MAXIMUM ANGLES OF A($\boldsymbol{\vartheta})$-STABILITY OF BACKWARD DIFFERENCE FORMULAE

GEORGIOS AKRIVIS AND EMMANOUIL KATSOPRINAKIS

Abstract

We determine the maximum angles ϑ_{q} for which the three-, four-, fiveand six-step backward difference formula (BDF) methods are $\mathrm{A}\left(\vartheta_{q}\right)$-stable, slightly improving the well-known angles.

1. Introduction and statement of the result

Let α and β be the generating polynomials of the q-step backward difference formula (BDF) method,

$$
\begin{equation*}
\alpha(\zeta)=\sum_{j=1}^{q} \frac{1}{j} \zeta^{q-j}(\zeta-1)^{j}=\sum_{i=0}^{q} \alpha_{i} \zeta^{i}, \quad \beta(\zeta)=\zeta^{q}, \tag{1}
\end{equation*}
$$

$q=1, \ldots, 6$. It is well known that the q-step BDF method is $\mathrm{A}\left(\vartheta_{q}\right)$-stable with $\vartheta_{1}=$ $\vartheta_{2}=90^{\circ}, \vartheta_{3} \approx 86.03^{\circ}, \vartheta_{4} \approx 73.35^{\circ}, \vartheta_{5} \approx 51.84^{\circ}$, and $\vartheta_{6} \approx 17.84^{\circ}$; see [3, Section V.2]. In this note, we give precise expressions of the maximum angles $\vartheta_{q}, q=3,4,5,6$, slight improvements of the known approximations; see Theorem 1 .

Let $h>0$ be an arbitrary constant time step, $t^{n}:=n h, n \in \mathbb{N}_{0}$, and $y^{0}, \ldots, y^{q-1} \in \mathbb{C}$ be arbitrary starting approximations to the initial value 1 . We consider the discretization of Dahlquist's first test problem, here with flipped sign of the complex constant λ,

$$
\left\{\begin{array}{l}
y^{\prime}(t)+\lambda y(t)=0, \quad t \geqslant 0 \\
y(0)=1
\end{array}\right.
$$

cf. [1] and [6], by the q-step BDF method, i.e., we recursively define approximations $y^{n}, n \geqslant q$, to the nodal values $y\left(t^{n}\right)$ as follows:

$$
\begin{equation*}
\sum_{i=0}^{q} \alpha_{i} y^{n+i}+h \lambda y^{n+q}=0, \quad n \in \mathbb{N}_{0} \tag{2}
\end{equation*}
$$

Since α_{q} is positive, the approximations $y^{n}, n \geqslant q$, are well defined by (2) if $\operatorname{Re} \lambda \geqslant 0$.
Let ϑ_{q} denote the maximum half-angle of the stability sector $S_{\vartheta_{q}}:=\{z \in \mathbb{C}: z=$ $\left.\rho \mathrm{e}^{\mathrm{i} \varphi}, \rho>0,|\varphi|<\vartheta_{q}\right\}$ of the q-step BDF method, i.e., of the maximal sector contained in the stability region of the method that consists of the points $z=h \lambda \in \mathbb{C}$ such that the solutions of (2) remain bounded.

Our result is:
Date: February 20, 2019.
2010 Mathematics Subject Classification. Primary 65L06, 65L20; Secondary 65L04.
Key words and phrases. Test equation, BDF methods, $\mathrm{A}(\vartheta)$-stability, maximum angles.

Theorem 1 (Maximum angles of $\mathrm{A}(\boldsymbol{\vartheta})$-stability of BDF methods). The maximum angles ϑ_{q} for which the q-step BDF methods, $q=3,4,5,6$, are $A\left(\vartheta_{q}\right)$-stable are

$$
\begin{cases}\vartheta_{3}=\arcsin \frac{329 \sqrt{7}}{242 \sqrt{13}}, & \vartheta_{4}=\arcsin \frac{699 \sqrt{3}}{25 \sqrt{2555}} \\ \vartheta_{5}=\arcsin \frac{1}{\sqrt{f_{5}\left(\tilde{x}_{5}\right)}}, & \vartheta_{6}=\arcsin \frac{45503}{2 \cdot 7^{3} \sqrt{46879}}\end{cases}
$$

with $\tilde{x}_{5}=\frac{223-\sqrt{50825}}{548} \approx-0.004459865605675$ and

$$
\begin{equation*}
f_{5}(x):=1+\frac{4(1-x)^{5}\left(24 x^{2}-3 x-11\right)^{2}}{\left(48 x^{4}-150 x^{3}+164 x^{2}-75 x+28\right)^{2}(1+x)} . \tag{3}
\end{equation*}
$$

We present the proof of Theorem 1 in Section 2 .
We note that Nørsett in [4] establishes a criterion for A (ϑ)-stability of multistep methods and applies it to obtain a relation analogous to (5) for high-order BDF methods. He then uses this relation to numerically compute approximations $\vartheta_{q}^{\mathrm{N}}$ to the maximum angles. His results, expressed here in degrees rather than in degrees and minutes, the approximations $\vartheta_{q}^{\mathrm{HW}}$ of [3, Section V.2], as well as the values of ϑ_{q}, up to a certain precision, are given in Table 1. The discrepancy between $\vartheta_{3}^{\mathrm{N}}$ and $\vartheta_{3}^{\mathrm{HW}}, \vartheta_{3}$ is due to the fact that, in the notation of [4], the correct polynomial R_{3} is twice the one given there.

q	$\vartheta_{q}^{\mathrm{N}}$	$\vartheta_{q}^{\mathrm{HW}}$	ϑ_{q}
3	88.45°	86.03°	86.0323668602°
4	73.23333°	73.35°	73.3516704746°
5	51.83333°	51.84°	51.839755836°
6	18.78333°	17.84°	17.8397777922°

Table 1. Nørsett's approximations $\vartheta_{q}^{\mathrm{N}}$, the approximations $\vartheta_{q}^{\mathrm{HW}}$ of [3], Section V.2], and the maximum angles ϑ_{q}, up to the given precision, for the q-step BDF methods, $q=3,4,5,6$.

2. Proof of Theorem 1

For $q=3,4,5,6$, let $d(\zeta):=\alpha(\zeta) / \beta(\zeta)$, for ζ in the unit circle \mathscr{K} in the complex plane, $\mathscr{K}:=\{z \in \mathbb{C}:|z|=1\}$, represent the points of the root locus curve of the q-step BDF method. Since β does not have unimodular roots, it is well known that the method is $\mathrm{A}(\vartheta)$-stable, for $0<\vartheta<90^{\circ}$, if and only if

$$
\begin{equation*}
|\operatorname{Im} d(\zeta)|+(\tan \vartheta) \operatorname{Re} d(\zeta) \geqslant 0 \quad \forall \zeta \in \mathscr{K} \tag{4}
\end{equation*}
$$

i.e., if and only if the points $-d(\zeta), \zeta \in \mathscr{K}$, lie outside of the sector S_{ϑ}; see [4, Theorem] and [2, p. 225]. Since (4) is obviously satisfied for nonnegative $\operatorname{Re} d(\zeta)$, we let \mathscr{K}^{-}be
the part of \mathscr{K} given by $\mathscr{K}^{-}:=\{\zeta \in \mathscr{K}: \operatorname{Re} d(\zeta)<0\}$ and rewrite (4) in the form

$$
\frac{1}{\sin \vartheta} \geqslant \sup _{\zeta \in \mathscr{K}_{-}} \frac{|d(\zeta)|}{|\operatorname{Im} d(\zeta)|}
$$

We infer that

$$
\begin{equation*}
\frac{1}{\sin \vartheta_{q}}=\sup _{\zeta \in \mathscr{K}-} \frac{|d(\zeta)|}{|\operatorname{Im} d(\zeta)|}=: c_{q} \tag{5}
\end{equation*}
$$

The determination of ϑ_{q} amounts to calculating c_{q}; then, the maximum angles are $\vartheta_{q}=\arcsin \left(1 / c_{q}\right)$.

From (1) we obtain

$$
d(\zeta)=\sum_{i=0}^{q} \alpha_{i} \zeta^{i-q}
$$

and thus, for $\zeta \in \mathscr{K}, \zeta=\mathrm{e}^{\mathrm{i} t}=\cos t+\mathrm{i} \sin t$,

$$
d(\zeta)=\sum_{i=0}^{q} \alpha_{i} \bar{\zeta}^{q-i}=\sum_{\ell=0}^{q} \alpha_{q-\ell} \bar{\zeta}^{\ell}=\sum_{\ell=0}^{q} \alpha_{q-\ell} \mathrm{e}^{-\mathrm{i} \ell t}
$$

i.e.,

$$
\begin{equation*}
d(\zeta)=\sum_{\ell=0}^{q} \alpha_{q-\ell} \cos (\ell t)-\mathrm{i} \sum_{\ell=1}^{q} \alpha_{q-\ell} \sin (\ell t) \tag{6}
\end{equation*}
$$

Following [4], with $x:=\cos t$, we insert in (6) the Chebyshev polynomials T_{ℓ} and U_{ℓ}, of the first and the second kind, respectively, $\cos (\ell t)=T_{\ell}(x)$ and $\sin (\ell t)=\sin t U_{\ell-1}(x)$, see, for instance, $[5$, (1.2) and (1.23)], and obtain

$$
\begin{equation*}
d(\zeta)=\sum_{\ell=0}^{q} \alpha_{q-\ell} T_{\ell}(x)-\mathrm{i} \sin t \sum_{\ell=1}^{q} \alpha_{q-\ell} U_{\ell-1}(x) \tag{7}
\end{equation*}
$$

Furthermore, since $d(\bar{\zeta})=\overline{d(\zeta)}$ - the root locus curve is symmetric with respect to the real axis- it suffices to take the supremum over all $\zeta \in \mathscr{K}^{-}$with nonnegative imaginary part in (5); then, $\sin t \geqslant 0$, and (7) can be rewritten in the form

$$
\begin{equation*}
d(\zeta)=\sum_{\ell=0}^{q} \alpha_{q-\ell} T_{\ell}(x)-\mathrm{i} \sqrt{1-x^{2}} \sum_{\ell=1}^{q} \alpha_{q-\ell} U_{\ell-1}(x) . \tag{8}
\end{equation*}
$$

Let

$$
\begin{equation*}
p_{q}(x):=-\sum_{\ell=1}^{q} \alpha_{q-\ell} U_{\ell-1}(x), \quad r_{q}(x):=\sum_{\ell=0}^{q} \alpha_{q-\ell} T_{\ell}(x), \quad x \in[-1,1] . \tag{9}
\end{equation*}
$$

Then, we have

$$
\begin{array}{ll}
p_{3}(x)=\frac{1}{3}\left(4 x^{2}-9 x+8\right), & r_{3}(x)=\frac{1}{3}(1-x)^{2}(1-4 x), \\
p_{4}(x)=\frac{1}{3}\left(8-15 x+16 x^{2}-6 x^{3}\right), & r_{4}(x)=\frac{2}{3}(x-1)^{3}(3 x+1), \\
p_{5}(x)=\frac{1}{15}\left(48 x^{4}-150 x^{3}+164 x^{2}-75 x+28\right), & r_{5}(x)=\frac{2}{15}(1-x)^{3}\left(24 x^{2}-3 x-11\right),
\end{array}
$$

and
$p_{6}(x)=\frac{1}{15}\left(8-15 x+184 x^{2}-370 x^{3}+288 x^{4}-80 x^{5}\right), r_{6}(x)=\frac{2}{15}(1-x)^{4}\left(40 x^{2}+16 x-11\right)$.
For each q, we have $\zeta \in \mathscr{K}^{-}$, i.e., $\operatorname{Re} d(\zeta)<0$, if and only if $r_{q}(x)<0$. It is easily seen that, for $x \in[-1,1]$, we have $r_{q}(x)<0$ if and only if $x \in I_{q}:=\left(x_{q, 1}, x_{q, 2}\right)$, with $x_{3,1}=1 / 4, x_{3,2}=1, x_{4,1}=-1 / 3, x_{4,2}=1$, and

$$
x_{5,1}=\frac{3-\sqrt{1065}}{48}, x_{5,2}=\frac{3+\sqrt{1065}}{48}, \quad x_{6,1}=\frac{-4-3 \sqrt{14}}{20}, x_{6,2}=\frac{-4+3 \sqrt{14}}{20} .
$$

With the notation introduced above, let

$$
f_{q}(x):=1+\frac{\left[r_{q}(x)\right]^{2}}{\left(1-x^{2}\right)\left[p_{q}(x)\right]^{2}}=1+\frac{|\operatorname{Re} d(\zeta)|^{2}}{|\operatorname{Im} d(\zeta)|^{2}}=\frac{|d(\zeta)|^{2}}{|\operatorname{Im} d(\zeta)|^{2}} \quad \text { for } \quad x \in I_{q} ;
$$

cf. (8) and (9), and the definition of c_{q} in (5). Notice that this definition is compatible with (3) for $q=5$. It is easily seen that

$$
\begin{equation*}
\left(c_{q}\right)^{2}=\sup _{x \in I_{q}} f_{q}(x) \tag{10}
\end{equation*}
$$

we determine these suprema for each case separately.
Since $r_{q}(1)=r_{q}^{\prime}(1)=0$, the second rational function on the right-hand side of the following expression for the derivative f_{q}^{\prime} of f_{q},

$$
f_{q}^{\prime}(x)=\frac{2 r_{q}(x)}{(1+x)^{2}\left[p_{q}(x)\right]^{3}} \frac{\left[\left(1-x^{2}\right) r_{q}^{\prime}(x)+x r_{q}(x)\right] p_{q}(x)-\left(1-x^{2}\right) r_{q}(x) p_{q}^{\prime}(x)}{(1-x)^{2}}
$$

is a polynomial. More precisely, we have

$$
\begin{array}{ll}
f_{3}^{\prime}(x)=\frac{2}{9} \frac{(1-x)^{2}(1-4 x)(22 x-13)}{(1+x)^{2}\left[p_{3}(x)\right]^{3}}, & \frac{1}{4}<x<1, \\
f_{4}^{\prime}(x)=\frac{40}{9} \frac{(1-x)^{4}(3 x+1)(1-5 x)}{(1+x)^{2}\left[p_{4}(x)\right]^{3}}, & -\frac{1}{3}<x<1, \\
f_{5}^{\prime}(x)=-\frac{8}{225}(1-x)^{4} \frac{\left(24 x^{2}-3 x-11\right)\left(274 x^{2}-223 x-1\right)}{(1+x)^{2}\left[p_{5}(x)\right]^{3}}, & x_{5,1}<x<x_{5,2}, \\
f_{6}^{\prime}(x)=-\frac{56}{75}(1-x)^{6} \frac{\left(40 x^{2}+16 x-11\right)\left(28 x^{2}-12 x-1\right)}{(1+x)^{2}\left[p_{6}(x)\right]^{3}}, & x_{6,1}<x<x_{6,2} .
\end{array}
$$

The denominators of f_{q}^{\prime} are positive since the polynomials p_{3}, \ldots, p_{6} are positive in the interval $[-1,1]$. This is obvious for p_{3}, since it does not have real roots. Writing $3 p_{4}$ in the form $3 p_{4}(x)=(1-x)\left(6 x^{2}-10 x+5\right)+3$, we see that $p_{4}(x)>0$ for $-1 \leqslant x \leqslant 1$. Similarly, we write $15 p_{5}$ in the form $15 p_{5}(x)=12\left(2 x^{2}-3 x+1\right)^{2}+(1-x)\left(6 x^{2}-2 x+1\right)+15$ and see that it is also positive in $[-1,1]$. Finally, $15 p_{6}(x)=x^{2}(3-2 x)\left(40 x^{2}-84 x+\right.$ 59) $+(x-1)(7 x-8)$; since $40 x^{2}-84 x+59$ is positive for all real x, we infer that p_{6} is positive in the interval $[-1,1]$.

Three-step method: The derivative of f_{3} is positive in the interval $(1 / 4,13 / 22)$ and negative in $(13 / 22,1)$, whence f_{3} is increasing in $(1 / 4,13 / 22)$ and decreasing in
$(13 / 22,1)$. Thus, it attains its maximum in the interval $(1 / 4,1)$ at $\tilde{x}_{3}:=13 / 22$. In view of (10), we have

$$
\left(c_{3}\right)^{2}=\sup _{\frac{1}{4}<x<1} f_{3}(x)=f_{3}\left(\frac{13}{22}\right)=\frac{242^{2} \cdot 13}{329^{2} \cdot 7},
$$

whence

$$
c_{3}=\frac{242 \sqrt{13}}{329 \sqrt{7}} \approx 1.002402460889713
$$

In view of (5), this relation yields the desired expression for ϑ_{3}.
Four-step method: The derivative of f_{4} is positive in $(-1 / 3,1 / 5)$ and negative in $(1 / 5,1)$. Thus, f_{4} attains its maximum in $(-1 / 3,1)$ at $\tilde{x}_{4}:=1 / 5$; now,

$$
f_{4}\left(\frac{1}{5}\right)=\frac{25^{2} \cdot 2555}{699^{2} \cdot 3}
$$

whence (10) yields

$$
c_{4}=\frac{25 \sqrt{2555}}{699 \sqrt{3}} \approx 1.043752810234182
$$

In view of (5), this relation yields the desired result for ϑ_{4}.
Five-step method: The roots of the quadratic polynomial $274 x^{2}-223 x-1$ are

$$
x_{5,3}:=\frac{223-\sqrt{50825}}{548} \quad \text { and } \quad x_{5,4}:=\frac{223+\sqrt{50825}}{548} ;
$$

notice that $-1<x_{5,1}<x_{5,3}<0<x_{5,2}<x_{5,4}<1$. We easily see that f_{5}^{\prime} is positive in the interval $\left(x_{5,1}, x_{5,3}\right)$ and negative in ($x_{5,3}, x_{5,2}$), whence f_{5} attains its maximum in the interval $\left(x_{5,1}, x_{5,2}\right)$ at $\tilde{x}_{5}=x_{5,3}=\frac{223-\sqrt{50825}}{548}$. Therefore, (10) yields

$$
c_{5}=\sqrt{f_{5}\left(\tilde{x}_{5}\right)} \approx 1.271802188327223 .
$$

In view of (5), this relation yields the desired result for ϑ_{5}.
Six-step method: The roots of the quadratic polynomial $28 x^{2}-12 x-1$ are

$$
x_{6,3}:=-\frac{1}{14} \quad \text { and } \quad x_{6,4}:=\frac{1}{2}
$$

we have $-1<x_{6,1}<x_{6,3}<0<x_{6,2}<x_{6,4}<1$. We easily see that f_{6}^{\prime} is positive in the interval $\left(x_{6,1}, x_{6,3}\right)$ and negative in $\left(x_{6,3}, x_{6,2}\right)$. We infer that f_{6} attains its maximum in the interval $I_{6}=\left(x_{6,1}, x_{6,2}\right)$ at $\tilde{x}_{6}:=x_{6,3}=-\frac{1}{14}$. Therefore, in view of (10),

$$
c_{6}=\sqrt{f_{6}\left(-\frac{1}{14}\right)}=\frac{\sqrt{45503^{2}+117 \cdot 15^{7}}}{45503}=\frac{\sqrt{4 \cdot 7^{7} \cdot 6697}}{45503} \approx 3.264173650317614 .
$$

In view of (5), this relation yields the desired result for ϑ_{6}.
Acknowledgment. The authors would like to thank the anonymous referees; their suggestions led to an improved presentation of the paper.

References

1. G. G. Dahlquist, A special stability problem for linear multistep methods, BIT 3, 27-43 (1963).
2. R. D. Grigorieff, Numerik gewöhnlicher Differentialgleichungen, Bd. 2, Mehrschrittverfahren, Teubner Studienbücher, Stuttgart (1977).
3. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and DifferentialAlgebraic Problems, $2^{\text {nd }}$ revised ed., Springer-Verlag, Berlin Heidelberg, Springer Series in Computational Mathematics v. 14 (2010).
4. S. P. Nørsett, A criterion for A(α)-stability of linear multistep methods, BIT 9, 259-263 (1969).
5. T. J. Rivlin, Chebyshev polynomials. From approximation theory to algebra and number theory, $2^{\text {nd }}$ ed., Pure and Applied Mathematics. Wiley, New York (1990).
6. O. B. Widlund, A note on unconditionally stable linear multistep methods, BIT 7, 65-70 (1967).

Department of Computer Science \& Engineering, University of Ioannina, 45110 Ioannina, Greece, and Institute of Applied and Computational Mathematics, FORTH, 70013 Heraklion, Crete, Greece

Email address: akrivis@cse.uoi.gr
Department of Mathematics \& Applied Mathematics, University of Crete, 71003 Heraklion, Crete, Greece

Email address: katsopr@uoc.gr

