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Abstract. Implicit–explicit multistep methods for nonlinear parabolic equations are

analyzed in [2] and [3]. If the implicit scheme is the p−step BDF, then the p−step

implicit–explicit method of order p is stable provided the stability constant is less than

1/(2p−1). Based on BDF, we construct implicit methods such that the corresponding

implicit–explicit scheme of order p exhibits improved stability properties.

1. Introduction

In [2] and [3] implicit–explicit multistep schemes, and in [1] a wider class of linearly

implicit methods, for nonlinear parabolic equations are analyzed. In particular, letting

(α, β) be the p−step BDF and (α, γ) be the explicit p−step method of order p, it

is shown in [3] that the implicit–explicit (α, β, γ) method is stable for a nonlinear

parabolic equation provided the stability constant λ, see (1.4) below, is less than 1/(2p−
1). In this note, based on the BDF, we construct a p−step method (α, β̃) such that

the corresponding p−step implicit–explicit method (α, β̃, γ) exhibits improved stability

properties for nonlinear parabolic equations. Further, we analyze general two–step

second–order implicit–explicit schemes.

We consider problems of the form: Given T > 0 and u0 ∈ H , find u : [0, T ] → D(A)

such that

(1.1)

{

u′(t) + Au(t) = B(t, u(t)), 0 < t < T,

u(0) = u0,

with A a positive definite, selfadjoint, linear operator on a Hilbert space (H, (·, ·))
with domain D(A) dense in H, and B(t, ·) : D(A) → H, t ∈ [0, T ], a (possibly)

nonlinear operator. As a first stage in the discretization process, we consider the

semidiscrete problem approximating (1.1): For a given finite dimensional subspace Vh
of V, V := D(A1/2), we seek a function uh, uh(t) ∈ Vh, defined by

(1.2)

{

u′h(t) + Ahuh(t) = Bh(t, uh(t)), 0 < t < T,

uh(0) = u0h;
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here u0h ∈ Vh is a given approximation to u0, and Ah and Bh are appropriate operators

on Vh with Ah a positive definite, selfadjoint, linear operator.

The time discretization of (1.2) is based on an implicit q−step scheme (α, β) and an

explicit q−step scheme (α, γ), characterized by three polynomials α, β and γ,

α(ζ) =

q
∑

i=0

αiζ
i , β(ζ) =

q
∑

i=0

βiζ
i , γ(ζ) =

q−1
∑

i=0

γiζ
i.

For x ∈ [0,∞], we order the roots ζj(x) (resp. ζj(∞) ), 1 ≤ j ≤ q, of the polynomial

̟x = α + xβ (resp. β ) in such a way that the functions ζj are continuous in [0,∞]

and that the roots ξj := ζj(0), j = 1, . . . , s, satisfy |ξj| = 1 ; these unimodular roots are

called the principal roots of α and the complex numbers
β(ξj)

ξjα′(ξj)
are called the growth

factors of ξj . We assume that the method (α, β) is strongly A(0)−stable, that means,

(i) for all 0 < x ≤ ∞ and for all j = 1, . . . , q, there holds |ζj(x)| < 1,

and

(ii)
the principal roots of α are simple and their

growth factors have positive real parts.

Following [2], [3] and [5], and letting N ∈ N, k := T
N

be the time step, and

tn := nk, n = 0, . . . , N, we combine the (α, β) and (α, γ) schemes to obtain an (α, β, γ)

scheme for discretizing (1.2) in time, and define a sequence of fully discrete approxi-

mations Un, Un ∈ Vh, to u
n := u(tn), by

(1.3)

q
∑

i=0

αiU
n+i + k

q
∑

i=0

βiAhU
n+i = k

q−1
∑

i=0

γiBh(t
n+i, Un+i).

Given U0, . . . , U q−1 in Vh, U
q, . . . , UN are well defined by the (α, β, γ) scheme, see [2].

The scheme (1.3) is efficient, its implementation to advance in time requires solving a

linear system with the same matrix for all time levels.

Let | · | denote the norm of H, and introduce in V the norm ‖ · ‖ by ‖v‖ := |A1/2v|.
We identify H with its dual, and denote by V ′ the dual of V , again by (·, ·) the duality
pairing between V ′ and V, and by ‖ · ‖⋆ the dual norm on V ′, ‖v‖⋆ := |A−1/2v|. Let Tu
be a tube around the solution u, Tu := {v ∈ V : mint ‖u(t)−v‖ ≤ 1}, say. For stability
purposes, we assume that B(t, ·) can be extended to an operator from V into V ′, and

an estimate of the form

(1.4) ‖B(t, v)−B(t, w)‖⋆ ≤ λ‖v − w‖+ µ|v − w| ∀v, w ∈ Tu

holds, uniformly in t, with the stability constant λ and a constant µ. The scheme (1.3)

is shown in [3] to be locally stable under the condition

(1.5) λ < 1/K(α,β,γ) ,

with

(1.6) K(α,β,γ) := sup
x>0

max
ζ∈S1

| xγ(ζ)

(α+ xβ)(ζ)
|
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and S1 := {z ∈ C : |z| = 1}; if the constant λ in (1.4) exceeds the right-hand side of

(1.5), then the (α, β, γ)−scheme may in general be only conditionally stable, see [3].

We refer to [3] for details for the space discretization and for error estimates.

Given an implicit p−step scheme (α, β) of order p, the order of the explicit p−step

scheme (α, γ) is p, if and only if

(1.7) γ(ζ) = β(ζ)− βp(ζ − 1)p,

see [2].

Let now (α, β) be the p−step BDF,

(1.8) α(ζ) =

p
∑

j=1

1

j
ζp−j(ζ − 1)j and β(ζ) = ζp;

it is well known that the order of these schemes is p and that they are strongly

A(0)−stable for 1 ≤ p ≤ 6. Motivated by (1.7), we associate to the (α, β) BDF the

explicit (α, γ) scheme with

(1.9) γ(ζ) := ζp − (ζ − 1)p.

For the corresponding (α, β, γ) scheme we have

(1.10) K(α,β,γ) = 2p − 1,

1 ≤ p ≤ 6, see [3]. Our purpose in this paper is, based on the BDF, to construct

p−step (α, β̃, γ) schemes of order p such that K(α,β̃,γ) be small and, in particular,

(1.11) K(α,β̃,γ) < K(α,β,γ), p = 2, . . . , 6;

p = 1 is excluded here because in this case (1.5) reads λ < 1 which, of course, cannot be

relaxed. Further, for two–step second–order schemes we will also consider the general

case, and will construct schemes such that K(α,β,γ) be arbitrarily close to one.

An outline of the paper is as follows: In section 2 we present some auxiliary material.

In section 3 we will modify the second–order BDF and will construct a scheme for which

the stability condition will be λ < 1/2, while the corresponding condition for the BDF

is λ < 1/3. In section 4 we will start from the general second–order two–step scheme

and will be led to a two–parameter family of implicit–explicit schemes with very good

stability properties for appropriate values of the parameters. Section 5 is devoted to

modified third–order BDF. In section 6 we briefly discuss modified higher–order BDF

with improved stability properties.

2. Preliminaries

In this section we present some auxiliary material that will be used in the sequel.

In the following sections, based on the p−step BDF (α, β) and the corresponding

explicit p−step scheme (α, γ) of order p, described by the polynomials in (1.8) and

(1.9), we shall construct implicit p−step schemes (α, β̃) resulting to implicit–explicit

(α, β̃, γ)−schemes with improved stability properties, in particular satisfying (1.11).
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For two–step second–order schemes we will both modify the second–order BDF and

also consider the general case.

Our approach has been motivated by a similar construction of implicit modified BDF

by Fredebeul [6]. Let us however emphasize that the two constructions lead to different

schemes. Also, the goal of [6] is the construction of modified BDF per se, while we are

mainly interested in the stability properties of the implicit–explicit (α, β̃, γ) scheme.

Further, we modify the BDF by linearly combining the schemes (α, β) and (α, γ),

while Fredebeul combines the scheme (α, β) with the “explicit p−step BDF” (α̃, γ̃),

γ̃(ζ) := ζp−1.

Let s ∈ R, s 6= 0, 1. Multiplying the p−step BDF (α, β) by s and subtracting from

the corresponding (α, γ) scheme, we are led to the implicit scheme (α, β̃) with

(2.1) β̃ :=
1

s− 1
(sβ − γ).

The order of the scheme (α, β̃) is obviously at least p. Further, let the consistency

constant Cp+1 of a p−step scheme (α, β) of order p be defined by the relation

p
∑

i=0

[

αiy(t+ ik)− kβiy
′(t + ik)

]

= Cp+1k
p+1y(p+1)(t) +O(kp+2)

for smooth functions y with bounded derivative of order p + 2. Now, the consistency

constants of the schemes (α, β) and (α, γ) are −1/(p+ 1) and p/(p+ 1), respectively;

thus we easily conclude that the order of the scheme (α, β̃) is p for s 6= −p, and at

least p+ 1 for s = −p.
In the following sections our goal will be, for p = 2, . . . , 6, to select s in (2.1) in such

a way that the scheme (α, β̃) be strongly A(0)−stable and (1.11) be satisfied for the

implicit–explicit scheme (α, β̃, γ).

Let us recall that a polynomial a, a(z) = akz
k + · · ·+ a0 (ak 6= 0), is called a Schur

polynomial if all its roots lie inside the unit circle in the complex plane. Thus, condition

(i) in the definition of the strong A(0)−stability may be rephrased as

(i) ̟x is a Schur polynomial for all 0 < x ≤ ∞.

To check this we may use the Schur criterion or the Routh-Hurwitz criterion, which we

recall here for the convenience of the reader.

Schur’s criterion: Let a, a(z) = akz
k+ · · ·+a0 (ak 6= 0), be a polynomial with complex

coefficients and set

a⋆(z) = ā0z
k + · · ·+ āk,

and

ã(z) =
1

z
[āk a(z)− a0 a

⋆(z)].

Then, a is a Schur polynomial if and only if |a0| < |ak| and ã (a polynomial of degree

k − 1) is a Schur polynomial.
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Routh–Hurwitz’s criterion: Let a, a(z) = akz
k+ · · ·+a0 (ak 6= 0), be a polynomial with

real coefficients, set

A(z) := (1− z)k a(
1 + z

1− z
) = b0z

k + · · ·+ bk

and assume without loss of generality that b0 is positive. Then, a is a Schur polynomial

if and only if the roots of A have negative real parts, i.e., if and only if the Routh–

Hurwitz conditions are satisfied.

For k = 2, 3 and 4, the Routh–Hurwitz conditions can be written in the form

k = 2 : bi > 0, i = 0, 1, 2,

k = 3 : bi > 0, i = 1, 2, 3, b1b2 − b3b0 > 0,

k = 4 : bi > 0, i = 1, 2, 3, 4, b1b2b3 − b0b
2
3 − b4b

2
1 > 0.

In the following sections we will often use the infτ>0 |z1 + τz2| for given complex

numbers z1, z2. It is easily seen that

(2.2) inf
τ>0

|z1 + τz2| = |z1| if Re(z1z̄2) ≥ 0,

and

(2.3)
inf
τ>0

|z1 + τz2| = |z1 + τ ⋆z2| =
(

|z1|2 −
1

|z2|2
(

Re(z1z̄2)
)2
)1/2

if Re(z1z̄2) < 0,

with τ ⋆ = − 1
|z2|2

Re(z1z̄2).

3. Modified second–order BDF

In this section our purpose is, for p = 2, to choose s in (2.1) in such a way that the

relation K(α,β̃,γ) < K(α,β,γ) = 3 holds. Indeed, we will achieve more than this; we will

see that K(α,β̃,γ) = 2 for s = 3, and K(α,β̃,γ) > 2 for all other values of s.

First, it is easily seen in this case that the principal root of α is 1 and its growth

factor is also 1, and thus in particular positive.

Further, for a polynomial a of degree two, a(z) = z2 + a1z + a0, the Routh–Hurwitz

conditions are
b0 = 1− a1 + a0 > 0,

b1 = 2(1− a0) > 0,

b2 = 1 + a1 + a0 > 0.

Therefore, ̟x,s,

̟x,s(ζ) = (
3

2
+

sx

s− 1
)ζ2 − 2(1 +

x

s− 1
)ζ +

1

2
+

x

s− 1
,

is a Schur polynomial if and only if

4(s− 1) + (s+ 3)x

3(s− 1) + 2sx
> 0,

(s− 1)(1 + x)

3(s− 1) + 2sx
> 0,

x(s− 1)

3(s− 1) + 2sx
> 0.
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It is easily seen that these conditions are satisfied if and only if s < −3 or s > 1.

Summarizing, the scheme (α, β̃) is strongly A(0)−stable if and only if

s < −3 or s > 1.

Further, since K(α,β,γ) = 3, we are interested in values of the parameter s for which

K(α,β̃,γ) < 3 . First, clearly,

(3.1) 3|1− 4

s+ 3
| = lim

x→∞
| xγ(−1)

(α + xβ̃)(−1)
| ≤ K(α,β̃,γ).

Now, for s ∈ (−∞,−3), it is easily seen that

|1− 4

s + 3
| > 1,

and thus, in view of (3.1), K(α,β̃,γ) > 3. Therefore, in the sequel we restrict our attention

to the case s ∈ (1,∞). We will use (2.2) to show

(3.2) inf
x>0

|1
x
α(ζ) + β̃(ζ)| = |β̃(ζ)| ∀ζ ∈ S1.

For ζ ∈ S1, ζ = a+ bi, we have

α(ζ) = (3a+ 1)(a− 1)− b(3a− 2)i

and

β̃(ζ) =
1

s− 1

[

s(2a2 − 1) + (1− 2a) + 2b(sa− 1)i
]

;

hence

(3.3) Re
(

β̃(ζ)α(ζ)
)

=
s+ 3

s− 1
(a− 1)2 ≥ 0,

and (3.2) follows in view of (2.2).

Now, it immediately follows from (3.2) that, for s > 1,

(3.4) K(α,β̃,γ) = max
ζ∈S1

|γ(ζ)
β̃(ζ)

|.

Next we distinguish two cases: 1 < s ≤ 9 and s > 9. For 1 < s ≤ 9, we easily obtain

from (3.4)

(3.5) (K(α,β̃,γ))
2 = max

−1≤a≤1
f(a)

with

f(a) :=
5− 4a

1 + 4a(a−1)
s−1

+ 4(a−1)2

(s−1)2

.

Now

f ′(a) =
−4[1 + 4a(a−1)

s−1
+ 4(a−1)2

(s−1)2
]− (5− 4a)[4(2a−1)

s−1
+ 8(a−1)

(s−1)2
]

[

1 + 4a(a−1)
s−1

+ 4(a−1)2

(s−1)2

]2 ;

therefore, f ′(a) vanishes if and only if a is such that

(3.6) 4a2 − 10a− s+ 7 = 0.
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The discriminant of this quadratic equation, 4(4s−3), is positive since s > 1. Therefore,

for the solutions a1(s) and a2(s) of (3.6) we have

a1(s) =
10 + 2

√
4s− 3

8
=

5 +
√
4s− 3

4
> 1

and

a2(s) =
5−

√
4s− 3

4
.

It is easily seen that

−1 ≤ a2(s) ≤ 1 for 1 < s ≤ 9.

The function f is positive in [−1, 1], increasing in [−1, a2(s)], and decreasing in [a2(s), 1].

Thus

max
−1≤a≤1

f(a) = f

(

5−
√
4s− 3

4

)

for s ∈ (1, 9].

Now, let a function g be defined by

g(s) := f

(

5−
√
4s− 3

4

)

=
2(s− 1)2

s
√
4s− 3− 3s+ 2

.

Then g′(s) = 0 if and only if

(s− 1)
[

(2s2 + 3s− 3)− (3s− 1)
√
4s− 3

]

= 0.

Now

(2s2 + 3s− 3)2 =
[

(3s− 1)
√
4s− 3

]2

can be written in the form 4(s4 − 6s3 + 12s2 − 10s + 3) = 0, i.e., (s− 1)3(s− 3) = 0.

We easily conclude that 3 is the only root of g′ in (1, 9]. Further, g′′(3) = 2/9 and thus

g(3) = 4 is the minimum value of g in (1, 9]. Consequently, for s ∈ (1, 9],

K(α,β̃,γ) ≥ 2

and equality holds only for s = 3.

Further, it is obvious from (3.1) that K(α,β̃,γ) > 2 for s > 9.

Let us also note that the scheme (α, β̃), for s = 3, is A−stable.

Summarizing, we can say that the (α, β̃, γ)−scheme, for s = 3, is described by the

polynomials

α(ζ) =
3

2
ζ2 − 2ζ +

1

2
, β̃(ζ) =

3

2
ζ2 − ζ +

1

2
, γ(ζ) = 2ζ − 1;

for this scheme we have K(α,β̃,γ) = 2.

The stability condition λ < 1
3
for the (α, β, γ)−scheme is thus relaxed by 50% to

λ < 1
2
for the (α, β̃, γ)−scheme.
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4. General second–order two–step schemes

In this section our purpose is to construct second–order two–step implicit–explicit

schemes with better stability properties than the one of the previous section; our

starting point here is the general second–order two–step scheme, i.e., we do not restrict

ourselves in modifying the two–step BDF. We will be led to a two–parameter family

of schemes such that K(α,β,γ) be arbitrarily close to one for appropriate values of the

parameters.

It is easily seen that the general second–order two–step scheme (α, β) is given by the

polynomials

(4.1)

α(ζ) = ζ2 − (1 + τ)ζ + τ

β(ζ) = (
1 + τ

2
+ σ)ζ2 + (

1− 3τ

2
− 2σ)ζ + σ

with arbitrary real parameters σ and τ. In particular, for σ = −1+τ
2
, we obtain the

corresponding explicit second–order two–step scheme (α, γ) with

(4.2) γ(ζ) =
3− τ

2
ζ − 1 + τ

2
.

Let us also note that for σ = 0, τ = 1
3
, and for σ = τ = 1

3
, respectively, (4.1) yields the

two–step BDF and the modified two–step BDF of section 3.

First of all we will show that the (α, β)−scheme given by (4.1) is strongly A(0)−stable

if and only if

(4.3) − 1 < τ < 1 and σ > −τ
2
;

thus, in the sequel we will restrict our attention to the case σ > −1/2. In fact, the

corresponding polynomial ̟x, ̟x = α + xβ, for positive x, is given by

̟x(ζ) =
[

1 + (
1 + τ

2
+ σ)x

]

[

ζ2 − (1 + τ)− (1−3τ
2

− 2σ)x

1 + (1+τ
2

+ σ)x
ζ +

τ + σx

1 + (1+τ
2

+ σ)x

]

and the Routh–Hurwitz conditions for ̟x to be a Schur polynomial can be written in

the form

(1 + τ) + (τ + 2σ)x

1 + (1+τ
2

+ σ)x
> 0(4.4i)

(1− τ)x

1 + (1+τ
2

+ σ)x
> 0(4.4ii)

(1− τ) + 1+τ
2
x

1 + (1+τ
2

+ σ)x
> 0 .(4.4iii)

Assuming that

(4.5) σ ≥ −1 + τ

2
,
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a necessary condition for (4.4ii) to hold for all positive x, we easily see that (4.4i),

(4.4ii) and (4.4iii), respectively, are satisfied for all x ∈ (0,∞] if and only if

τ ≥ −1 and σ > −τ
2
,(4.6i)

τ < 1,(4.6ii)

−1 < τ ≤ 1,(4.6iii)

respectively. From (4.6) we are easily led to (4.3).

In the sequel we assume that σ and τ satisfy (4.3). For ζ ∈ S1, ζ = a+ bi, it is easily

seen that

Re
(

β(ζ)α(ζ)
)

= (τ + 1)(τ + 2σ)(a− 1)2 ;

the right–hand side is nonnegative in view of (4.3), and using (2.2) we conclude

inf
x>0

|1
x
α(ζ) + β(ζ)| = |β(ζ)| ∀ζ ∈ S1,

and thus

(4.7) K(α,β,γ) = max
ζ∈S1

|γ(ζ)
β(ζ)

| .

From (4.7) we easily obtain

(4.8) (K(α,β,γ))
2 = 2 max

−1≤a≤1
f(a)

with

f(a) :=
(τ − 3)(τ + 1)a+ (τ 2 − 2τ + 5)

(τ + 1)2(1− a2) + [(1 + τ + 4σ)a+ 1− 3τ − 4σ]2
.

First of all we have

(4.9) f(1) =
1

2
and f(−1) =

1

2(τ + 2σ)2
.

Let us now consider the case σ = 0; then, according to (4.3), 0 < τ < 1. It is easily

seen that f is decreasing in (−1, 1) in this case. Therefore, from (4.8) and (4.9) we

obtain

(4.10) K(α,β,γ) =
1

τ
for σ = 0, 0 < τ < 1.

Consequently, for σ = 0 and τ less but close to one, the (α, β, γ)−scheme described

by (4.1) and (4.2) has excellent stability properties. Let us also note that, for τ =
1
3
, relation (4.10) yields the result (1.10) for the second–order implicit–explicit BDF

scheme.

Remark 4.1. A disadvantage of the (α, β)−scheme described by (4.1) for σ = 0 and

0 < τ < 1 is that its error constant deteriorates as τ approaches one. Indeed the error

constant of the scheme is given by

(4.11) C = − 1

12

1 + 5τ

1− τ
,

see (2.13) on page 320 of [7] for the definition. Notice, however, that for τ = 0.9, say,

the (α, β, γ)−scheme has very good stability properties, the stability condition being
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λ < 0.9 in this case, and the error constant of the (α, β)−scheme is of moderate size,

namely C = −29/24. Similar comments can be made for nonvanishing σ. �

Next we focus on the case σ 6= 0. In this case f ′(a) = 0 can be written in the form

σ(3− τ)(τ + 1)(1 + τ + 2σ)a2 − 2σ(τ 2 − 2τ + 5)(1 + τ + 2σ)a+ 2t4

+ 6τ 2σ2 − 15στ 2 + 7στ 3 − 4τ 3 − 12τσ2 + 13στ − 2 + 4τ + 3σ + 14σ2 = 0

or equivalently

(4.12)
σ(3− τ)(τ + 1)a2 − 2σ(τ 2 − 2τ + 5)a

+ 2τ 3 − 6τ 2 + 6τ − 2 + 7σ − 6στ + 3στ 2 = 0.

The discriminant D(σ, τ) of the quadratic equation (4.12) is given by

D(σ, τ) = 2σ(τ − 1)3[(τ + 1)(τ − 3) + 2σ(τ − 1)].

Let

ϕ(τ) := (τ + 1)(τ − 3) + 2σ(τ − 1).

The roots τ1, τ2 of ϕ are

τ1,2 = 1− σ ±
√
σ2 + 4.

It is easily seen that τ1 > 1; further, τ2 < −1 for σ > 0, and τ2 < −2σ for −1
2
< σ < 0.

Therefore we distinguish two cases:

First case: −1
2
< σ < 0. In this case ϕ, and consequently also D(·, σ), is negative in

(−2σ, 1). It is then easily seen that f is decreasing in (−1, 1), and from (4.8) and (4.9)

we conclude

(4.13) K(α,β,γ) =
1

τ + 2σ
for − 1

2
< σ < 0 and − 2σ < τ < 1.

Obviously, for σ close to 0 and τ close to 1, the value of K(α,β,γ) is close to one, but

of course larger than one. Also, as σ tends to −1/2, and consequently τ tends to one,

K(α,β,γ) tends to ∞.

Second case: σ > 0. In this case D(·, σ) is positive in (−1, 1), and f ′ has two real roots

a1 and a2,

(4.14) a1,2 =
σ(τ 2 − 2τ + 5)± (1− τ)

√

2σ(τ − 1)[(τ + 1)(τ − 3) + 2σ(τ − 1)]

σ(3− τ)(τ + 1)
.

Now, τ 2 − 2τ + 5 > (3 − τ)(τ + 1) can be written in the form (τ − 1)2 > 0, which is

satisfied, and we easily see that a1 > 1. Further, a2 < 1 can be equivalently written in

the form (τ +1)(3− τ) > 0, which is, of course, valid. Further, a2 > −1 can be written

as

(4.15) 2σ(τ 2 − 2τ + 5) > (1− τ)3.

Now, for σ ≤ ψ(τ) := (1 − τ)3/[2(τ 2 − 2τ + 5)], (4.15) is not satisfied, and we easily

conclude

(4.16) K(α,β,γ) = max(1,
1

τ + 2σ
).
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In view of (4.3) in this case we have

(4.17)
− 1 < τ < 0, −τ

2
< σ ≤ ψ(τ)

or 0 < τ < 1, 0 < σ ≤ ψ(τ) .

Now, for τ and σ satisfying (4.17), it is easily seen that

τ + 2σ <
τ 2 + 2τ + 1

τ 2 − 2τ + 5
< 1,

and thus (4.16) reads

(4.16′) K(α,β,γ) =
1

τ + 2σ
.

Let us also note that when τ tends to one, τ +2σ, and consequently also K(α,β,γ), tends

to one.

Further, obviously,

(4.18) K(α,β,γ) = max
(

1,
1

τ + 2σ
,
√

2f(a2)
)

, −1 < τ < 1, σ > ψ(τ) ,

with a2 given by (4.14) (with the minus sign).

5. Modified third–order BDF

In this section our purpose is, for p = 3, to select s in (2.1) in such a way that the

relation

(5.1) K(α,β̃,γ) < K(α,β,γ)

holds. Indeed, we will see that, for s = 9, K(α,β̃,γ) < 5, while K(α,β,γ) = 7.

First, it is easily seen that a necessary condition for (5.1) to hold is s > −3. Indeed,

setting

K̃(α,β̃,γ) := lim
x→∞

| xγ(−1)

(α+ xβ̃)(−1)
|

we obviously have K̃(α,β̃,γ) ≤ K(α,β̃,γ). Now

(5.2) K̃(α,β̃,γ) = 7|s− 1

s+ 7
|.

In view of (1.10) and (5.2), the relation (5.1) can only hold if | s−1
s+7

| < 1, i.e., 0 < 8
s+7

< 2,

i.e., s > −3.

Therefore, throughout this section we will assume that s > −3. Next, we will show

that the scheme (α, β̃) is strongly A(0)−stable if and only if s > 2.

In this case we have α(ζ) = 1
6
(ζ − 1)(11ζ2 − 7ζ + 2), the only principal root of α is

1 and its growth factor is also equal to 1, and thus in particular positive. Therefore, it

remains to show that all roots of the polynomial ̟x,s, ̟x,s = α+xβ̃, lie in the interior

of the unit disc in the complex plane, for all positive x, if and only if s > 2.
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Let us first consider the case x = ∞. We claim that π, π := sβ − γ, is a Schur

polynomial (for s > −3) if and only if s > 2. We have

π(ζ) = sζ3 − 3ζ2 + 3ζ − 1,

and, according to Schur’s criterion, a necessary condition for π to be a Schur polynomial

is |s| > 1, i.e.,

(5.3) s < −1 or s > 1.

Further, to apply Schur’s criterion, let π⋆ be given by π⋆(ζ) := −ζ3 + 3ζ2 − 3ζ + s.

Then,

π⋆(0)π(ζ)− π(0)π⋆(ζ) = (s− 1)[(s+ 1)ζ3 − 3ζ2 + 3ζ ].

Consider now the polynomial π1, π1(ζ) = (s + 1)ζ2 − 3ζ + 3. For π1 to be a Schur

polynomial we must have |s+1| > 3, i.e., s < −4 or s > 2, and therefore, since we have

assumed that s > −3, we must have s > 2.Moreover, with π⋆
1, π

⋆
1(ζ) := 3ζ2−3ζ+(s+1),

we have

π⋆
1(0)π1(ζ)− π1(0)π

⋆
1(ζ) = (s− 2)[(s+ 4)ζ2 − 3ζ ].

Consider then π2, π2(ζ) := (s + 4)ζ − 3. This is a Schur polynomial for s > −1 or

s < −7. Summarizing, sβ− γ is a Schur polynomial for s > 2; (actually this is also the

case for s < −7, but as already emphasized we are here only interested in values of s

larger than −3).

Next, we want to show that, for x > 0, ̟x,s, ̟x,s := α + xβ̃, is a Schur polynomial

for s > 2. We have

̟x,s(ζ) = (
11

6
+

sx

s− 1
)ζ3 − 3(1 +

x

s− 1
)ζ2 + 3(

1

2
+

x

s− 1
)ζ − (

1

3
+

x

s− 1
) .

First, obviously, for the values of s and x under consideration,

1

3
+

x

s− 1
<

11

6
+

sx

s− 1
.

Further, to apply Schur’s criterion, let ̟⋆
x,s, be given by

̟⋆
x,s(ζ) := −(

1

3
+

x

s− 1
)ζ3 + 3(

1

2
+

x

s− 1
)ζ2 − 3(1 +

x

s− 1
)ζ + (

11

6
+

sx

s− 1
) .

Then,

̟⋆
x,s(0)̟x,s(ζ)−̟x,s(0)̟

⋆
x,s(ζ) =

=
1

s− 1

[(13(s− 1)

4
+

11s− 2

3
x+ (s+ 1)x2

)

ζ3

− 3
(5(s− 1)

3
+ (s+ 1)x+ x2

)

ζ2 + 3
(7(s− 1)

12
+
s+ 1

2
x+ x2

)

ζ .

Consider then the polynomial π,

π(ζ) :=
(13(s− 1)

4
+

11s− 2

3
x+ (s+ 1)x2

)

ζ2

− 3
(5(s− 1)

3
+ (s+ 1)x+ x2

)

ζ + 3
(7(s− 1)

12
+
s+ 1

2
x+ x2

)

.
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First, obviously, for the values of s and x under consideration,

3
(7(s− 1)

12
+
s + 1

2
x+ x2

)

<
13(s− 1)

4
+

11s− 2

3
x+ (s+ 1)x2 .

Further, to apply Schur’s criterion, let π⋆ be given by

π⋆(ζ) := 3
(7(s− 1)

12
+
s+ 1

2
x+ x2

)

ζ2

− 3
(5(s− 1)

3
+ (s+ 1)x+ x2

)

ζ +
(13(s− 1)

4
+

11s− 2

3
x+ (s+ 1)x2

)

.

Then,

π⋆(0)π(ζ)− π(0)π⋆(ζ) = [
3

2
(s− 1) +

13

6
(s− 1)x+ (s− 2)x2]×

[

[5(s− 1) +
31s+ 5

6
x+ (s+ 4)x2]ζ2 − [5(s− 1) + 3(s+ 1)x+ 3x2]ζ

]

.

It is easily seen that this is a Schur polynomial for the values of s and x under consid-

eration.

Now, let

S+
1 := {z ∈ S1 : Re

(

β̃(ζ)α(ζ)
)

≥ 0},

S−
1 := {z ∈ S1 : Re

(

β̃(ζ)α(ζ)
)

< 0}.
Then, in view of (2.2) and (2.3),

(5.4) ∀ζ ∈ S+
1 sup

x>0
| xγ(ζ)

(α+ xβ̃)(ζ)
| = |γ(ζ)

β̃(ζ)
|,

(5.5) ∀ζ ∈ S−
1 sup

x>0
| xγ(ζ)

(α+ xβ̃)(ζ)
| = |γ(ζ)|

(

|β̃(ζ)|2 − 1
|α(ζ)|2

(

Re(β̃(ζ)α(ζ))
)2
)1/2

.

Hence, letting

K+
3 := max

ζ∈S+

1

|γ(ζ)
β̃(ζ)

|,

and

K−
3 := max

ζ∈S−

1

|γ(ζ)|
(

|β̃(ζ)|2 − 1
|α(ζ)|2

(

Re(β̃(ζ)α(ζ))
)2
)1/2

,

we easily conclude

(5.6) K(α,β̃,γ) = max(K+
3 , K

−
3 ).

We have computed K+
3 and K−

3 for various values of s; according to our computations

one reasonable choice for s seems to be s = 9. For this s we have K+
3 ≈ 4.82893515

and K−
3 ≈ 2.85220717; therefore, it is safe to say that

(5.7) K(α,β̃,γ) < 5 for s = 9.
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6. Modified higher–order BDF

In this section we will construct modified fourth–, fifth– and sixth–order BDF such

that the corresponding implicit–explicit schemes exhibit improved stability properties.

We will use notation analogous to the one of the previous Section.

First, for p = 4, we have K(α,β,γ) = 15, while for s = 26, which is a reasonable choice

according to our computations, we have K+
4 ≈ 10.9366302 and K−

4 ≈ 8.48358536, and

it is thus safe to say that

(6.1) K(α,β̃,γ) < 11 for s = 26.

Similarly, for p = 5 and p = 6 we have computed

K+
5 ≈ 23.7191849, K−

5 ≈ 21.0605831 for s = 68

and

K+
6 ≈ 50.1196861, K−

6 ≈ 48.4871178 for s = 168,

respectively, and thus we can say that, for p = 5,

(6.2) K(α,β̃,γ) < 24 for s = 68,

while K(α,β,γ) = 31, and, for p = 6,

(6.3) K(α,β̃,γ) < 51 for s = 168,

while K(α,β,γ) = 61.

Let us mention that we have checked the schemes (α, β̃) mentioned in (6.1), (6.2)

and (6.3) and found them to be strongly A(0)−stable.
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