (4.30) yields, for 1 < p < ∞,∥∥(δτ θ
n
h,`
)k

n=1

∥∥
Lp(W−1,q(Ω))

+
∥∥(θ n

h,`)
k
n=1
∥∥

Lp(W 1,q(Ω))

6 c‖(In
3 )

k
n=1‖Lp(W−1,q(Ω))+ c‖(In

4 )
k
n=1‖Lp(W−1,q(Ω))

+ c‖(In
6 )

k
n=1‖Lp(W−1,q(Ω))+ c‖(In

7 )
k
n=1‖Lp(W−1,q(Ω))

6 c(τ +h
1
4−

d
4q )(‖(en

h,`)
k
n=1‖Lp(W 1,q(Ω))+‖(e

n
h,`−1)

k
n=1‖Lp(W 1,q(Ω)))+ ch

6 c(τ +h
1
4−

d
4q )(‖(θ n

h,`)
k
n=1‖Lp(W 1,q(Ω))+‖(θ

n
h,`−1)

k
n=1‖Lp(W 1,q(Ω)))+ ch, (4.31)

where the last inequality is due to
‖(en

h,`)
k
n=1‖Lp(W 1,q(Ω)) 6 ‖(θ

n
h,`)

k
n=1‖Lp(W 1,q(Ω))+‖(ρ

n
h,`)

k
n=1‖Lp(W 1,q(Ω))

6 ‖(θ n
h,`)

k
n=1‖Lp(W 1,q(Ω))+ ch.

For sufficiently small τ and h, estimate (4.31) reduces to∥∥(δτ θ
n
h,`
)k

n=1

∥∥
Lp(W−1,q(Ω))

+
∥∥(θ n

h,`)
k
n=1
∥∥

Lp(W 1,q(Ω))

6 c(τ +h
1
4−

d
4q )‖(θ n

h,`−1)
k
n=1‖Lp(W 1,q(Ω))+ ch.

(4.32)

In view of the relation θ n
h,m = en

h,m−ρn
h,m, setting m = `−1 in (4.26) we have

‖θ n
h,`−1‖W 1,q(Ω) 6 c‖θ n−1

h,` ‖W 1,q(Ω)+ ch.

Substituting this estimate into (4.32), we obtain∥∥(δτ θ
n
h,`
)k

n=1

∥∥
Lp(W−1,q(Ω))

+
∥∥(θ n

h,`)
k
n=1
∥∥

Lp(W 1,q(Ω))

6 c(τ +h
1
4−

d
4q )‖(θ n−1

h,` )k
n=1‖Lp(W 1,q(Ω))+ ch.

(4.33)

For sufficiently small τ and h, the first term on the right-hand side of (4.33) can be absorbed by the
left-hand side (since θ 0

h,` = 0). This yields∥∥(δτ θ
n
h,`
)k

n=1

∥∥
Lp(W−1,q(Ω))

+
∥∥(θ n

h,`)
k
n=1
∥∥

Lp(W 1,q(Ω))
6 ch ∀1 < p < ∞. (4.34)

The inverse inequality of the finite element space gives∥∥(δτ θ
n
h,`
)k

n=1

∥∥
Lp(W 1,q(Ω))

6 ch−2∥∥(δτ θ
n
h,`
)k

n=1

∥∥
Lp(W−1,q(Ω))

6 ch−1. (4.35)

Then, the Sobolev interpolation inequality implies∥∥(θ n
h,`)

k
n=1
∥∥

L∞(W 1,q(Ω))
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6 c
∥∥(θ n

h,`)
k
n=1
∥∥1− 1

p

Lp(W 1,q(Ω))

∥∥(δτ θ
n
h,`
)k

n=1

∥∥ 1
p

Lp(W 1,q(Ω))
(see Appendix C)

6 (ch)1− 1
p (ch−1)

1
p 6 ch1− 2

p ∀1 < p < ∞. (4.36)
Thus (by the triangle inequality)∥∥(en

h,`)
k
n=1
∥∥

L∞(W 1,q(Ω))
6
∥∥(θ n

h,`)
k
n=1
∥∥

L∞(W 1,q(Ω))
+
∥∥(ρn

h,`)
k
n=1
∥∥

L∞(W 1,q(Ω))

6 ch1− 2
p ∀1 < p < ∞. (4.37)

For sufficiently small τ and h, estimate (4.37) implies∥∥(en
h,`)

k
n=1
∥∥

L∞(W 1,q(Ω))
6 h

d
2q+

1
2 . (4.38)

This proves (4.11) and thus completes the first loop of mathematical induction.
To conclude, (4.37) implies (4.1).

4.3 Error estimate in Lq(Ω)

Note that (4.30) can be rewritten as(
δτ en

h,`−An
h,`−1en

h,`,υh
)
= In

3 (υh)+ In
4 (υh)+ In

7 (υh) ∀υh ∈ Sh, (4.39)
where In

6 (υh) in (4.30) has been absorbed into the left-hand side. Let ηn
h ∈ Sh be the solution of the finite

element equation (
δτ η

n
h −An

h,`−1η
n
h ,υh

)
= In

3 (υh)+ In
4 (υh)+ In

7 (υh) ∀υh ∈ Sh, (4.40)

with zero initial value η0
h = 0. Then ηn

h satisfies the following estimate (cf. (2.15) of Theorem 2.2)∥∥(δτ η
n
h
)N

n=1

∥∥
Lp(W−1,q/2(Ω))

+‖(ηn
h )

N
n=1‖Lp(W 1,q/2(Ω))

6 c(‖(In
3 + In

4 + In
7 )

N
n=1‖Lp(W−1,q/2(Ω))

6 c‖∇en
h,`−1‖Lp(Lq(Ω))‖∇(en

h,`− en
h,`−1)‖L∞(Lq(Ω))

+ c‖∇en
h,`−1‖Lp(Lq(Ω))‖∇(un

` −un
`−1)‖L∞(Lq(Ω))

+ c‖∇en
h,`−1‖Lp(Lq(Ω))‖∇en

`−1‖L∞(Lq(Ω)) [similar to (4.19)–(4.21)]

6 c‖∇en
h,`‖2

L∞(Lq(Ω))+ c‖∇en
h,`−1‖2

L∞(Lq(Ω))+ c‖∇en
h,`−1‖L∞(Lq(Ω))τ,

where we have used the estimate ‖∇(un
`−un

`−1)‖L∞(Lq(Ω)) 6 cτ , which is a consequence of (3.5). Setting
m = `−1 in (4.26) yields

‖en
h,`−1‖W 1,q(Ω) 6 c‖en−1

h,` ‖W 1,q(Ω)+ ch.

The last two estimates together imply∥∥(δτ η
n
h
)N

n=1

∥∥
Lp(W−1,q/2(Ω))

+‖(ηn
h )

N
n=1‖Lp(W 1,q/2(Ω))

6 c‖(∇en
h,`)

N
n=1‖2

L∞(Lq(Ω))+ c‖(∇en−1
h,` )N

n=1‖2
L∞(Lq(Ω))+ c‖(∇en−1

h,` )N
n=1‖L∞(Lq(Ω))τ

6 ch1− 2
p (τ +h1− 2

p ) ∀1 < p < ∞,

where the last inequality is due to (4.37). The inverse inequality of the finite element space yields∥∥(δτ η
n
h
)N

n=1

∥∥
Lp(W 1,q/2)

6 ch−2∥∥(δτ η
n
h
)N

n=1

∥∥
Lp(W−1,q/2)

6 ch−1− 2
p (τ +h1− 2

p ).

Since η0
h = 0, the Sobolev interpolation inequality implies∥∥(ηn

h )
N
n=1
∥∥

L∞(W 1,q/2)
6 c
∥∥(ηn

h )
N
n=1
∥∥1− 1

p

Lp(W 1,q/2)

∥∥(δτ η
n
h
)N

n=1

∥∥ 1
p

Lp(W 1,q/2)
(see Appendix C)

6 ch1− 4
p (τ +h1− 2

p ) ∀1 < p < ∞. (4.41)
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Since W 1,q/2(Ω) ↪→ Lq(Ω) for q > d, it follows that∥∥(ηn
h )

N
n=1
∥∥

L∞(Lq(Ω))
6 ch1− 4

p (τ +h1− 2
p )6 c(τ2 +h2− 8

p ) ∀1 < p < ∞. (4.42)

Subtracting (4.40) from (4.39), we have(
δτ(un

h,`−η
n
h −un

`),υh
)
+
(
D fff (∇un

`−1)∇(un
h,`−η

n
h −un

`),∇υh
)
= 0 ∀υh ∈ Sh, (4.43)

whence un
h,`−ηn

h and un
` play the same roles as φ n

h and φ in Theorem 2.2, respectively. Thus, (2.18)
implies

‖(un
h,`−η

n
h −un

`)
N
n=1‖Lp(Lq(Ω)) 6 ch2.

and therefore
‖(un

h,`−η
n
h −Phun

`)
N
n=1‖Lp(Lq(Ω)) 6 ‖(un

h,`−η
n
h −un

`)
N
n=1‖Lp(Lq(Ω))+‖(un

` −Phun
`)

N
n=1‖Lp(Lq(Ω)) 6 ch2.

(4.44)
Then (4.43) implies
|(δτ(un

h,`−η
n
h −Phun

`),υh)|6 |
(
D fff (∇un

`−1)∇(un
h,`−η

n
h −un

`),∇υh
)
|

6 |
(
D fff (∇un

`−1)∇(un
h,`−η

n
h −Phun

`),∇υh
)
|+ |

(
D fff (∇un

`−1)∇(un
` −Phun

`),∇υh
)
|

6 ch−2‖un
h,`−η

n
h −Phun

`‖Lq(Ω)‖υh‖Lq′ (Ω)
+‖un

`‖W 2,q(Ω)‖υh‖Lq′ (Ω)

6 ch−2‖un
h,`−η

n
h −Phun

`‖Lq(Ω)‖υh‖Lq′ (Ω)
+ c‖υh‖Lq′ (Ω)

,

where we have used (3.5) with m = `. By using the duality argument and (4.44), we obtain
‖δτ(un

h,`−η
n
h −Phun

`)‖Lq(Ω) 6 ch−2‖un
h,`−η

n
h −Phun

`‖Lq(Ω)+ c6 c. (4.45)

Since u0
h,`−η0

h −Phu0
` = 0, the Sobolev interpolation inequality gives∥∥(un

h,`−η
n
h −Phun

`)
N
n=1
∥∥

L∞(Lq(Ω))
(4.46)

6 c
∥∥(un

h,`−η
n
h −Phun

`)
N
n=1
∥∥1− 1

p
Lp(Lq(Ω))

∥∥δτ(un
h,`−η

n
h −Phun

`

)N
n=1

∥∥ 1
p
Lp(Lq(Ω))

(see Appendix C)

6 (ch2)1− 1
p c

1
p 6 ch2− 2

p ∀1 < p < ∞.

Estimates (4.42) and (4.46) yield∥∥(un
h,`−un

`)
N
n=1
∥∥

L∞(Lq(Ω))
6 cp(τ

2 +h2− 8
p ) ∀1 < p < ∞, (4.47)

which implies (4.2). This completes the proof of Proposition 4.1. �

5. Numerical test

To support our theoretical analysis, we present a numerical example by solving the initial and boundary
value problem 

∂tu = ∇ ·
(

∇u√
1+ |∇u|2

)
+g in Ω × (0,T ],

u = 0 on ∂Ω × (0,T ],

u(·,0) = u0 in Ω ,

(5.1)

with the proposed method (2.9) in the domain Ω = [0,1]× [0,1] up to time T = 1, where the function g
and initial data u0 are chosen corresponding to the exact solution

u(x,y, t) = et sin(πx)sin(πy). (5.2)
Inclusion of such a source term g in the equation does not affect the error analysis in this paper. The
computations are performed by the software FreeFEM++; see [12]. We perform two Newton iterations
at every time level, `= 2.

The rectangular domain is partitioned into regular right triangles with M + 1 uniformly distributed
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points on each side. In order to test the convergence with respect to the spatial mesh size, a sufficiently
small time stepsize τ = 10−3 is used so that the time discretization error is negligible. The L2 and H1

errors of the numerical solutions are presented in Table 1, where h := 1/M. The convergence rates are
calculated based on the numerical results of the two finest meshes.

To test the convergence with respect to the time stepsize, a sufficiently small mesh size h = 2−9 is
used so that the spatial discretization error is negligible. The L2 and H1 errors of the numerical solutions
are presented in Table 2.

From Tables 1–2, we see that the numerical results (order of convergence) are consistent with the
theoretical results proved in Theorem 2.1.

Table 1. Errors of the numerical solutions with τ = 10−3.

h ‖uN
h −u(tN)‖L2(Ω) |uN

h −u(tN)|H1(Ω)

1/8 6.7246E-02 1.1894E-01
1/16 1.7987E-02 5.9414E-01
1/32 4.2704E-03 2.9663E-01

convergence rate O(h2.07) O(h1.01)

Table 2. Errors of the numerical solutions with h = 2−9.

τ ‖uN
h −u(tN)‖L2(Ω) |uN

h −u(tN)|H1(Ω)

1/8 5.0080E-02 2.2621E-01
1/16 2.4763E-02 1.1302E-01
1/32 1.2308E-02 5.8460E-02

convergence rate O(τ1.00) O(τ0.95)

Appendix

A. Justification of assumptions (a1)–(a3)

Assumption (a1). We first assume that ai j = a ji are constants satisfying (2.1). In this case, if Ω is a
convex polygon in R2, then (2.3) holds for some q > 2 (cf. [11, Theorem 4.4.3.7], in which the set of
m such that − 2

q′ < λ j,m < 0 is empty for every j, provided q > 2 is sufficiently close to 2). If Ω is a
polyhedron with all the interior angles of the edges less than 3

4 π , then [6, Corollary 3.9 and Section 4.c]
implies (2.3) for some q > 3. For example, a rectangular parallelepiped in R3 satisfies the condition
(cf. [6, Corollary 3.14]).

In general, if ai j ∈W 1,q(Ω) with q > d, then the perturbation argument in [6, Section 5] can be
applied (details omitted), which reduces the case of variable coefficients to the case of constant coeffi-
cients.

Assumption (a2). Expression (1.3) for ∇p fff (p) shows that assumption (a2) is valid for the minimal
surface flow problem. Similarly, it also holds for regularized total variation flows. For a general L2(Ω)
gradient flow, we have ∇p fff (p) = ∇2

pF(p) for p ∈ Rd , which is symmetric and positive definite due to
the convexity of the function F : Rd → R. Thus, all examples mentioned in the introduction section
satisfy assumption (a2).

Assumption (a3). Suppose that u0 ∈W 2,q(Ω)∩W 1,q
0 (Ω) satisfies the compatibility condition (2.5). Let

D = W 2,q(Ω) and X = Lq(Ω). Then, the conditions of [25, Theorem 8.1.1 (1)] are satisfied, which
implies the existence of a local solution u ∈C1([0,T ];D) for (1.1). Differentiation of (1.1) with respect
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to t yields 
∂t(∂tu) = ∇ · (D fff (∇u)∂tu) in Ω × (0,T ],

∂tu = 0 on ∂Ω × (0,T ],

∂tu(·,0) = ∇ · fff (∇u0) ∈ D in Ω .

(A.1)

Then, [25, Theorem 8.1.1 (2)] implies ut ∈C1([0,T ];X)∩C([0,T ];D). This shows that u has the regu-
larity (2.4).

B. Sketch of proof of Theorem 2.2

Proof of (2.16) and (2.17). Let k be fixed and define the operator A(tk) : W 1,s
0 (Ω)→W−1,s(Ω) by

A(tk)φ n := ∇ · (Oι(·, tk)∇φ n). Then, operator A(tk) has maximal Lp-regularity (cf. [22, Lemma 2.1]),
i.e., the solution of the initial value problem{

∂tψ−A(tk)ψ = χ, t > 0,
ψ
∣∣
t=0 = 0

(B.1)

with the coefficient frozen at t = tk, satisfies

‖∂tψ‖Lp(R+;W−1,s(Ω))+‖ψ‖Lp(R+;W 1,s(Ω)) 6 c‖χ‖Lp(R+;W−1,s(Ω)) ∀ p,s ∈ (1,∞), (B.2)

‖∂tψ‖Lp(R+;Ls(Ω))+‖A(tk)ψ‖Lp(R+;Ls(Ω)) 6 c‖χ‖Lp(R+;Ls(Ω)) ∀ p,s ∈ (1,∞). (B.3)

Then, [15, Theorem 3.1] implies the discrete maximal Lp-regularity in W−1,q(Ω), i.e., the solution of
the autonomous equation

δτ φ
n−A(tk)φ n = gn (B.4)

with φ 0 = 0, satisfies (2.16) and (2.17). Now, we rewrite the nonautonomous equation (2.12) as

δτ φ
n−A(tk)φ n = gn− (A(tk)−A(tn))φ n, (B.5)

and note that the coefficient on the left-hand side is frozen at t = tk. Let

B0 = 0 and Bn = ‖(φ n)n
m=1‖

p
Lp(W 1,s(Ω))

=
n

∑
m=1
‖φ m‖p

W 1,s(Ω)
for 16 n6 N

. Then ‖φ n‖p
W 1,s(Ω)

= Bn−Bn−1 and therefore, applying (2.16) yields (raised to power p)

‖(δτ φ
n)k

n=1‖
p
Lp(W−1,s(Ω))

+‖(φ n)k
n=1‖

p
Lp(W 1,s(Ω))

6 c‖(gn)k
n=1‖

p
Lp(W−1,s(Ω))

+ c‖((Oι(·, tk)−Oι(·, tn))∇φ
n)k

n=1‖
p
Lp(Ls(Ω))

6 c‖(gn)k
n=1‖

p
Lp(W−1,s(Ω))

+ c‖((tk− tn)φ n)k
n=1‖

p
Lp(W 1,s(Ω))

= c‖(gn)k
n=1‖

p
Lp(W−1,s(Ω))

+ c
k

∑
n=1
|tk− tn|p‖φ n‖p

W 1,s(Ω)

= c‖(gn)k
n=1‖

p
Lp(W−1,s(Ω))

+ c
k

∑
n=1
|tk− tn|p(Bn−Bn−1)

= c‖(gn)k
n=1‖

p
Lp(W−1,s(Ω))

+ c
k−1

∑
n=1

(|tk− tn|p−|tk− tn+1|p)Bn (summation by parts is used)

= c‖(gn)k
n=1‖

p
Lp(W−1,s(Ω))

+ c
k−1

∑
n=1

(|tk− tn|p−|tk− tn+1|p)‖(φ n)n
m=1‖

p
Lp(W 1,s(Ω))
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6 c‖(gn)k
n=1‖

p
Lp(W−1,s(Ω))

+ c
k−1

∑
n=1

τ‖(φ n)n
m=1‖

p
Lp(W 1,s(Ω))

. (B.6)

With a discrete Gronwall inequality, we obtain from (B.6)
‖(δτ φ

n)k
n=1‖

p
Lp(W−1,s(Ω))

+‖(φ n)k
n=1‖

p
Lp(W 1,s(Ω))

6 c‖(gn)k
n=1‖

p
Lp(W−1,s(Ω))

. (B.7)

This proves (2.16) for the nonautonomous equation (2.12).
We have shown that the autonomous equation (B.4) satisfies (2.17). For the nonautonomous equation

(2.12), estimate (2.17) can be proved by the same perturbation argument as (B.5)–(B.6). �

Proof of (2.15) and (2.18). Let k be fixed, and define the operator Ah(tk) : Sh→ Sh by
(Ah(tk)ϕh,υh) =−(Oι(·, tk)∇ϕh,∇υh) ∀υh ∈ Sh. (B.8)

Then, [22, (2.13)] and [31, Lemma 4.c] imply the R-boundedness (uniformly with respect to h) of the
semigroup generated by the operator Ah(tk). Equivalently, the set of operators {z(z−Ah(tk))−1 : Re(z)>
0} is R-bounded (cf. [30, Theorem 4.2]). Since the L2 projection operator Ph is bounded with respect
to the W−1,q(Ω)-norm, the R-boundedness of {z(z−Ah(tk))−1Ph : Re(z) > 0} and [15, Theorem 6.1]
imply that the solution of the autonomous equation(

δτ φ
n
h ,υh

)
+
(
Oι(·, tk)∇φ

n
h ,∇υh

)
= (gn,υh) ∀υh ∈ Sh, (B.9)

with φ 0
h = 0, with the coefficient frozen at t = tk, satisfies the discrete maximal Lp-regularity

‖(δτ φ
n
h )

k
n=1‖Lp(Ls(Ω))+‖(Ah(tk)φ n

h )
k
n=1‖Lp(Ls(Ω)) 6 c‖(gn)k

n=1‖Lp(Ls(Ω)) ∀ p,s ∈ (1,∞). (B.10)
Estimates (2.16) and (B.10) imply (2.15) for the autonomous equation (B.9); see [23, Lemma 3.5].
Then, a perturbation argument like (B.5)–(B.6) yields (2.15) for the nonautonomous equation (2.13).

Estimate (2.18) is a consequence of (2.15) and (2.17) via a duality argument; see [23, pp. 539–541].
�

C. Discrete Sobolev interpolation inequality

In (4.36), (4.41) and (4.46), we have used the following version of temporal discrete Sobolev interpola-
tion inequality in the case θ 0

h,` = θ 0 = 0:∥∥(θ n
h,`)

k
n=1
∥∥

L∞(X)
6 c
∥∥(θ n

h,`)
k
n=1
∥∥1− 1

p
Lp(X)

∥∥(δτ θ
n
h,`
)k

n=1

∥∥ 1
p
Lp(X)

∀1 < p < ∞, (C.1)

where X is a Banach space. This can be proved by applying the continuous version of the Sobolev
interpolation inequality to the piecewise linear interpolant θ(t), t ∈ [0,T ], of θ 0

h,`, . . . ,θ
k
h,`,

θ(t) =
tn− t

τ
θ

n−1
h,` +

t− tn−1

τ
θ

n
h,` for t ∈ [tn−1, tn],

which satisfies θ(0) = 0. We have

max
t∈[0,tk]

‖θ(t)‖W 1,q(Ω) 6 c‖θ‖
1− 1

p

Lp(0,tk;W 1,q(Ω))
‖∂tθ‖

1
p

Lp(0,tk;W 1,q(Ω))
, (C.2)

which furthermore implies (C.1) because
‖θ‖Lp(0,tk;W 1,q(Ω)) 6 c

∥∥(θ n
h,`)

k
n=1
∥∥

Lp(W 1,q(Ω))

and
‖∂tθ‖Lp(0,tk;W 1,q(Ω)) 6 c

∥∥(δτ θ
n
h,`
)k

n=1

∥∥
Lp(W 1,q(Ω))

.
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