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Abstract. We determine the maximum angles ϑq for which the three-, four-, five-
and six-step backward difference formula (BDF) methods are A(ϑq)-stable, slightly
improving the well–known angles.

1. Introduction and statement of the result

Let α and β be the generating polynomials of the q-step backward difference formula
(BDF) method,

(1) α(ζ) =

q∑
j=1

1

j
ζq−j(ζ − 1)j =

q∑
i=0

αiζ
i, β(ζ) = ζq,

q = 1, . . . , 6. It is well known that the q-step BDF method is A(ϑq)-stable with ϑ1 =
ϑ2 = 90◦, ϑ3 ≈ 86.03◦, ϑ4 ≈ 73.35◦, ϑ5 ≈ 51.84◦, and ϑ6 ≈ 17.84◦; see [3, Section V.2].
In this note, we give precise expressions of the maximum angles ϑq, q = 3, 4, 5, 6, slight
improvements of the known approximations; see Theorem 1.

Let h > 0 be an arbitrary constant time step, tn := nh, n ∈ N0, and y0, . . . , yq−1 ∈ C
be arbitrary starting approximations to the initial value 1. We consider the discretiza-
tion of Dahlquist’s first test problem, here with flipped sign of the complex constant
λ, {

y′(t) + λy(t) = 0, t ⩾ 0,

y(0) = 1,

cf. [1] and [6], by the q-step BDF method, i.e., we recursively define approximations
yn, n ⩾ q, to the nodal values y(tn) as follows:

(2)
q∑

i=0

αiy
n+i + hλyn+q = 0, n ∈ N0.

Since αq is positive, the approximations yn, n ⩾ q, are well defined by (2) if Reλ ⩾ 0.
Let ϑq denote the maximum half-angle of the stability sector Sϑq := {z ∈ C : z =

ρeiφ, ρ > 0, |φ| < ϑq} of the q-step BDF method, i.e., of the maximal sector contained
in the stability region of the method that consists of the points z = hλ ∈ C such that
the solutions of (2) remain bounded.

Our result is:
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Theorem 1 (Maximum angles of A(ϑ)-stability of BDF methods). The maximum
angles ϑq for which the q-step BDF methods, q = 3, 4, 5, 6, are A(ϑq)-stable are

ϑ3 = arcsin 329
√
7

242
√
13

, ϑ4 = arcsin 699
√
3

25
√
2555

,

ϑ5 = arcsin 1√
f5(x̃5)

, ϑ6 = arcsin 45503

2 · 73
√
46879

,

with x̃5 =
223−

√
50825

548
≈ −0.004459865605675 and

(3) f5(x) := 1 +
4(1− x)5(24x2 − 3x− 11)2

(48x4 − 150x3 + 164x2 − 75x+ 28)2(1 + x)
.

We present the proof of Theorem 1 in Section 2.
We note that Nørsett in [4] establishes a criterion for A(ϑ)-stability of multistep meth-

ods and applies it to obtain a relation analogous to (5) for high-order BDF methods.
He then uses this relation to numerically compute approximations ϑN

q to the maximum
angles. His results, expressed here in degrees rather than in degrees and minutes, the
approximations ϑHW

q of [3, Section V.2], as well as the values of ϑq, up to a certain
precision, are given in Table 1. The discrepancy between ϑN

3 and ϑHW
3 , ϑ3 is due to the

fact that, in the notation of [4], the correct polynomial R3 is twice the one given there.

q ϑN
q ϑHW

q ϑq

3 88.45◦ 86.03◦ 86.0323668602◦

4 73.23333◦ 73.35◦ 73.3516704746◦

5 51.83333◦ 51.84◦ 51.839755836◦

6 18.78333◦ 17.84◦ 17.8397777922◦

Table 1. Nørsett’s approximations ϑN
q , the approximations ϑHW

q of [3,
Section V.2], and the maximum angles ϑq, up to the given precision, for
the q-step BDF methods, q = 3, 4, 5, 6.

2. Proof of Theorem 1

For q = 3, 4, 5, 6, let d(ζ) := α(ζ)/β(ζ), for ζ in the unit circle K in the complex
plane, K := {z ∈ C : |z| = 1}, represent the points of the root locus curve of the
q-step BDF method. Since β does not have unimodular roots, it is well known that the
method is A(ϑ)-stable, for 0 < ϑ < 90◦, if and only if

(4) | Im d(ζ)|+ (tanϑ)Re d(ζ) ⩾ 0 ∀ζ ∈ K ,

i.e., if and only if the points −d(ζ), ζ ∈ K , lie outside of the sector Sϑ; see [4, Theorem]
and [2, p. 225]. Since (4) is obviously satisfied for nonnegative Re d(ζ), we let K − be
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the part of K given by K − := {ζ ∈ K : Re d(ζ) < 0} and rewrite (4) in the form
1

sinϑ
⩾ sup

ζ∈K −

|d(ζ)|
| Im d(ζ)|

.

We infer that

(5) 1

sinϑq

= sup
ζ∈K −

|d(ζ)|
| Im d(ζ)|

=: cq.

The determination of ϑq amounts to calculating cq; then, the maximum angles are
ϑq = arcsin(1/cq).

From (1) we obtain

d(ζ) =

q∑
i=0

αiζ
i−q,

and thus, for ζ ∈ K , ζ = eit = cos t+ i sin t,

d(ζ) =

q∑
i=0

αiζ̄
q−i =

q∑
ℓ=0

αq−ℓζ̄
ℓ =

q∑
ℓ=0

αq−ℓe−iℓt,

i.e.,

(6) d(ζ) =

q∑
ℓ=0

αq−ℓ cos(ℓt)− i
q∑

ℓ=1

αq−ℓ sin(ℓt).

Following [4], with x := cos t, we insert in (6) the Chebyshev polynomials Tℓ and Uℓ, of
the first and the second kind, respectively, cos(ℓt) = Tℓ(x) and sin(ℓt) = sin t Uℓ−1(x),
see, for instance, [5, (1.2) and (1.23)], and obtain

(7) d(ζ) =

q∑
ℓ=0

αq−ℓTℓ(x)− i sin t

q∑
ℓ=1

αq−ℓUℓ−1(x).

Furthermore, since d(ζ̄) = d(ζ) —the root locus curve is symmetric with respect to
the real axis— it suffices to take the supremum over all ζ ∈ K − with nonnegative
imaginary part in (5); then, sin t ⩾ 0, and (7) can be rewritten in the form

(8) d(ζ) =

q∑
ℓ=0

αq−ℓTℓ(x)− i
√
1− x2

q∑
ℓ=1

αq−ℓUℓ−1(x).

Let

(9) pq(x) := −
q∑

ℓ=1

αq−ℓUℓ−1(x), rq(x) :=

q∑
ℓ=0

αq−ℓTℓ(x), x ∈ [−1, 1].

Then, we have

p3(x) =
1

3
(4x2 − 9x+ 8), r3(x) =

1

3
(1− x)2(1− 4x),

p4(x) =
1

3
(8− 15x+ 16x2 − 6x3), r4(x) =

2

3
(x− 1)3(3x+ 1),

p5(x) =
1

15
(48x4 − 150x3 + 164x2 − 75x+ 28), r5(x) =

2

15
(1− x)3(24x2 − 3x− 11),



4 GEORGIOS AKRIVIS AND EMMANΟUIL KATSOPRINAKIS

and

p6(x) =
1

15
(8−15x+184x2−370x3+288x4−80x5), r6(x) =

2

15
(1−x)4(40x2+16x−11).

For each q, we have ζ ∈ K −, i.e., Re d(ζ) < 0, if and only if rq(x) < 0. It is easily
seen that, for x ∈ [−1, 1], we have rq(x) < 0 if and only if x ∈ Iq := (xq,1, xq,2), with
x3,1 = 1/4, x3,2 = 1, x4,1 = −1/3, x4,2 = 1, and

x5,1 =
3−

√
1065

48
, x5,2 =

3 +
√
1065

48
, x6,1 =

−4− 3
√
14

20
, x6,2 =

−4 + 3
√
14

20
.

With the notation introduced above, let

fq(x) := 1 +
[rq(x)]

2

(1− x2)[pq(x)]2
= 1 +

|Re d(ζ)|2
| Im d(ζ)|2

=
|d(ζ)|2

| Im d(ζ)|2
for x ∈ Iq;

cf. (8) and (9), and the definition of cq in (5). Notice that this definition is compatible
with (3) for q = 5. It is easily seen that

(10) (cq)
2 = sup

x∈Iq
fq(x);

we determine these suprema for each case separately.
Since rq(1) = r′q(1) = 0, the second rational function on the right-hand side of the

following expression for the derivative f ′
q of fq,

f ′
q(x) =

2rq(x)

(1 + x)2[pq(x)]3
[(1− x2)r′q(x) + xrq(x)]pq(x)− (1− x2)rq(x)p

′
q(x)

(1− x)2
,

is a polynomial. More precisely, we have

f ′
3(x) =

2

9

(1− x)2(1− 4x)(22x− 13)

(1 + x)2[p3(x)]3
,

1

4
< x < 1,

f ′
4(x) =

40

9

(1− x)4(3x+ 1)(1− 5x)

(1 + x)2[p4(x)]3
, − 1

3
< x < 1,

f ′
5(x) = − 8

225
(1− x)4

(24x2 − 3x− 11)(274x2 − 223x− 1)

(1 + x)2[p5(x)]3
, x5,1 < x < x5,2,

f ′
6(x) = −56

75
(1− x)6

(40x2 + 16x− 11)(28x2 − 12x− 1)

(1 + x)2[p6(x)]3
, x6,1 < x < x6,2.

The denominators of f ′
q are positive since the polynomials p3, . . . , p6 are positive in the

interval [−1, 1]. This is obvious for p3, since it does not have real roots. Writing 3p4 in
the form 3p4(x) = (1 − x)(6x2 − 10x + 5) + 3, we see that p4(x) > 0 for −1 ⩽ x ⩽ 1.
Similarly, we write 15p5 in the form 15p5(x) = 12(2x2−3x+1)2+(1−x)(6x2−2x+1)+15
and see that it is also positive in [−1, 1]. Finally, 15p6(x) = x2(3 − 2x)(40x2 − 84x +
59) + (x− 1)(7x− 8); since 40x2 − 84x+ 59 is positive for all real x, we infer that p6 is
positive in the interval [−1, 1].

Three-step method: The derivative of f3 is positive in the interval (1/4, 13/22)
and negative in (13/22, 1), whence f3 is increasing in (1/4, 13/22) and decreasing in
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(13/22, 1). Thus, it attains its maximum in the interval (1/4, 1) at x̃3 := 13/22. In view
of (10), we have

(c3)
2 = sup

1
4
<x<1

f3(x) = f3
(13
22

)
=

2422 · 13
3292 · 7

,

whence

c3 =
242

√
13

329
√
7

≈ 1.002402460889713.

In view of (5), this relation yields the desired expression for ϑ3.
Four-step method: The derivative of f4 is positive in (−1/3, 1/5) and negative in

(1/5, 1). Thus, f4 attains its maximum in (−1/3, 1) at x̃4 := 1/5; now,

f4
(1
5

)
=

252 · 2555
6992 · 3

,

whence (10) yields

c4 =
25
√
2555

699
√
3

≈ 1.043752810234182.

In view of (5), this relation yields the desired result for ϑ4.
Five-step method: The roots of the quadratic polynomial 274x2 − 223x− 1 are

x5,3 :=
223−

√
50825

548
and x5,4 :=

223 +
√
50825

548
;

notice that −1 < x5,1 < x5,3 < 0 < x5,2 < x5,4 < 1. We easily see that f ′
5 is positive

in the interval (x5,1, x5,3) and negative in (x5,3, x5,2), whence f5 attains its maximum in
the interval (x5,1, x5,2) at x̃5 = x5,3 =

223−
√
50825

548
. Therefore, (10) yields

c5 =
√

f5(x̃5) ≈ 1.271802188327223.

In view of (5), this relation yields the desired result for ϑ5.
Six-step method: The roots of the quadratic polynomial 28x2 − 12x− 1 are

x6,3 := − 1

14
and x6,4 :=

1

2
;

we have −1 < x6,1 < x6,3 < 0 < x6,2 < x6,4 < 1. We easily see that f ′
6 is positive in the

interval (x6,1, x6,3) and negative in (x6,3, x6,2). We infer that f6 attains its maximum in
the interval I6 = (x6,1, x6,2) at x̃6 := x6,3 = − 1

14
. Therefore, in view of (10),

c6 =

√
f6
(
− 1

14

)
=

√
455032 + 117 · 157

45503
=

√
4 · 77 · 6697
45503

≈ 3.264173650317614.

In view of (5), this relation yields the desired result for ϑ6.
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