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Abstract. We construct and analyze combinations of rational implicit and explicit

multistep methods for nonlinear evolution equations and extend thus recent results

concerning the discretization of nonlinear parabolic equations. The resulting schemes

are linearly implicit and include as particular cases implicit–explicit multistep schemes

as well as the combination of implicit Runge–Kutta schemes and extrapolation. We

establish optimal order error estimates. The abstract results are applied to a third–

order evolution equation arising in the modelling of flow in a fluidized bed. We

discretize this equation in space by a Petrov–Galerkin method. The resulting fully

discrete schemes require solving some linear systems to advance in time with coeffi-

cient matrices the same for all time levels.

1. Introduction

In [1], a wide class of linearly implicit methods were applied to the following initial

value problem

v′(t) +Av(t) = B(t, v(t)), 0 < t < T,

v(0) = v0,
(1.1)

with A a positive definite, selfadjoint, linear operator on a Hilbert space (H, (·, ·)) with

domain D(A) dense in H, and B(t, ·) : D(A) → H, t ∈ [0, T ], a (possibly) nonlinear

operator and initial datum v0 ∈ H.

This paper is concerned with the construction and analysis of linearly implicit

schemes for more general equations. For T > 0 and u0 ∈ H, we consider the ini-

tial value problem of seeking u : [0, T ] → D(A) satisfying

Lu′(t) + Au(t) = B(t, u(t)), 0 < t < T,

u(0) = u0,
(1.2)

with L and A positive definite, selfadjoint, linear operators on H with domain D(A)

dense in H, D(A) ⊂ D(L), and B(t, ·) : D(A) → H, t ∈ [0, T ], a (possibly) nonlinear

operator.

To discretize (1.2) by the general class of schemes analyzed in [1], we first rewrite it

in the form (1.1). To this end we let

Λ := L1/2, A := Λ−1AΛ−1, B(t, ·) := Λ−1B(t, Λ−1·),

v(t) := Λu(t) and v0 := Λu0.
(1.3)
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It is then easily seen that (1.2) can be written in the form (1.1).

Following [1], we express the numerical schemes in terms of bounded rational func-

tions ρi, σi : [0,∞] → R, i = 0, . . . , q, with ρq = 1 and σq = 0; we assume that the

functions σi vanish at infinity, σi(∞) = 0.

Let N ∈ N, k := T
N

be the time step, and tn := nk, n = 0, . . . , N. We recursively

define a sequence of approximations V m ∈ V,V := D(A1/2), to vm := v(tm) by

(1.4)

q
∑

i=0

ρi(kA)V n+i = k

q−1
∑

i=0

σi(kA)B(tn+i, V n+i),

assuming that starting approximations V 0, . . . , V q−1 are given. The approximations

Um ∈ V, V := D(A1/2), to um := u(tm), i.e., to the value of the solution of (1.2) at the

time level tm, are then defined by Um := Λ−1V m, that is as solutions of the equations

ΛUm = V m; alternatively, bypassing V m, we may directly define the approximations

Um by
q

∑

i=0

ρi(kA)ΛUn+i = k

q−1
∑

i=0

σi(kA)B(tn+i, ΛUn+i),

i.e., by

(1.5)

q
∑

i=0

ρi(kA)ΛUn+i = k

q−1
∑

i=0

σi(kA)Λ−1B(tn+i, Un+i).

Let | · | denote the norm of H, and introduce in H,H := D(Λ), and V the norms

‖ · ‖ and ||| · |||, respectively, by ‖w‖ := |Λw| and |||w||| := |A1/2w|; we assume that ||| · |||

dominates ‖ · ‖ in V, and ‖ · ‖ dominates | · |.

We identify H with its dual, and denote by V ′ the dual of V , and by ||| · |||⋆, |||w|||⋆ :=

|A−1/2w|, the dual norm on V ′. For stability purposes, we assume that B(t, ·) can be

extended to an operator from V into V ′ —this is actually the condition needed in

the sequel; the hypothesis B(t, ·) : D(A) → H, t ∈ [0, T ], has only been made for

simplicity— and an estimate of the form

(1.6) |||B(t, w)−B(t, w̃)|||⋆ ≤ λ|||w − w̃|||+ µ‖w − w̃‖ ∀w, w̃ ∈ Tu

holds in a tube Tu, Tu := {w ∈ V : mint |||u(t) − w||| ≤ 1}, around the solution u,

uniformly in t, with the stability constant λ and a constant µ.

We will assume in the sequel that (1.2) possesses a solution which is sufficiently

regular for our results to hold. Local uniqueness of smooth solutions follows easily in

view of (1.6).

Stability assumptions. For x ∈ [0,∞], we introduce the polynomials ρ(x, ·) and

σ(x, ·) by

ρ(x, ζ) :=

q
∑

i=0

ρi(x)ζ
i , σ(x, ζ) :=

q−1
∑

i=0

σi(x)ζ
i.

We order the roots ζj(x), j = 1, . . . , q, of ρ(x, ·) in such a way that the functions

ζj are continuous in [0,∞] and the roots ξj := ζj(0), j = 1, . . . , s, satisfy |ξj| = 1;
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these unimodular roots are the principal roots of ρ(0, ·) and the complex numbers

λj :=
∂1ρ(0,ξj)

ξj ∂2ρ(0,ξj)
(with ∂1 denoting differentiation with respect to the first variable) are

the growth factors of ξj.We assume that the method described by the rational functions

ρ0, . . . , ρq is strongly A(0)−stable, cf. [1], i.e.,

for all 0 < x ≤ ∞ and for all j = 1, . . . , q,

there holds |ζj(x)| < 1,
(i)

and

the principal roots of ρ(0, ·) are simple and their growth

factors have positive real parts, Reλj > 0, j = 1, . . . , s.
(ii)

Depending on the particular scheme we will use for discretizing (1.1) in time, it will be

essential for our analysis that λ be appropriately small. More precisely, with

(1.7) K(ρ,σ) := sup
x>0

max
ζ∈S1

|
xσ(x, ζ)

ρ(x, ζ)
|,

which, under our assumptions, is finite, we will assume for stability purposes that

(1.8) λ <
1

K(ρ,σ)

;

here S1 denotes the unit circle in the complex plane, S1 := {z ∈ C : |z| = 1}. The tube

Tu is defined in terms of the norm of V for concreteness. The analysis may be modified

to yield convergence under conditions analogous to (1.6) for w and w̃ belonging to

tubes defined in terms of other norms, not necessarily the same for both arguments.

Consistency assumptions. We first state the consistency hypotheses for the dis-

cretization in time. Let p ≥ 1, and functions ϕℓ : [0,∞) → R, ℓ = 0, . . . , p, be defined

by

ϕℓ(x) :=

q
∑

i=0

[

iℓρi(x)− (ℓiℓ−1 + xiℓ)σi(x)
]

, ℓ = 0, . . . , p− 1,

and

ϕp(x) :=

q
∑

i=0

[

ipρi(x)− pip−1σi(x)
]

.

We assume that the order of the scheme is p, i.e.,

(Cp) ϕℓ(x) = O(xp+1−ℓ) as x → 0+, ℓ = 0, . . . , p,

and its polynomial order p̃ ≤ p, i.e.,

(C̃p̃) ϕℓ = 0, ℓ = 0, . . . , p̃− 1,

see [1].

Next, we state the consistency assumptions for the discretization in space. For the

space discretization we use a family Vh, 0 < h < 1, of finite dimensional subspaces
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of V. In the sequel the following discrete operators will play an essential role: Define

Po : V
′ → Vh, Lh, Ah : V → Vh and Bh(t, ·) : V → Vh by

(Pow, χ) = (w, χ) ∀χ ∈ Vh

(Lhϕ, χ) = (Lϕ, χ) ∀χ ∈ Vh

(Ahϕ, χ) = (Aϕ, χ) ∀χ ∈ Vh

(Bh(t, ϕ), χ) = (B(t, ϕ), χ) ∀χ ∈ Vh.

Thus, we are led to a semidiscrete problem approximating (1.2): we seek a function

uh, uh(t) ∈ Vh, defined by

Lhu
′
h(t) + Ahuh(t) = Bh(t, uh(t)), 0 < t < T,

uh(0) = u0
h;

(1.11)

here u0
h ∈ Vh is a given approximation to u0. The semidiscrete approximation vh,

vh(t) ∈ Vh, to v is then defined by

v′h(t) +Ahvh(t) = Bh(t, vh(t)), 0 < t < T,

vh(0) = v0h
(1.12)

with v0h := Λhu
0
h,

(1.9) Λh := L
1/2
h , Ah := Λ−1

h AhΛ
−1
h , Bh(t, ·) := Λ−1

h Bh(t, Λ
−1
h ·),

and Λ−1
h is considered an operator from Vh onto itself.

In analogy to (1.4), we recursively define a sequence of fully discrete approximations

V m
h ∈ Vh to vm by

(1.10)

q
∑

i=0

ρi(kAh)V
n+i
h = k

q−1
∑

i=0

σi(kAh)Bh(t
n+i, V n+i

h ),

assuming that starting approximations V 0
h , . . . , V

q−1
h ∈ Vh are given. The fully discrete

approximations Um
h ∈ Vh to um are then defined by Um

h := Λ−1
h V m

h , that is as solutions

of the equations ΛhU
m
h = V m

h ; alternatively, cf. (1.5), the approximations Um
h may be

directly defined by

(1.11)

q
∑

i=0

ρi(kAh)ΛhU
n+i
h = k

q−1
∑

i=0

σi(kAh)Λ
−1
h Bh(t

n+i, Un+i
h ).

Let B(t, ·) : V → V ′ be differentiable, and assume that the linear operator M(t),

M(t) := A−B′(t, u(t))+κI, is uniformly positive definite, for an appropriate constant

κ. We introduce the ‘elliptic’ projection operator Rh(t) : V → Vh, t ∈ [0, T ], by

(1.12) PoM(t)Rh(t)w = PoM(t)w.

We assume that Rh(t) has the following approximation properties

(1.13) |u(t)−Rh(t)u(t)|+ hd/2|||u(t)− Rh(t)u(t)||| ≤ C hr,
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and

(1.14) |||L(u− Rhu)
′(t)|||⋆ ≤ C hr,

with two integers r and d, 2 ≤ d ≤ r. We further assume that

(1.15) |||
dj

dtj
[Rh(t)u(t)]||| ≤ C, j = 1, . . . , p+ 1.

For consistency purposes, we assume for the nonlinear part the estimate

|||B(t, u(t))−B(t, Rh(t)u(t))− B′(t, u(t))(u(t)− Rh(t)u(t))|||⋆

≤ Chr.
(1.16)

Let us note here that condition (1.14) essentially means that, if A is a differential

operator of order d, then L is a differential operator of order at most d/2. Condition

(1.16) on the other hand may be satisfied even if B contains derivatives of order d.

If both operators A and B are dominated by L, then the differential equation in (1.2)

is nonstiff and problem (1.2) may be integrated in a stable way by explicit schemes, cf.

[5]; therefore, in this case there is no need to resort to linearly implicit schemes.

Let the order and the polynomial order of the method be p and p− 1, respectively,

i.e., p̃ = p− 1. For initial approximations U0, . . . , U q−1 ∈ V to u(t0), . . . , u(tq−1) such

that

(1.17)

q−1
∑

j=0

(

‖u(tj)− U j‖+ k1/2|||u(tj)− U j |||
)

≤ ckp,

we shall prove, for sufficiently small k, the error estimate

(1.18) max
0≤n≤N

‖u(tn)− Un‖ ≤ Ckp.

Concerning the fully discrete approximations, letting W (t) := Rh(t)u(t), for starting

approximations U0
h , . . . , U

q−1
h ∈ Vh such that

(1.19)

q−1
∑

j=0

(

‖W (tj)− U j
h‖+ k1/2|||W (tj)− U j

h|||
)

≤ c(kp + hr),

we shall prove, for k−1h2r and k sufficiently small, the error estimate

(1.20) max
0≤n≤N

‖W (tn)− Un‖ ≤ C(kp + hr),

which combined with (1.13) yields

(1.21) max
0≤n≤N

|u(tn)− Un| ≤ C(kp + hr).

As already mentioned the implicit–explicit multistep schemes are particular cases of

the schemes considered in this paper. Indeed, if we let (α, β) be a strongly A(0)−stable

q−step scheme and (α, γ) be an explicit q−step scheme, characterized by three poly-

nomials α, β and γ,

α(ζ) =

q
∑

i=0

αiζ
i , β(ζ) =

q
∑

i=0

βiζ
i , γ(ζ) =

q−1
∑

i=0

γiζ
i,
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then the corresponding implicit–explicit (α, β, γ) scheme for (1.11) is

(1.26)

q
∑

i=0

(αiLh + kβiAh)U
n+i
h = k

q−1
∑

i=0

γiBh(t
n+i, Un+i

h ).

Letting now

ρi(x) :=
αi + βix

αq + βqx
, i = 0, . . . , q, and σi(x) :=

γi
αq + βqx

,

i = 0, . . . , q − 1, it is easily seen that the scheme (1.11) reduces to (1.26). For specific

examples of implicit–explicit multistep schemes we refer to [2] and [3].

An outline of the paper is as follows: In Section 2 we show that the assumptions of [1]

for problem (1.1) are satisfied under our hypotheses for (1.2) and this allows us to derive

optimal order estimates. In Section 3 we apply our abstract results to a periodic initial

value problem for a third–order evolution equation arising in the modelling of flow in

a fluidized bed; in space the equation is discretized by a Petrov–Galerkin method.

2. Error estimates

It is easily seen that the operator A given in (1.3) is selfadjoint and positive definite.

Further,

|A1/2w|2 = (Aw,w) = (A1/2Λ−1w,A1/2Λ−1w),

and, thus,

(2.1) |A1/2w| = |A1/2Λ−1w|.

In particular, between V and V, the domains of A1/2 and A1/2, respectively, we have

the relation V = Λ(V ). Similarly, we have

(2.2) |A−1/2w| = |A−1/2Λw|.

Obviously, V ′ = Λ−1(V ′). Let w ∈ V. Then Λ−1w ∈ V and thus B(t, Λ−1w) ∈ V ′.

Therefore, Λ−1B(t, Λ−1w) ∈ Λ−1(V ′) = V ′, and we conclude that the operator B(t, ·),

t ∈ [0, T ], given in (1.3), maps V into V ′. Next, we show a local Lipschitz condition for

B. First, we rewrite (1.6) in the form

(1.6′) |A−1/2
(

B(t, w)− B(t, w̃)
)

| ≤ λ|A1/2(w − w̃)|+ µ|Λ(w − w̃)|

for all w, w̃ ∈ Tu. Let Tu := {w ∈ V : Λ−1w ∈ Tu} . Now, using (2.2) and (1.6′), for

w, w̃ ∈ Tu, we have

|A−1/2
(

B(t, w)− B(t, w̃)
)

| = |A−1/2Λ
(

B(t, w)− B(t, w̃)
)

|

= |A−1/2
(

B(t, Λ−1w)− B(t, Λ−1w̃)
)

|

≤ λ|A1/2Λ−1(w − w̃)|+ µ|ΛΛ−1(w − w̃)|,

i.e., in view of (2.1),

(2.3) |A−1/2
(

B(t, w)− B(t, w̃)
)

| ≤ λ|A1/2(w − w̃)|+ µ|w − w̃|,

for all w, w̃ ∈ Tu.
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Let the consistency error En, n = 0, . . . , N − q, of the scheme (1.4) for the solution

v of (1.1) be given by

k(I + kA)−1En =

q
∑

i=0

ρi(kA)v(tn+i)− k

q−1
∑

i=0

σi(kA)B(tn+i, v(tn+i)).
(2.4)

It is easily seen that En, n = 0, . . . , N − q, is also the consistency error of the scheme

(1.5) for the solution u of (1.2),

k(I + kA)−1En =

q
∑

i=0

ρi(kA)Λu(tn+i)− k

q−1
∑

i=0

σi(kA)Λ−1B(tn+i, u(tn+i)).
(2.5)

Theorem 4.2 of [1] yields the following result:

Theorem 2.1. Let the order and the polynomial order of the scheme be p and p − 1,

respectively. Assume that (1.6) —and hence also (2.3)— is satisfied with a constant λ

satisfying (1.8). Let starting approximations V 0, V 1, . . . , V q−1 ∈ V to v(t0), . . . , v(tq−1)

be given such that

(2.6)

q−1
∑

j=0

(

|v(tj)− V j |+ k1/2|A1/2
(

v(tj)− V j
)

|
)

≤ Ckp

and V n ∈ V, n = q, . . . , N, be recursively defined by (1.4). Let ϑn = v(tn) − V n, n =

0, . . . , N. Then, there exist constants C and c, independent of k and n, such that, for

k sufficiently small,

|ϑn|2 + k

n
∑

ℓ=0

‖ϑℓ‖2 ≤

Cecµ
2tn

{

q−1
∑

j=0

(

|ϑj |2 + k‖ϑj‖2
)

+ k

n−q
∑

ℓ=0

‖ΛEℓ‖2⋆

}

,

(2.7)

n = q − 1, . . . , N, cf. (2.2), and

(2.8) max
0≤n≤N

|v(tn)− V n| ≤ Ckp.

For the approximations Un = Λ−1V n, given by (1.5), to u(tn) the condition (2.6), the

local stability estimate (2.7), with ζn = u(tn)− Un, and the error estimate (2.8) read,

respectively,

(2.9)

q−1
∑

j=0

(

‖u(tj)− U j‖+ k1/2|||u(tj)− U j |||
)

≤ Ckp
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‖ζn‖2 + k
n

∑

ℓ=0

|||ζℓ|||2 ≤

Cecµ
2tn

{

q−1
∑

j=0

(

‖ζj‖2 + k|||ζj|||2
)

+ k

n−q
∑

ℓ=0

‖ΛEℓ‖2⋆

}

,

(2.10)

n = q − 1, . . . , N, and

(2.11) max
0≤n≤N

‖u(tn)− Un‖ ≤ Ckp. �

Let Eh(t) ∈ Vh denote the consistency error of the semidiscrete equation (1.11) for

W, the elliptic projection of the solution u of (1.2),

(2.12) Eh(t) := LhW
′(t) + AhW (t)−Bh(t,W (t)), 0 ≤ t ≤ T.

From the definition of W we easily conclude

(2.13) (AhW (t), χ) = (Au(t)−
[

B′(t, u(t))− κI
]

(u(t)−W (t)), χ)

for all χ ∈ Vh. Therefore, using (1.2),

Eh(t) = LhW
′(t)− PoLu

′(t) + κ
[

Pou(t)−W (t)
]

+ Po

[

B(t, u(t))− B(t,W (t))−B′(t, u(t))(u(t)−W (t))
]

,

and, in view of (1.14), (1.13) and (1.16), we easily obtain the following optimal order

estimate for the consistency error Eh,

(2.14) max
0≤t≤T

‖Eh(t)‖⋆ ≤ Chr.

The main result in this paper is given in the following theorem:

Theorem 2.2. Let the order and the polynomial order of the scheme be p and p − 1,

respectively. Assume we are given initial approximations U0
h , U

1
h , . . . , U

q−1
h ∈ Vh to

u(t0), . . . , u(tq−1) such that

(2.15)

q−1
∑

j=0

(

‖W (tj)− U j
h‖+ k1/2|||W (tj)− U j

h|||
)

≤ C(kp + hr).

Let Un
h ∈ Vh, n = q, . . . , N, be recursively defined by (1.11). Then, there exists a

constant C, independent of k and h, such that, for k and h2rk−1 sufficiently small,

(2.16) max
0≤n≤N

|u(tn)− Un| ≤ C(kp + hr).

Proof. Let ρn := u(tn)−W (tn), n = 0, . . . , N. In view of (1.13), we have

(2.17) max
0≤n≤N

|ρn| ≤ Chr.

Obviously, B̃(t, v) := B(t, v) +Eh(t), cf. (2.12), satisfies (1.6) with the same constants

λ and µ. Now let W̃ j := W (tj), j = 0, . . . , q − 1, and define W̃ n, n = q, . . . , N, by

applying the time discretization scheme to the equation (2.12), i.e. by

(2.18)

q
∑

i=0

ρi(kAh)ΛhW̃
n+i = k

q−1
∑

i=0

σi(kAh)Λ
−1
h B̃h(t

n+i, W̃ n+i),
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with B̃h(t, v) = Bh(t, v) + Eh(t). Then, according to (2.11), and in view of (1.15),

(2.19) max
0≤n≤N

‖W n − W̃ n‖ ≤ Ckp.

In view of (2.17) and (2.19), it remains to estimate ζn := W̃ n−Un
h . Subtracting (1.11)

from (2.18), we obtain

q
∑

i=0

ρi(kAh)Λhζ
n+i = k

q−1
∑

i=0

σi(kAh)Λ
−1
h Eh(t

n+i)

+ k

q−1
∑

i=0

σi(kAh)Λ
−1
h

[

Bh(t
n+i, W̃ n+i)− Bh(t

n+i, Un+i
h )

]

(2.20)

Using now the boundedness of σi and (2.10), we get

‖ζn‖2 + k
n

∑

ℓ=0

|||ζℓ|||2 ≤

Cecµ
2tn

{

q−1
∑

j=0

(

‖ζj‖2 + k|||ζj|||2
)

+ k

n−q
∑

ℓ=0

‖Eh(t
ℓ)‖2⋆

}

.

(2.21)

From this estimate, in view of (2.14) and our condition on the starting approximations,

we easily conclude

(2.22) max
0≤n≤N

‖W̃ n − Un
h ‖ ≤ C(kp + hr).

Let us note that it is in the derivation of (2.21) and (2.22) where we need the mesh-

condition “h2rk−1 sufficiently small”; this is due to the fact that in the course of the

proof we use the estimates, cf. (4.9) and the proof of Theorem 5.1 in [1],

max
0≤j≤n−1

|||ζj||| ≤ C⋆(k
p−1/2 + hrk−1/2) ≤ 1/2,

and for the last estimate to be satisfied we need to assume k and h2rk−1 to be sufficiently

small; this ensures U j ∈ Tu, j = 0, . . . , n−1. From (2.17), (2.19) and (2.22) the desired

estimate (2.16) follows and the proof is complete. �

Remark 2.1. Assuming that (1.6) holds with λ = 0, i.e.,

(2.23) |||B(t, w)−B(t, w̃)|||⋆ ≤ µ‖w − w̃‖ ∀w, w̃ ∈ Tu,

and that ρ0, . . . , ρq−1 vanish at infinity, one can derive the error estimate (2.16) under

the milder condition

(2.24)

q−1
∑

j=0

‖W (tj)− U j
h‖ ≤ c(kp + hr), U0

h , . . . , U
q−1
h ∈ Tu,

on the starting approximations. This is due to the fact that in this case (2.10) takes

the form, see Remark 7.2 in [1],

(2.25) ‖ζn‖2 + k
n

∑

ℓ=q

|||ζℓ|||2 ≤ Cecµ
2tn

{

q−1
∑

j=0

‖ζj‖2 + k

n−q
∑

ℓ=0

‖ΛEℓ‖2⋆

}

.
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Remark 2.2. Let τ ∈ R be such that A+ τI is positive semidefinite. It is then easily

seen that the error estimate (2.16) holds also for the scheme

q
∑

i=0

ρi(kÃ)ΛUn+i =

k

q−1
∑

i=0

σi(kÃ)Λ−1
[

B(tn+i, Un+i) + τUn+i
]

(2.26)

with Ã := Λ−1(A+ τI)Λ−1.

Remark 2.3. The mild meshcondition “k−1h2r small” is used only to show that |||ζn||| ≤

1/2 which combined with (1.13) and (2.19) implies Un
h ∈ Tu. If the estimate (1.6) holds

in tubes around u defined in terms of weaker norms, not necessarily the same for both

arguments w and w̃, one may get by with an even milder meshcondition. Assume, for

instance, that (1.6) holds for w, w̃ ∈ T ⋆
u := {ω ∈ V : mint ‖u(t) − ω‖⋆ ≤ 1} —or for

w ∈ Tu, cf. (1.13), and w̃ ∈ T ⋆
u— and the norm ‖ · ‖⋆ satisfies an inequality of the form

‖w‖⋆ ≤ ‖w‖+ ‖w‖1−a|||w|||a, w ∈ V,

for some constant a, 0 ≤ a < 1. Then, a condition of the form “k and k−ah2r sufficiently

small” suffices for (2.16) to hold.

Similarly, when the relation (1.6) is satisfied in tubes around u defined in terms of

stronger norms, not necessarily the same for both arguments, the error estimate (2.16)

may still be valid but under stronger meshconditions, cf. [1].

3. Application to the third–order fluidization equation

In this section we consider the following periodic initial value problem for a third–

order evolution equation: For T > 0, we seek a real-valued function u defined on

R× [0, T ], 1−periodic in the space variable and satisfying

(3.1) ut + uxxx + κ(u2)x + ν(u2)xx + εuxx − δutx = 0, 0 < t < T,

and

(3.2) u(·, 0) = u0 in R,

with u0 a given, smooth 1−periodic function. Here, κ, ν, ε and δ are real constants,

and ε, δ are positive.

Equation (3.1) arises in the modelling of flow in a fluidized bed, see [6] and [9]. The

unknown u represents the value of a small perturbation of the concentration of particles.

For numerical methods for problem (3.1)–(3.2) we refer to [8] and the references therein.

The standard Galerkin finite element method for (3.1)–(3.2) is unstable. A stable

semidiscrete Petrov–Galerkin method is proposed and analyzed in [8]. In this section we

shall combine the Petrov–Galerkin method of [8] with the time–stepping schemes con-

sidered in the previous sections to obtain efficient fully discrete schemes. We establish

optimal-order error estimates in the L2−norm for the fully discrete approximations.
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For s ∈ N0, let H
s
per denote the periodic Sobolev space of order s, consisting of the

1−periodic elements of Hs
loc(R), and let ‖ · ‖Hs be the norm over a period in Hs

per. The

inner product in H := L2
per = H0

per is denoted by (·, ·), and the induced norm by | · |.

For the space discretization, we let 0 = x0 < x1 < · · · < xJ = 1 be a partition of

[0, 1], and h := maxj(xj+1 − xj). Setting xjJ+s := j + xs, j ∈ Z, s = 0, . . . , J − 1, this

partition is periodically extended to a partition of R. For integer r ≥ 4, let Vh denote a

space of at least once continuously differentiable, 1−periodic splines of degree r− 1, in

which approximations to the solution u(·, t) of (3.1)–(3.2) will be sought for 0 ≤ t ≤ T .

The following approximation property of the family {Vh}0<h<1 is well known, cf., e.g.,

[11],

(3.3) inf
χ∈Vh

2
∑

j=0

hj‖v − χ‖Hj ≤ chs‖v‖Hs, v ∈ Hs
per, 2 ≤ s ≤ r.

The standard Galerkin finite element method for (3.1)–(3.2) is unstable, see [8].

The Petrov–Galerkin finite element method, based on the weak formulation of (3.1)

obtained by taking the inner product of (3.1) with χ− δχ′, χ ∈ Vh, and integrating by

parts, is as follows: Seek uh(t) ∈ Vh, t ∈ [0, T ], satisfying

(uht, χ) + δ2(uhxt, χ
′) + δ(uhxx, χ

′′)− (1 + δε)(uhxx, χ
′)+

(ν + κδ)(u2
h, χ

′′)− κ(u2
h, χ

′) + νδ((u2
h)x, χ

′′)− ε(uhx, χ
′) = 0,

(3.4)

for all χ ∈ Vh and for all t ∈ [0, T ], and

(3.5) uh(·, 0) = u0
h

with u0
h ∈ Vh an approximation to the initial value u0,

(3.6) |u0 − u0
h| ≤ Chr.

Let H := L2
per, and the operators A : H4

per → H and L : V → H be defined

by Av := δvxxxx + τv, with sufficiently large τ, and Lv := v − δ2vxx. Then V :=

D(A1/2) = H2
per, H := D(L1/2) = H1

per, and the norms in V and H are given by

|||v||| = (δ|vxx|
2 + τ |v|2)1/2 and ‖v‖ = (|v|2 + δ2|vx|

2)1/2, respectively. Let B : V → V ′

be given by B(v) := −(1 + δε)vxxx − δν(v2)xxx − (ν + δκ)(v2)xx − κ(v2)x − εvxx + τv.

Differentiating equation (3.1) with respect to x, multiplying the result by δ and adding

to the original equation, we can rewrite (3.1) in the form

(3.7) Lut + Au = B(u), 0 < t < T.

It is easily seen that the standard Galerkin method for (3.7), with approximating space

Vh, coincides with (3.4).
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Following the corresponding abstract setting in the Introduction, we define the op-

erators Po : V
′ → Vh, Lh, Ah : V → Vh and Bh(t, ·) : V → Vh by

(Pow, χ) = (w, χ) ∀χ ∈ Vh

(Lhϕ, χ) = (ϕ, χ) + δ2(ϕx, χx) ∀χ ∈ Vh

(Ahϕ, χ) = δ(ϕxx, χxx) + τ(ϕ, χ) ∀χ ∈ Vh

(Bh(t, ϕ), χ) = (B(t, ϕ), χ) ∀χ ∈ Vh.

Let N ∈ N, k := T
N

be the time step, and tn := nk, n = 0, . . . , N. With the

notation of the Introduction, we define a sequence of approximations Un
h , U

n
h ∈ Vh, to

u(tn) := u(·, tn), n = q, . . . , N, by

(3.8)

q
∑

i=0

ρi(kAh)ΛhU
n+i
h = k

q−1
∑

i=0

σi(kAh)Λ
−1
h Bh(t

n+i, Un+i
h ).

Assume that the time–stepping scheme satisfies the stability assumptions of the Intro-

duction and that its order and polynomial order are p and p − 1, respectively. Then,

for starting approximations U0
h , . . . , U

p−1
h satisfying (3.15) (or ((3.16)) below, and for

sufficiently small k and h, the analysis of the previous sections can be used to establish

the optimal order error estimate

(3.9) max
0≤n≤N

|u(tn)− Un
h | ≤ c(kp + hr).

Indeed, to prove (3.9), we have only to verify the hypotheses on L,A and B of the

previous sections.

First, by periodicity, for w, w̃, ω ∈ V,

(B(w)− B(w̃), ω) = −(1 + δε)((w − w̃)x, ωxx)

− δν((w2 − w̃2)x, ωxx)− (ν + δκ)(w2 − w̃2, ωxx)

+ κ(w2 − w̃2, ωx)− ε(w − w̃, ωxx) + τ(w − w̃, ω)

and, using the fact that the H1−norm dominates in one dimension the L∞−norm, we

easily see that

(3.10) |||B(w)− B(w̃)|||⋆ ≤ µ‖w − w̃‖, ∀w, w̃ ∈ T ⋆
u ,

with T ⋆
u := {v ∈ V : mint ‖u(·, t)− v‖ ≤ 1}.

Further,

B′(w)w̃ =− (1 + δε)w̃xxx − 2δν(ww̃)xxx − 2(ν + δκ)(ww̃)xx

− 2κ(ww̃)x − εw̃xx + τw̃,

and we easily see that M(t) := A−B′(u(t))+ τI is uniformly positive definite in H2
per,

for appropriately large τ.

We define the elliptic projection operator Rh(t) : V → Vh, t ∈ [0, T ], by

PoM(t)Rh(t)v = PoM(t)v.
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It is easily seen, cf. Theorem 3.1 in [8], that

(3.11) |u(·, t)− Rh(t)u(·, t)|+ h2‖u(·, t)− Rh(t)u(·, t)‖ ≤ Chr,

(3.12) |||L
∂

∂t
[u(·, t)− Rh(t)u(·, t)]|||⋆ ≤ Chr,

and

(3.13) |||
∂j

∂tj
[Rh(t)u(·, t)]||| ≤ C, j = 1, . . . , p+ 1;

thus, (1.13), (1.14) and (1.15) are satisfied with d = 4.

Further, with W (t) := Rh(t)u(·, t), for w ∈ H2
per,

(B(u(·,t))−B(W (t))− B′(u(·, t))(u(·, t)−W (t)), w)

= 2δν((u(·, t)−W (t))(ux(·, t)−Wx(t)), w
′′)

+ (ν + δκ)((u(·, t)−W (t))2, w′′)− κ((u(·, t)−W (t))2, w′)

and thus, in view of (3.11),

|||B(u(·, t))− B(W (t))−B′(u(·, t))(u(·, t)−W (t))|||⋆

≤ Chr,
(3.14)

i.e., (1.16) is satisfied.

Assume now that we are given starting approximations U0
h , . . . , U

q−1
h ∈ Vh ∩ T ⋆

u to

u0, . . . , uq−1 such that

(3.15)

q−1
∑

j=0

(

‖W (tj)− U j
h‖+ k1/2|||W (tj)− U j

h|||
)

≤ c(kp + hr)

or, for the schemes mentioned in Remark 2.1,

(3.16)

q−1
∑

j=0

‖W (tj)− U j
h‖ ≤ c(kp + hr).

Then, for the approximations U q
h , . . . , U

N
h defined by (3.8) we have the estimate (3.9),

in view of the results of Section 2, for k and h sufficiently small. Let us emphasize

that no meshcondition is needed, since T ⋆
u in (3.10) is defined in terms of the norm

‖ · ‖, cf. Remark 2.3, and also that the estimate (3.9) holds for all schemes of order

and polynomial order p and p − 1, respectively, considered in this paper, since λ = 0

in (3.10).
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