MODIFIED BDF METHODS FOR NONLINEAR PARABOLIC EQUATIONS

GEORGIOS AKRIVIS AND FOTEINI KARAKATSANI

Abstract

Implicit-explicit multistep methods for nonlinear parabolic equations are analyzed in [2] and [3]. If the implicit scheme is the p-step BDF, then the p-step implicit-explicit method of order p is stable provided the stability constant is less than $1 /\left(2^{p}-1\right)$. Based on BDF, we construct implicit methods such that the corresponding implicit-explicit scheme of order p exhibits improved stability properties.

1. Introduction

In [2] and [3] implicit-explicit multistep schemes, and in [1] a wider class of linearly implicit methods, for nonlinear parabolic equations are analyzed. In particular, letting (α, β) be the p-step BDF and (α, γ) be the explicit p-step method of order p, it is shown in [3] that the implicit-explicit (α, β, γ) method is stable for a nonlinear parabolic equation provided the stability constant λ, see (1.4) below, is less than $1 /\left(2^{p}-\right.$ $1)$. In this note, based on the BDF, we construct a p-step method $(\alpha, \tilde{\beta})$ such that the corresponding p-step implicit-explicit method ($\alpha, \tilde{\beta}, \gamma$) exhibits improved stability properties for nonlinear parabolic equations. Further, we analyze general two-step second-order implicit-explicit schemes.

We consider problems of the form: Given $T>0$ and $u^{0} \in H$, find $u:[0, T] \rightarrow D(A)$ such that

$$
\left\{\begin{array}{l}
u^{\prime}(t)+A u(t)=B(t, u(t)), \quad 0<t<T, \tag{1.1}\\
u(0)=u^{0},
\end{array}\right.
$$

with A a positive definite, selfadjoint, linear operator on a Hilbert space $(H,(\cdot, \cdot))$ with domain $D(A)$ dense in H, and $B(t, \cdot): D(A) \rightarrow H, t \in[0, T]$, a (possibly) nonlinear operator. As a first stage in the discretization process, we consider the semidiscrete problem approximating (1.1): For a given finite dimensional subspace V_{h} of $V, V:=D\left(A^{1 / 2}\right)$, we seek a function $u_{h}, u_{h}(t) \in V_{h}$, defined by

$$
\left\{\begin{array}{l}
u_{h}^{\prime}(t)+A_{h} u_{h}(t)=B_{h}\left(t, u_{h}(t)\right), \quad 0<t<T, \tag{1.2}\\
u_{h}(0)=u_{h}^{0}
\end{array}\right.
$$

[^0]here $u_{h}^{0} \in V_{h}$ is a given approximation to u^{0}, and A_{h} and B_{h} are appropriate operators on V_{h} with A_{h} a positive definite, selfadjoint, linear operator.

The time discretization of (1.2) is based on an implicit q-step scheme (α, β) and an explicit q-step scheme (α, γ), characterized by three polynomials α, β and γ,

$$
\alpha(\zeta)=\sum_{i=0}^{q} \alpha_{i} \zeta^{i}, \quad \beta(\zeta)=\sum_{i=0}^{q} \beta_{i} \zeta^{i}, \quad \gamma(\zeta)=\sum_{i=0}^{q-1} \gamma_{i} \zeta^{i} .
$$

For $x \in[0, \infty]$, we order the roots $\zeta_{j}(x)$ (resp. $\zeta_{j}(\infty)$), $1 \leq j \leq q$, of the polynomial $\varpi_{x}=\alpha+x \beta$ (resp. β) in such a way that the functions ζ_{j} are continuous in $[0, \infty]$ and that the roots $\xi_{j}:=\zeta_{j}(0), j=1, \ldots, s$, satisfy $\left|\xi_{j}\right|=1$; these unimodular roots are called the principal roots of α and the complex numbers $\frac{\beta\left(\xi_{j}\right)}{\xi_{j} \alpha^{\prime}\left(\xi_{j}\right)}$ are called the growth factors of ξ_{j}. We assume that the method (α, β) is strongly $A(0)-$ stable, that means,
(i) for all $0<x \leq \infty$ and for all $j=1, \ldots, q$, there holds $\left|\zeta_{j}(x)\right|<1$,
and
(ii)
the principal roots of α are simple and their growth factors have positive real parts.
Following [2], [3] and [5], and letting $N \in \mathbb{N}, k:=\frac{T}{N}$ be the time step, and $t^{n}:=n k, n=0, \ldots, N$, we combine the (α, β) and (α, γ) schemes to obtain an (α, β, γ) scheme for discretizing (1.2) in time, and define a sequence of fully discrete approximations $U^{n}, U^{n} \in V_{h}$, to $u^{n}:=u\left(t^{n}\right)$, by

$$
\begin{equation*}
\sum_{i=0}^{q} \alpha_{i} U^{n+i}+k \sum_{i=0}^{q} \beta_{i} A_{h} U^{n+i}=k \sum_{i=0}^{q-1} \gamma_{i} B_{h}\left(t^{n+i}, U^{n+i}\right) . \tag{1.3}
\end{equation*}
$$

Given U^{0}, \ldots, U^{q-1} in $V_{h}, U^{q}, \ldots, U^{N}$ are well defined by the (α, β, γ) scheme, see [2]. The scheme (1.3) is efficient, its implementation to advance in time requires solving a linear system with the same matrix for all time levels.

Let $|\cdot|$ denote the norm of H, and introduce in V the norm $\|\cdot\|$ by $\|v\|:=\left|A^{1 / 2} v\right|$. We identify H with its dual, and denote by V^{\prime} the dual of V, again by (\cdot, \cdot) the duality pairing between V^{\prime} and V, and by $\|\cdot\|_{\star}$ the dual norm on $V^{\prime},\|v\|_{\star}:=\left|A^{-1 / 2} v\right|$. Let T_{u} be a tube around the solution $u, T_{u}:=\left\{v \in V: \min _{t}\|u(t)-v\| \leq 1\right\}$, say. For stability purposes, we assume that $B(t, \cdot)$ can be extended to an operator from V into V^{\prime}, and an estimate of the form

$$
\begin{equation*}
\|B(t, v)-B(t, w)\|_{\star} \leq \lambda\|v-w\|+\mu|v-w| \quad \forall v, w \in T_{u} \tag{1.4}
\end{equation*}
$$

holds, uniformly in t, with the stability constant λ and a constant μ. The scheme (1.3) is shown in [3] to be locally stable under the condition

$$
\begin{equation*}
\lambda<1 / K_{(\alpha, \beta, \gamma)}, \tag{1.5}
\end{equation*}
$$

with

$$
\begin{equation*}
K_{(\alpha, \beta, \gamma)}:=\sup _{x>0} \max _{\zeta \in S_{1}}\left|\frac{x \gamma(\zeta)}{(\alpha+x \beta)(\zeta)}\right| \tag{1.6}
\end{equation*}
$$

and $S_{1}:=\{z \in \mathbb{C}:|z|=1\}$; if the constant λ in (1.4) exceeds the right-hand side of (1.5), then the (α, β, γ)-scheme may in general be only conditionally stable, see 3]. We refer to [3] for details for the space discretization and for error estimates.

Given an implicit p-step scheme (α, β) of order p, the order of the explicit p-step scheme (α, γ) is p, if and only if

$$
\begin{equation*}
\gamma(\zeta)=\beta(\zeta)-\beta_{p}(\zeta-1)^{p} \tag{1.7}
\end{equation*}
$$

see [2].
Let now (α, β) be the p-step BDF ,

$$
\begin{equation*}
\alpha(\zeta)=\sum_{j=1}^{p} \frac{1}{j} \zeta^{p-j}(\zeta-1)^{j} \quad \text { and } \quad \beta(\zeta)=\zeta^{p} ; \tag{1.8}
\end{equation*}
$$

it is well known that the order of these schemes is p and that they are strongly $A(0)-$ stable for $1 \leq p \leq 6$. Motivated by (1.7), we associate to the $(\alpha, \beta) \operatorname{BDF}$ the explicit (α, γ) scheme with

$$
\begin{equation*}
\gamma(\zeta):=\zeta^{p}-(\zeta-1)^{p} \tag{1.9}
\end{equation*}
$$

For the corresponding (α, β, γ) scheme we have

$$
\begin{equation*}
K_{(\alpha, \beta, \gamma)}=2^{p}-1, \tag{1.10}
\end{equation*}
$$

$1 \leq p \leq 6$, see [3]. Our purpose in this paper is, based on the BDF, to construct p-step $(\alpha, \tilde{\beta}, \gamma)$ schemes of order p such that $K_{(\alpha, \tilde{\beta}, \gamma)}$ be small and, in particular,

$$
\begin{equation*}
K_{(\alpha, \tilde{\beta}, \gamma)}<K_{(\alpha, \beta, \gamma)}, \quad p=2, \ldots, 6 \tag{1.11}
\end{equation*}
$$

$p=1$ is excluded here because in this case (1.5) reads $\lambda<1$ which, of course, cannot be relaxed. Further, for two-step second-order schemes we will also consider the general case, and will construct schemes such that $K_{(\alpha, \beta, \gamma)}$ be arbitrarily close to one.

An outline of the paper is as follows: In section 2 we present some auxiliary material. In section 3 we will modify the second-order BDF and will construct a scheme for which the stability condition will be $\lambda<1 / 2$, while the corresponding condition for the BDF is $\lambda<1 / 3$. In section 4 we will start from the general second-order two-step scheme and will be led to a two-parameter family of implicit-explicit schemes with very good stability properties for appropriate values of the parameters. Section 5 is devoted to modified third-order BDF. In section 6 we briefly discuss modified higher-order BDF with improved stability properties.

2. Preliminaries

In this section we present some auxiliary material that will be used in the sequel.
In the following sections, based on the p-step $\operatorname{BDF}(\alpha, \beta)$ and the corresponding explicit p-step scheme (α, γ) of order p, described by the polynomials in (1.8) and (1.9), we shall construct implicit p-step schemes $(\alpha, \tilde{\beta})$ resulting to implicit-explicit $(\alpha, \tilde{\beta}, \gamma)$-schemes with improved stability properties, in particular satisfying (1.11).

For two-step second-order schemes we will both modify the second-order BDF and also consider the general case.

Our approach has been motivated by a similar construction of implicit modified BDF by Fredebeul [6]. Let us however emphasize that the two constructions lead to different schemes. Also, the goal of [6] is the construction of modified BDF per se, while we are mainly interested in the stability properties of the implicit-explicit $(\alpha, \tilde{\beta}, \gamma)$ scheme. Further, we modify the BDF by linearly combining the schemes (α, β) and (α, γ), while Fredebeul combines the scheme (α, β) with the "explicit p-step BDF " $(\tilde{\alpha}, \tilde{\gamma})$, $\tilde{\gamma}(\zeta):=\zeta^{p-1}$.

Let $s \in \mathbb{R}, s \neq 0,1$. Multiplying the p-step $\operatorname{BDF}(\alpha, \beta)$ by s and subtracting from the corresponding (α, γ) scheme, we are led to the implicit scheme $(\alpha, \tilde{\beta})$ with

$$
\begin{equation*}
\tilde{\beta}:=\frac{1}{s-1}(s \beta-\gamma) . \tag{2.1}
\end{equation*}
$$

The order of the scheme $(\alpha, \tilde{\beta})$ is obviously at least p. Further, let the consistency constant C_{p+1} of a p-step scheme (α, β) of order p be defined by the relation

$$
\sum_{i=0}^{p}\left[\alpha_{i} y(t+i k)-k \beta_{i} y^{\prime}(t+i k)\right]=C_{p+1} k^{p+1} y^{(p+1)}(t)+O\left(k^{p+2}\right)
$$

for smooth functions y with bounded derivative of order $p+2$. Now, the consistency constants of the schemes (α, β) and (α, γ) are $-1 /(p+1)$ and $p /(p+1)$, respectively; thus we easily conclude that the order of the scheme $(\alpha, \tilde{\beta})$ is p for $s \neq-p$, and at least $p+1$ for $s=-p$.

In the following sections our goal will be, for $p=2, \ldots, 6$, to select s in (2.1) in such a way that the scheme $(\alpha, \tilde{\beta})$ be strongly $A(0)$-stable and (1.11) be satisfied for the implicit-explicit scheme $(\alpha, \tilde{\beta}, \gamma)$.

Let us recall that a polynomial $a, a(z)=a_{k} z^{k}+\cdots+a_{0}\left(a_{k} \neq 0\right)$, is called a Schur polynomial if all its roots lie inside the unit circle in the complex plane. Thus, condition (i) in the definition of the strong $A(0)$-stability may be rephrased as

$$
\begin{equation*}
\varpi_{x} \text { is a Schur polynomial for all } 0<x \leq \infty . \tag{i}
\end{equation*}
$$

To check this we may use the Schur criterion or the Routh-Hurwitz criterion, which we recall here for the convenience of the reader.

Schur's criterion: Let $a, a(z)=a_{k} z^{k}+\cdots+a_{0}\left(a_{k} \neq 0\right)$, be a polynomial with complex coefficients and set

$$
a^{\star}(z)=\bar{a}_{0} z^{k}+\cdots+\bar{a}_{k},
$$

and

$$
\tilde{a}(z)=\frac{1}{z}\left[\bar{a}_{k} a(z)-a_{0} a^{\star}(z)\right] .
$$

Then, a is a Schur polynomial if and only if $\left|a_{0}\right|<\left|a_{k}\right|$ and \tilde{a} (a polynomial of degree $k-1)$ is a Schur polynomial.

Routh-Hurwitz's criterion: Let $a, a(z)=a_{k} z^{k}+\cdots+a_{0}\left(a_{k} \neq 0\right)$, be a polynomial with real coefficients, set

$$
A(z):=(1-z)^{k} a\left(\frac{1+z}{1-z}\right)=b_{0} z^{k}+\cdots+b_{k}
$$

and assume without loss of generality that b_{0} is positive. Then, a is a Schur polynomial if and only if the roots of A have negative real parts, i.e., if and only if the RouthHurwitz conditions are satisfied.

For $k=2,3$ and 4 , the Routh-Hurwitz conditions can be written in the form

$$
\begin{array}{ll}
k=2: & b_{i}>0, i=0,1,2, \\
k=3: & b_{i}>0, i=1,2,3,
\end{array} b_{1} b_{2}-b_{3} b_{0}>0, ~ 子, ~ b_{i}>0, i=1,2,3,4, \quad b_{1} b_{2} b_{3}-b_{0} b_{3}^{2}-b_{4} b_{1}^{2}>0 . ~ \$
$$

In the following sections we will often use the $\inf _{\tau>0}\left|z_{1}+\tau z_{2}\right|$ for given complex numbers z_{1}, z_{2}. It is easily seen that

$$
\begin{equation*}
\inf _{\tau>0}\left|z_{1}+\tau z_{2}\right|=\left|z_{1}\right| \quad \text { if } \quad \operatorname{Re}\left(z_{1} \bar{z}_{2}\right) \geq 0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{align*}
& \inf _{\tau>0}\left|z_{1}+\tau z_{2}\right|=\left|z_{1}+\tau^{\star} z_{2}\right|=\left(\left|z_{1}\right|^{2}-\frac{1}{\left|z_{2}\right|^{2}}\left(\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)\right)^{2}\right)^{1 / 2} \tag{2.3}\\
& \text { if } \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)<0,
\end{align*}
$$

with $\tau^{\star}=-\frac{1}{\left|z_{2}\right|^{2}} \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$.

3. Modified second-order BDF

In this section our purpose is, for $p=2$, to choose s in (2.1) in such a way that the relation $K_{(\alpha, \tilde{\beta}, \gamma)}<K_{(\alpha, \beta, \gamma)}=3$ holds. Indeed, we will achieve more than this; we will see that $K_{(\alpha, \tilde{\beta}, \gamma)}=2$ for $s=3$, and $K_{(\alpha, \tilde{\beta}, \gamma)}>2$ for all other values of s.

First, it is easily seen in this case that the principal root of α is 1 and its growth factor is also 1 , and thus in particular positive.

Further, for a polynomial a of degree two, $a(z)=z^{2}+a_{1} z+a_{0}$, the Routh-Hurwitz conditions are

$$
\begin{aligned}
& b_{0}=1-a_{1}+a_{0}>0, \\
& b_{1}=2\left(1-a_{0}\right)>0, \\
& b_{2}=1+a_{1}+a_{0}>0 .
\end{aligned}
$$

Therefore, $\varpi_{x, s}$,

$$
\varpi_{x, s}(\zeta)=\left(\frac{3}{2}+\frac{s x}{s-1}\right) \zeta^{2}-2\left(1+\frac{x}{s-1}\right) \zeta+\frac{1}{2}+\frac{x}{s-1}
$$

is a Schur polynomial if and only if

$$
\frac{4(s-1)+(s+3) x}{3(s-1)+2 s x}>0, \quad \frac{(s-1)(1+x)}{3(s-1)+2 s x}>0, \quad \frac{x(s-1)}{3(s-1)+2 s x}>0 .
$$

It is easily seen that these conditions are satisfied if and only if $s<-3$ or $s>1$. Summarizing, the scheme $(\alpha, \tilde{\beta})$ is strongly $A(0)$-stable if and only if

$$
s<-3 \quad \text { or } \quad s>1 .
$$

Further, since $K_{(\alpha, \beta, \gamma)}=3$, we are interested in values of the parameter s for which $K_{(\alpha, \tilde{\beta}, \gamma)}<3$. First, clearly,

$$
\begin{equation*}
3\left|1-\frac{4}{s+3}\right|=\lim _{x \rightarrow \infty}\left|\frac{x \gamma(-1)}{(\alpha+x \tilde{\beta})(-1)}\right| \leq K_{(\alpha, \tilde{\beta}, \gamma)} . \tag{3.1}
\end{equation*}
$$

Now, for $s \in(-\infty,-3)$, it is easily seen that

$$
\left|1-\frac{4}{s+3}\right|>1
$$

and thus, in view of (3.1), $K_{(\alpha, \tilde{\beta}, \gamma)}>3$. Therefore, in the sequel we restrict our attention to the case $s \in(1, \infty)$. We will use (2.2) to show

$$
\begin{equation*}
\inf _{x>0}\left|\frac{1}{x} \alpha(\zeta)+\tilde{\beta}(\zeta)\right|=|\tilde{\beta}(\zeta)| \quad \forall \zeta \in S_{1} \tag{3.2}
\end{equation*}
$$

For $\zeta \in S_{1}, \zeta=a+b \mathrm{i}$, we have

$$
\overline{\alpha(\zeta)}=(3 a+1)(a-1)-b(3 a-2) \mathrm{i}
$$

and

$$
\tilde{\beta}(\zeta)=\frac{1}{s-1}\left[s\left(2 a^{2}-1\right)+(1-2 a)+2 b(s a-1) \mathrm{i}\right]
$$

hence

$$
\begin{equation*}
\operatorname{Re}(\tilde{\beta}(\zeta) \overline{\alpha(\zeta)})=\frac{s+3}{s-1}(a-1)^{2} \geq 0 \tag{3.3}
\end{equation*}
$$

and (3.2) follows in view of (2.2).
Now, it immediately follows from (3.2) that, for $s>1$,

$$
\begin{equation*}
K_{(\alpha, \tilde{\beta}, \gamma)}=\max _{\zeta \in S_{1}}\left|\frac{\gamma(\zeta)}{\tilde{\beta}(\zeta)}\right| . \tag{3.4}
\end{equation*}
$$

Next we distinguish two cases: $1<s \leq 9$ and $s>9$. For $1<s \leq 9$, we easily obtain from (3.4)

$$
\begin{equation*}
\left(K_{(\alpha, \tilde{\beta}, \gamma)}\right)^{2}=\max _{-1 \leq a \leq 1} f(a) \tag{3.5}
\end{equation*}
$$

with

$$
f(a):=\frac{5-4 a}{1+\frac{4 a(a-1)}{s-1}+\frac{4(a-1)^{2}}{(s-1)^{2}}} .
$$

Now

$$
f^{\prime}(a)=\frac{-4\left[1+\frac{4 a(a-1)}{s-1}+\frac{4(a-1)^{2}}{(s-1)^{2}}\right]-(5-4 a)\left[\frac{4(2 a-1)}{s-1}+\frac{8(a-1)}{(s-1)^{2}}\right]}{\left[1+\frac{4 a(a-1)}{s-1}+\frac{4(a-1)^{2}}{(s-1)^{2}}\right]^{2}}
$$

therefore, $f^{\prime}(a)$ vanishes if and only if a is such that

$$
\begin{equation*}
4 a^{2}-10 a-s+7=0 \tag{3.6}
\end{equation*}
$$

The discriminant of this quadratic equation, $4(4 s-3)$, is positive since $s>1$. Therefore, for the solutions $a_{1}(s)$ and $a_{2}(s)$ of (3.6) we have

$$
a_{1}(s)=\frac{10+2 \sqrt{4 s-3}}{8}=\frac{5+\sqrt{4 s-3}}{4}>1
$$

and

$$
a_{2}(s)=\frac{5-\sqrt{4 s-3}}{4}
$$

It is easily seen that

$$
-1 \leq a_{2}(s) \leq 1 \quad \text { for } \quad 1<s \leq 9 .
$$

The function f is positive in $[-1,1]$, increasing in $\left[-1, a_{2}(s)\right]$, and decreasing in $\left[a_{2}(s), 1\right]$. Thus

$$
\max _{-1 \leq a \leq 1} f(a)=f\left(\frac{5-\sqrt{4 s-3}}{4}\right) \quad \text { for } \quad s \in(1,9] .
$$

Now, let a function g be defined by

$$
g(s):=f\left(\frac{5-\sqrt{4 s-3}}{4}\right)=\frac{2(s-1)^{2}}{s \sqrt{4 s-3}-3 s+2} .
$$

Then $g^{\prime}(s)=0$ if and only if

$$
(s-1)\left[\left(2 s^{2}+3 s-3\right)-(3 s-1) \sqrt{4 s-3}\right]=0 .
$$

Now

$$
\left(2 s^{2}+3 s-3\right)^{2}=[(3 s-1) \sqrt{4 s-3}]^{2}
$$

can be written in the form $4\left(s^{4}-6 s^{3}+12 s^{2}-10 s+3\right)=0$, i.e., $(s-1)^{3}(s-3)=0$. We easily conclude that 3 is the only root of g^{\prime} in $(1,9]$. Further, $g^{\prime \prime}(3)=2 / 9$ and thus $g(3)=4$ is the minimum value of g in $(1,9]$. Consequently, for $s \in(1,9]$,

$$
K_{(\alpha, \tilde{\beta}, \gamma)} \geq 2
$$

and equality holds only for $s=3$.
Further, it is obvious from (3.1) that $K_{(\alpha, \tilde{\beta}, \gamma)}>2$ for $s>9$.
Let us also note that the scheme $(\alpha, \tilde{\beta})$, for $s=3$, is A-stable.
Summarizing, we can say that the $(\alpha, \tilde{\beta}, \gamma)$-scheme, for $s=3$, is described by the polynomials

$$
\alpha(\zeta)=\frac{3}{2} \zeta^{2}-2 \zeta+\frac{1}{2}, \quad \tilde{\beta}(\zeta)=\frac{3}{2} \zeta^{2}-\zeta+\frac{1}{2}, \quad \gamma(\zeta)=2 \zeta-1 ;
$$

for this scheme we have $K_{(\alpha, \tilde{\beta}, \gamma)}=2$.
The stability condition $\lambda<\frac{1}{3}$ for the (α, β, γ)-scheme is thus relaxed by 50% to $\lambda<\frac{1}{2}$ for the $(\alpha, \tilde{\beta}, \gamma)$-scheme.

4. General second-order two-step schemes

In this section our purpose is to construct second-order two-step implicit-explicit schemes with better stability properties than the one of the previous section; our starting point here is the general second-order two-step scheme, i.e., we do not restrict ourselves in modifying the two-step BDF. We will be led to a two-parameter family of schemes such that $K_{(\alpha, \beta, \gamma)}$ be arbitrarily close to one for appropriate values of the parameters.

It is easily seen that the general second-order two-step scheme (α, β) is given by the polynomials

$$
\begin{align*}
& \alpha(\zeta)=\zeta^{2}-(1+\tau) \zeta+\tau \\
& \beta(\zeta)=\left(\frac{1+\tau}{2}+\sigma\right) \zeta^{2}+\left(\frac{1-3 \tau}{2}-2 \sigma\right) \zeta+\sigma \tag{4.1}
\end{align*}
$$

with arbitrary real parameters σ and τ. In particular, for $\sigma=-\frac{1+\tau}{2}$, we obtain the corresponding explicit second-order two-step scheme (α, γ) with

$$
\begin{equation*}
\gamma(\zeta)=\frac{3-\tau}{2} \zeta-\frac{1+\tau}{2} \tag{4.2}
\end{equation*}
$$

Let us also note that for $\sigma=0, \tau=\frac{1}{3}$, and for $\sigma=\tau=\frac{1}{3}$, respectively, (4.1) yields the two-step BDF and the modified two-step BDF of section 3,

First of all we will show that the (α, β)-scheme given by (4.1) is strongly $A(0)$-stable if and only if

$$
\begin{equation*}
-1<\tau<1 \text { and } \sigma>-\frac{\tau}{2} \tag{4.3}
\end{equation*}
$$

thus, in the sequel we will restrict our attention to the case $\sigma>-1 / 2$. In fact, the corresponding polynomial $\varpi_{x}, \varpi_{x}=\alpha+x \beta$, for positive x, is given by

$$
\varpi_{x}(\zeta)=\left[1+\left(\frac{1+\tau}{2}+\sigma\right) x\right]\left[\zeta^{2}-\frac{(1+\tau)-\left(\frac{1-3 \tau}{2}-2 \sigma\right) x}{1+\left(\frac{1+\tau}{2}+\sigma\right) x} \zeta+\frac{\tau+\sigma x}{1+\left(\frac{1+\tau}{2}+\sigma\right) x}\right]
$$

and the Routh-Hurwitz conditions for ϖ_{x} to be a Schur polynomial can be written in the form

$$
\begin{gather*}
\frac{(1+\tau)+(\tau+2 \sigma) x}{1+\left(\frac{1+\tau}{2}+\sigma\right) x}>0 \tag{4.4i}\\
\frac{(1-\tau) x}{1+\left(\frac{1+\tau}{2}+\sigma\right) x}>0 \tag{4.4ii}\\
\frac{(1-\tau)+\frac{1+\tau}{2} x}{1+\left(\frac{1+\tau}{2}+\sigma\right) x}>0 \tag{4.4iii}
\end{gather*}
$$

Assuming that

$$
\begin{equation*}
\sigma \geq-\frac{1+\tau}{2} \tag{4.5}
\end{equation*}
$$

a necessary condition for (4.4ii) to hold for all positive x, we easily see that (4.4i), (4.4ii) and (4.4iii), respectively, are satisfied for all $x \in(0, \infty]$ if and only if

$$
\begin{gather*}
\tau \geq-1 \text { and } \sigma>-\frac{\tau}{2} \tag{4.6i}\\
\tau<1 \tag{4.6ii}\\
-1<\tau \leq 1 \tag{4.6iii}
\end{gather*}
$$

respectively. From (4.6) we are easily led to (4.3).
In the sequel we assume that σ and τ satisfy (4.3). For $\zeta \in S_{1}, \zeta=a+b \mathrm{i}$, it is easily seen that

$$
\operatorname{Re}(\beta(\zeta) \overline{\alpha(\zeta)})=(\tau+1)(\tau+2 \sigma)(a-1)^{2}
$$

the right-hand side is nonnegative in view of (4.3), and using (2.2) we conclude

$$
\inf _{x>0}\left|\frac{1}{x} \alpha(\zeta)+\beta(\zeta)\right|=|\beta(\zeta)| \quad \forall \zeta \in S_{1}
$$

and thus

$$
\begin{equation*}
K_{(\alpha, \beta, \gamma)}=\max _{\zeta \in S_{1}}\left|\frac{\gamma(\zeta)}{\beta(\zeta)}\right| . \tag{4.7}
\end{equation*}
$$

From (4.7) we easily obtain

$$
\begin{equation*}
\left(K_{(\alpha, \beta, \gamma)}\right)^{2}=2 \max _{-1 \leq a \leq 1} f(a) \tag{4.8}
\end{equation*}
$$

with

$$
f(a):=\frac{(\tau-3)(\tau+1) a+\left(\tau^{2}-2 \tau+5\right)}{(\tau+1)^{2}\left(1-a^{2}\right)+[(1+\tau+4 \sigma) a+1-3 \tau-4 \sigma]^{2}} .
$$

First of all we have

$$
\begin{equation*}
f(1)=\frac{1}{2} \quad \text { and } \quad f(-1)=\frac{1}{2(\tau+2 \sigma)^{2}} \tag{4.9}
\end{equation*}
$$

Let us now consider the case $\sigma=0$; then, according to (4.3), $0<\tau<1$. It is easily seen that f is decreasing in $(-1,1)$ in this case. Therefore, from (4.8) and (4.9) we obtain

$$
\begin{equation*}
K_{(\alpha, \beta, \gamma)}=\frac{1}{\tau} \quad \text { for } \quad \sigma=0,0<\tau<1 \tag{4.10}
\end{equation*}
$$

Consequently, for $\sigma=0$ and τ less but close to one, the $(\alpha, \beta, \gamma)-$ scheme described by (4.1) and (4.2) has excellent stability properties. Let us also note that, for $\tau=$ $\frac{1}{3}$, relation (4.10) yields the result (1.10) for the second-order implicit-explicit BDF scheme.

Remark 4.1. A disadvantage of the (α, β)-scheme described by (4.1) for $\sigma=0$ and $0<\tau<1$ is that its error constant deteriorates as τ approaches one. Indeed the error constant of the scheme is given by

$$
\begin{equation*}
C=-\frac{1}{12} \frac{1+5 \tau}{1-\tau} \tag{4.11}
\end{equation*}
$$

see (2.13) on page 320 of [7] for the definition. Notice, however, that for $\tau=0.9$, say, the (α, β, γ)-scheme has very good stability properties, the stability condition being
$\lambda<0.9$ in this case, and the error constant of the (α, β)-scheme is of moderate size, namely $C=-29 / 24$. Similar comments can be made for nonvanishing σ.

Next we focus on the case $\sigma \neq 0$. In this case $f^{\prime}(a)=0$ can be written in the form

$$
\begin{aligned}
& \sigma(3-\tau)(\tau+1)(1+\tau+2 \sigma) a^{2}-2 \sigma\left(\tau^{2}-2 \tau+5\right)(1+\tau+2 \sigma) a+2 t^{4} \\
& +6 \tau^{2} \sigma^{2}-15 \sigma \tau^{2}+7 \sigma \tau^{3}-4 \tau^{3}-12 \tau \sigma^{2}+13 \sigma \tau-2+4 \tau+3 \sigma+14 \sigma^{2}=0
\end{aligned}
$$

or equivalently

$$
\begin{align*}
& \sigma(3-\tau)(\tau+1) a^{2}-2 \sigma\left(\tau^{2}-2 \tau+5\right) a \\
& \quad+2 \tau^{3}-6 \tau^{2}+6 \tau-2+7 \sigma-6 \sigma \tau+3 \sigma \tau^{2}=0 \tag{4.12}
\end{align*}
$$

The discriminant $D(\sigma, \tau)$ of the quadratic equation (4.12) is given by

$$
D(\sigma, \tau)=2 \sigma(\tau-1)^{3}[(\tau+1)(\tau-3)+2 \sigma(\tau-1)]
$$

Let

$$
\varphi(\tau):=(\tau+1)(\tau-3)+2 \sigma(\tau-1)
$$

The roots τ_{1}, τ_{2} of φ are

$$
\tau_{1,2}=1-\sigma \pm \sqrt{\sigma^{2}+4}
$$

It is easily seen that $\tau_{1}>1$; further, $\tau_{2}<-1$ for $\sigma>0$, and $\tau_{2}<-2 \sigma$ for $-\frac{1}{2}<\sigma<0$. Therefore we distinguish two cases:
First case: $-\frac{1}{2}<\sigma<0$. In this case φ, and consequently also $D(\cdot, \sigma)$, is negative in $(-2 \sigma, 1)$. It is then easily seen that f is decreasing in $(-1,1)$, and from (4.8) and (4.9) we conclude

$$
\begin{equation*}
K_{(\alpha, \beta, \gamma)}=\frac{1}{\tau+2 \sigma} \quad \text { for } \quad-\frac{1}{2}<\sigma<0 \quad \text { and } \quad-2 \sigma<\tau<1 . \tag{4.13}
\end{equation*}
$$

Obviously, for σ close to 0 and τ close to 1 , the value of $K_{(\alpha, \beta, \gamma)}$ is close to one, but of course larger than one. Also, as σ tends to $-1 / 2$, and consequently τ tends to one, $K_{(\alpha, \beta, \gamma)}$ tends to ∞.
Second case: $\sigma>0$. In this case $D(\cdot, \sigma)$ is positive in $(-1,1)$, and f^{\prime} has two real roots a_{1} and a_{2},

$$
\begin{equation*}
a_{1,2}=\frac{\sigma\left(\tau^{2}-2 \tau+5\right) \pm(1-\tau) \sqrt{2 \sigma(\tau-1)[(\tau+1)(\tau-3)+2 \sigma(\tau-1)]}}{\sigma(3-\tau)(\tau+1)} \tag{4.14}
\end{equation*}
$$

Now, $\tau^{2}-2 \tau+5>(3-\tau)(\tau+1)$ can be written in the form $(\tau-1)^{2}>0$, which is satisfied, and we easily see that $a_{1}>1$. Further, $a_{2}<1$ can be equivalently written in the form $(\tau+1)(3-\tau)>0$, which is, of course, valid. Further, $a_{2}>-1$ can be written as

$$
\begin{equation*}
2 \sigma\left(\tau^{2}-2 \tau+5\right)>(1-\tau)^{3} \tag{4.15}
\end{equation*}
$$

Now, for $\sigma \leq \psi(\tau):=(1-\tau)^{3} /\left[2\left(\tau^{2}-2 \tau+5\right)\right]$, (4.15) is not satisfied, and we easily conclude

$$
\begin{equation*}
K_{(\alpha, \beta, \gamma)}=\max \left(1, \frac{1}{\tau+2 \sigma}\right) \tag{4.16}
\end{equation*}
$$

In view of (4.3) in this case we have

$$
\begin{gather*}
-1<\tau<0, \quad-\frac{\tau}{2}<\sigma \leq \psi(\tau) \tag{4.17}\\
\text { or } \quad 0<\tau<1, \quad 0<\sigma \leq \psi(\tau) .
\end{gather*}
$$

Now, for τ and σ satisfying (4.17), it is easily seen that

$$
\tau+2 \sigma<\frac{\tau^{2}+2 \tau+1}{\tau^{2}-2 \tau+5}<1
$$

and thus (4.16) reads

$$
K_{(\alpha, \beta, \gamma)}=\frac{1}{\tau+2 \sigma}
$$

Let us also note that when τ tends to one, $\tau+2 \sigma$, and consequently also $K_{(\alpha, \beta, \gamma)}$, tends to one.

Further, obviously,

$$
\begin{equation*}
K_{(\alpha, \beta, \gamma)}=\max \left(1, \frac{1}{\tau+2 \sigma}, \sqrt{2 f\left(a_{2}\right)}\right), \quad-1<\tau<1, \quad \sigma>\psi(\tau) \tag{4.18}
\end{equation*}
$$

with a_{2} given by (4.14) (with the minus sign).

5. Modified third-order BDF

In this section our purpose is, for $p=3$, to select s in (2.1) in such a way that the relation

$$
\begin{equation*}
K_{(\alpha, \tilde{\beta}, \gamma)}<K_{(\alpha, \beta, \gamma)} \tag{5.1}
\end{equation*}
$$

holds. Indeed, we will see that, for $s=9, K_{(\alpha, \tilde{\beta}, \gamma)}<5$, while $K_{(\alpha, \beta, \gamma)}=7$.
First, it is easily seen that a necessary condition for (5.1) to hold is $s>-3$. Indeed, setting

$$
\tilde{K}_{(\alpha, \tilde{\beta}, \gamma)}:=\lim _{x \rightarrow \infty}\left|\frac{x \gamma(-1)}{(\alpha+x \tilde{\beta})(-1)}\right|
$$

we obviously have $\tilde{K}_{(\alpha, \tilde{\beta}, \gamma)} \leq K_{(\alpha, \tilde{\beta}, \gamma)}$. Now

$$
\begin{equation*}
\tilde{K}_{(\alpha, \tilde{\beta}, \gamma)}=7\left|\frac{s-1}{s+7}\right| . \tag{5.2}
\end{equation*}
$$

In view of (1.10) and (5.2), the relation (5.1) can only hold if $\left|\frac{s-1}{s+7}\right|<1$, i.e., $0<\frac{8}{s+7}<2$, i.e., $s>-3$.

Therefore, throughout this section we will assume that $s>-3$. Next, we will show that the scheme $(\alpha, \tilde{\beta})$ is strongly $A(0)$-stable if and only if $s>2$.

In this case we have $\alpha(\zeta)=\frac{1}{6}(\zeta-1)\left(11 \zeta^{2}-7 \zeta+2\right)$, the only principal root of α is 1 and its growth factor is also equal to 1 , and thus in particular positive. Therefore, it remains to show that all roots of the polynomial $\varpi_{x, s}, \varpi_{x, s}=\alpha+x \tilde{\beta}$, lie in the interior of the unit disc in the complex plane, for all positive x, if and only if $s>2$.

Let us first consider the case $x=\infty$. We claim that $\pi, \pi:=s \beta-\gamma$, is a Schur polynomial (for $s>-3$) if and only if $s>2$. We have

$$
\pi(\zeta)=s \zeta^{3}-3 \zeta^{2}+3 \zeta-1
$$

and, according to Schur's criterion, a necessary condition for π to be a Schur polynomial is $|s|>1$, i.e.,

$$
\begin{equation*}
s<-1 \text { or } s>1 \tag{5.3}
\end{equation*}
$$

Further, to apply Schur's criterion, let π^{\star} be given by $\pi^{\star}(\zeta):=-\zeta^{3}+3 \zeta^{2}-3 \zeta+s$. Then,

$$
\pi^{\star}(0) \pi(\zeta)-\pi(0) \pi^{\star}(\zeta)=(s-1)\left[(s+1) \zeta^{3}-3 \zeta^{2}+3 \zeta\right]
$$

Consider now the polynomial $\pi_{1}, \pi_{1}(\zeta)=(s+1) \zeta^{2}-3 \zeta+3$. For π_{1} to be a Schur polynomial we must have $|s+1|>3$, i.e., $s<-4$ or $s>2$, and therefore, since we have assumed that $s>-3$, we must have $s>2$. Moreover, with $\pi_{1}^{\star}, \pi_{1}^{\star}(\zeta):=3 \zeta^{2}-3 \zeta+(s+1)$, we have

$$
\pi_{1}^{\star}(0) \pi_{1}(\zeta)-\pi_{1}(0) \pi_{1}^{\star}(\zeta)=(s-2)\left[(s+4) \zeta^{2}-3 \zeta\right] .
$$

Consider then $\pi_{2}, \pi_{2}(\zeta):=(s+4) \zeta-3$. This is a Schur polynomial for $s>-1$ or $s<-7$. Summarizing, $s \beta-\gamma$ is a Schur polynomial for $s>2$; (actually this is also the case for $s<-7$, but as already emphasized we are here only interested in values of s larger than -3).

Next, we want to show that, for $x>0, \varpi_{x, s}, \varpi_{x, s}:=\alpha+x \tilde{\beta}$, is a Schur polynomial for $s>2$. We have

$$
\varpi_{x, s}(\zeta)=\left(\frac{11}{6}+\frac{s x}{s-1}\right) \zeta^{3}-3\left(1+\frac{x}{s-1}\right) \zeta^{2}+3\left(\frac{1}{2}+\frac{x}{s-1}\right) \zeta-\left(\frac{1}{3}+\frac{x}{s-1}\right)
$$

First, obviously, for the values of s and x under consideration,

$$
\frac{1}{3}+\frac{x}{s-1}<\frac{11}{6}+\frac{s x}{s-1} .
$$

Further, to apply Schur's criterion, let $\varpi_{x, s}^{\star}$, be given by

$$
\varpi_{x, s}^{\star}(\zeta):=-\left(\frac{1}{3}+\frac{x}{s-1}\right) \zeta^{3}+3\left(\frac{1}{2}+\frac{x}{s-1}\right) \zeta^{2}-3\left(1+\frac{x}{s-1}\right) \zeta+\left(\frac{11}{6}+\frac{s x}{s-1}\right)
$$

Then,

$$
\begin{aligned}
& \varpi_{x, s}^{\star}(0) \varpi_{x, s}(\zeta)-\varpi_{x, s}(0) \varpi_{x, s}^{\star}(\zeta)= \\
&= \frac{1}{s-1}\left[\left(\frac{13(s-1)}{4}+\frac{11 s-2}{3} x+(s+1) x^{2}\right) \zeta^{3}\right. \\
&-3\left(\frac{5(s-1)}{3}+(s+1) x+x^{2}\right) \zeta^{2}+3\left(\frac{7(s-1)}{12}+\frac{s+1}{2} x+x^{2}\right) \zeta
\end{aligned}
$$

Consider then the polynomial π,

$$
\begin{aligned}
\pi(\zeta) & :=\left(\frac{13(s-1)}{4}+\frac{11 s-2}{3} x+(s+1) x^{2}\right) \zeta^{2} \\
& -3\left(\frac{5(s-1)}{3}+(s+1) x+x^{2}\right) \zeta+3\left(\frac{7(s-1)}{12}+\frac{s+1}{2} x+x^{2}\right)
\end{aligned}
$$

First, obviously, for the values of s and x under consideration,

$$
3\left(\frac{7(s-1)}{12}+\frac{s+1}{2} x+x^{2}\right)<\frac{13(s-1)}{4}+\frac{11 s-2}{3} x+(s+1) x^{2} .
$$

Further, to apply Schur's criterion, let π^{\star} be given by

$$
\begin{aligned}
\pi^{\star}(\zeta) & :=3\left(\frac{7(s-1)}{12}+\frac{s+1}{2} x+x^{2}\right) \zeta^{2} \\
& -3\left(\frac{5(s-1)}{3}+(s+1) x+x^{2}\right) \zeta+\left(\frac{13(s-1)}{4}+\frac{11 s-2}{3} x+(s+1) x^{2}\right)
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \pi^{\star}(0) \pi(\zeta)-\pi(0) \pi^{\star}(\zeta)=\left[\frac{3}{2}(s-1)+\frac{13}{6}(s-1) x+(s-2) x^{2}\right] \times \\
& \quad\left[\left[5(s-1)+\frac{31 s+5}{6} x+(s+4) x^{2}\right] \zeta^{2}-\left[5(s-1)+3(s+1) x+3 x^{2}\right] \zeta\right]
\end{aligned}
$$

It is easily seen that this is a Schur polynomial for the values of s and x under consideration.

Now, let

$$
\begin{aligned}
& S_{1}^{+}:=\left\{z \in S_{1}: \operatorname{Re}(\tilde{\beta}(\zeta) \overline{\alpha(\zeta)}) \geq 0\right\} \\
& S_{1}^{-}:=\left\{z \in S_{1}: \operatorname{Re}(\tilde{\beta}(\zeta) \overline{\alpha(\zeta)})<0\right\}
\end{aligned}
$$

Then, in view of (2.2) and (2.3),

$$
\begin{equation*}
\forall \zeta \in S_{1}^{+} \quad \sup _{x>0}\left|\frac{x \gamma(\zeta)}{(\alpha+x \tilde{\beta})(\zeta)}\right|=\left|\frac{\gamma(\zeta)}{\tilde{\beta}(\zeta)}\right|, \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
\forall \zeta \in S_{1}^{-} \sup _{x>0}\left|\frac{x \gamma(\zeta)}{(\alpha+x \tilde{\beta})(\zeta)}\right|=\frac{|\gamma(\zeta)|}{\left(|\tilde{\beta}(\zeta)|^{2}-\frac{1}{|\alpha(\zeta)|^{2}}(\operatorname{Re}(\tilde{\beta}(\zeta) \overline{\alpha(\zeta)}))^{2}\right)^{1 / 2}} \tag{5.5}
\end{equation*}
$$

Hence, letting

$$
K_{3}^{+}:=\max _{\zeta \in S_{1}^{+}}\left|\frac{\gamma(\zeta)}{\tilde{\beta}(\zeta)}\right|
$$

and

$$
K_{3}^{-}:=\max _{\zeta \in S_{1}^{-}} \frac{|\gamma(\zeta)|}{\left(|\tilde{\beta}(\zeta)|^{2}-\frac{1}{|\alpha(\zeta)|^{2}}(\operatorname{Re}(\tilde{\beta}(\zeta) \overline{\alpha(\zeta)}))^{2}\right)^{1 / 2}}
$$

we easily conclude

$$
\begin{equation*}
K_{(\alpha, \tilde{\beta}, \gamma)}=\max \left(K_{3}^{+}, K_{3}^{-}\right) . \tag{5.6}
\end{equation*}
$$

We have computed K_{3}^{+}and K_{3}^{-}for various values of s; according to our computations one reasonable choice for s seems to be $s=9$. For this s we have $K_{3}^{+} \approx 4.82893515$ and $K_{3}^{-} \approx 2.85220717$; therefore, it is safe to say that

$$
\begin{equation*}
K_{(\alpha, \tilde{\beta}, \gamma)}<5 \text { for } s=9 \tag{5.7}
\end{equation*}
$$

6. Modified higher-order BDF

In this section we will construct modified fourth-, fifth- and sixth-order BDF such that the corresponding implicit-explicit schemes exhibit improved stability properties.
We will use notation analogous to the one of the previous Section.
First, for $p=4$, we have $K_{(\alpha, \beta, \gamma)}=15$, while for $s=26$, which is a reasonable choice according to our computations, we have $K_{4}^{+} \approx 10.9366302$ and $K_{4}^{-} \approx 8.48358536$, and it is thus safe to say that

$$
\begin{equation*}
K_{(\alpha, \tilde{\beta}, \gamma)}<11 \quad \text { for } \quad s=26 \tag{6.1}
\end{equation*}
$$

Similarly, for $p=5$ and $p=6$ we have computed

$$
K_{5}^{+} \approx 23.7191849, \quad K_{5}^{-} \approx 21.0605831 \text { for } s=68
$$

and

$$
K_{6}^{+} \approx 50.1196861, \quad K_{6}^{-} \approx 48.4871178 \text { for } s=168
$$

respectively, and thus we can say that, for $p=5$,

$$
\begin{equation*}
K_{(\alpha, \tilde{\beta}, \gamma)}<24 \text { for } s=68, \tag{6.2}
\end{equation*}
$$

while $K_{(\alpha, \beta, \gamma)}=31$, and, for $p=6$,

$$
\begin{equation*}
K_{(\alpha, \tilde{\beta}, \gamma)}<51 \text { for } s=168 \tag{6.3}
\end{equation*}
$$

while $K_{(\alpha, \beta, \gamma)}=61$.
Let us mention that we have checked the schemes ($\alpha, \tilde{\beta}$) mentioned in (6.1), (6.2) and (6.3) and found them to be strongly $A(0)$-stable.

References

[1] G. Akrivis and M. Crouzeix Linearly implicit methods for nonlinear parabolic equations, Math. Comp. (to appear).
[2] G. Akrivis, M. Crouzeix and Ch. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math. Comp. 67 (1998) 457-477.
[3] G. Akrivis, M. Crouzeix and Ch. Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations, Numer. Math. 82 (1999) 521-541.
[4] G. Akrivis, O. Karakashian and F. Karakatsani, Linearly implicit methods for nonlinear evolution equations, Numer. Math. 94 (2003) 403-418.
[5] M. Crouzeix, Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques, Numer. Math. 35 (1980) 257-276.
[6] Ch. Fredebeul, A-BDF: A generalization of the backward differentiation formulae, SIAM J. Numer. Anal. 35 (1998) 1917-1938.
[7] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, Berlin Heidelberg, Springer Series in Computational Mathematics v. 8, 1987.
[8] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin Heidelberg, Springer Series in Computational Mathematics v. 14, 1991.
[9] J. D. Lambert, Numerical Methods for Ordinary Differential Systems. John Wiley \& Sons, Baffins Lane, Chichester, West Sussex, 1991.
[10] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin, Springer Series in Computational Mathematics v. 25, 1997.

Computer Science Department, University of Ioannina, Ioannina, GR-451 10 Greece.
E-mail address: akrivis@cs.uoi.gr
Mathematics Department, University of Crete, Heraklion, Crete, GR-714 09 Greece.
E-mail address: fotini@math.uoc.gr

[^0]: 1991 Mathematics Subject Classification. Primary 65M60, 65M12; 65L06.
 Key words and phrases. Implicit-explicit multistep schemes, nonlinear parabolic equations, backward differentiation formulae.

 Work supported in part by the Greek Secretariat for Research and Technology through the PENED Program, no 99ED 275.

