
MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 1–43
S 0025-5718(2021)0000-0

HIGHER-ORDER LINEARLY IMPLICIT FULL DISCRETIZATION

OF THE LANDAU–LIFSHITZ–GILBERT EQUATION

GEORGIOS AKRIVIS, MICHAEL FEISCHL, BALÁZS KOVÁCS, AND CHRISTIAN LUBICH

Abstract. For the Landau–Lifshitz–Gilbert (LLG) equation of micromag-
netics we study linearly implicit backward difference formula (BDF) time dis-
cretizations up to order 5 combined with higher-order non-conforming finite
element space discretizations, which are based on the weak formulation due to
Alouges but use approximate tangent spaces that are defined by L

2-averaged
instead of nodal orthogonality constraints. We prove stability and optimal-
order error bounds in the situation of a sufficiently regular solution. For the
BDF methods of orders 3 to 5, this requires that the damping parameter in
the LLG equations be above a positive threshold; this condition is not needed
for the A-stable methods of orders 1 and 2, for which furthermore a discrete
energy inequality irrespective of solution regularity is proved.

1. Introduction

1.1. Scope. In this paper we study the convergence of higher-order time and space
discretizations of the Landau–Lifshitz–Gilbert (LLG) equation, which is the basic
model for phenomena in micromagnetism, such as in recording media [26, 36].

The main novelty of the paper lies in the construction and analysis of what is
apparently the first numerical method for the LLG equation that is second-order
convergent in both space and time to sufficiently regular solutions and that satisfies,
as an important robustness property irrespective of regularity, a discrete energy
inequality analogous to that of the continuous problem.

We study discretization in time by linearly implicit backward difference formu-
lae (BDF) up to order 5 and discretization in space by finite elements of arbitrary
polynomial degree. For the BDF methods up to order 2 we prove optimal-order
error bounds in the situation of a sufficiently regular solution and a discrete energy
inequality irrespective of solution regularity under very weak regularity assump-
tions on the data. For the BDF methods of orders 3 to 5, we prove optimal-order
error bounds in the situation of a sufficiently regular solution under the additional
condition that the damping parameter in the LLG equation be above a method-
dependent positive threshold. However, no discrete energy inequality irrespective
of solution regularity is obtained for the BDF methods of orders 3 to 5.

The discretization in space is done by a higher-order non-conforming finite ele-
ment method based on the approach of Alouges [4, 5], which uses a projection to
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an approximate tangent space to the normality constraint. Contrary to the point-
wise orthogonality constraints at the nodes, which define the approximate tangent
space in those papers and yield only first-order convergence also for finite elements
with higher-degree polynomials, we here enforce orthogonality averaged over the
finite element basis functions. With these modified approximate tangent spaces we
prove H1-convergence of optimal order in space and time under the assumption of
a sufficiently regular solution.

Key issues in the error analysis are the properties of the orthogonal projection
onto the approximate tangent space, the higher-order consistency error analysis,
and the proof of stable error propagation, which is based on non-standard energy
estimates and uses both L2 and maximum norm finite element analysis.

1.2. The Landau–Lifshitz–Gilbert equation. The standard phenomenological
model for micromagnetism is provided by the Landau–Lifshitz (LL) equation

(1.1) ∂tm = −m×Heff − αm× (m×Heff)

where the unknown magnetization field m = m(x, t) takes values on the unit
sphere S2, α > 0 is a dimensionless damping parameter, and the effective magnetic
field Heff depends on the unknown m. The Landau–Lifshitz equation (1.1) can be
equivalently written in the Landau–Lifshitz–Gilbert form

(1.2) α ∂tm+m× ∂tm = (1 + α2)
[
Heff −

(
m ·Heff

)
m

]
.

Indeed, in view of the vector identity a×(b×c) = (a ·c)b−(a ·b)c, for a, b, c ∈ R3,
we have −m×

(
m×Heff

)
= Heff −

(
m ·Heff

)
m, and taking the vector product

of (1.1) with m and adding α times (1.1) then yields (1.2).
Since m × a is orthogonal to m, for any a ∈ R3, it is obvious from (1.1) that

∂tm is orthogonal to m: m · ∂tm = 0; we infer that the Euclidean norm satisfies
|m(x, t)| = 1 for all x and for all t, provided this is satisfied for the initial data.

The term in square brackets on the right-hand side in (1.2) can be rewritten as
P(m)Heff, where (with I the 3× 3 unit matrix)

P(m) = I−mmT

is the orthogonal projection onto the tangent plane to the unit sphere S
2 at m.

In this paper we consider the situation

(1.3) Heff =
1

1 + α2

(
∆m+H

)
,

where H = H(x, t) is a given external magnetic field. The factor 1/(1 + α2) is
chosen for convenience of presentation, but is inessential for the theory; it can be
replaced by any positive constant factor.

With this choice of Heff, we arrive at the Landau–Lifshitz–Gilbert (LLG) equa-
tion in the form

(1.4) α∂tm+m× ∂tm = P(m)(∆m +H).

We consider this equation as an initial-boundary value problem on a bounded do-
main Ω ⊂ R3 and a time interval 0 6 t 6 t̄, with homogeneous Neumann boundary
conditions and initial datam0 taking values on the unit sphere, i.e., the Euclidean
norm |m0(x)| equals 1 for all x ∈ Ω.

We consider the following weak formulation, first proposed by Alouges [4, 5]:
Find the solution m : Ω × [0, t̄ ] → S

2 with m(·, 0) = m0 by determining, at
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m(t) ∈ H1(Ω)3, the time derivative ∂tm (omitting here and in the following the
argument t) as that function in the tangent space

T (m) :=
{
ϕ ∈ L2(Ω)3 : m ·ϕ = 0 a.e.

}
=

{
ϕ ∈ L2(Ω)3 : P(m)ϕ = ϕ}

that satisfies, for all ϕ ∈ T (m) ∩H1(Ω)3,

(1.5) α
(
∂tm,ϕ

)
+
(
m× ∂tm,ϕ

)
+
(
∇m,∇ϕ

)
=

(
H ,ϕ

)
,

where the brackets (·, ·) denote the L2 inner product over the domain Ω. The
numerical methods studied in this paper are based on this weak formulation.

1.3. Previous work. There is a rich literature on numerical methods for Landau–
Lifshitz(–Gilbert) equations; for the numerical literature up to 2007 see the review
by Cimrák [17].

Alouges & Jaisson [4, 5] propose linear finite element discretizations in space and
linearly implicit backward Euler in time for the LLG equation in the weak formula-
tion (1.5) and prove convergence without rates towards nonsmooth weak solutions,
using a discrete energy inequality and compactness arguments. Convergence of this
type was previously shown by Bartels & Prohl [11] for fully implicit methods that
are based on a different formulation of the Landau–Lifshitz equation (1.1). In [6],
convergence without rates towards weak solutions is shown for a method that is
(formally) of “almost” order 2 in time, based on the midpoint rule, for the LLG
equation with an effective magnetic field of a more general type than (1.3).

In a complementary line of research, convergence with rates has been studied
under sufficiently strong regularity assumptions, which can, however, not be guar-
anteed over a given time interval, since solutions of the LLG equation may develop
singularities. A first-order error bound for a linearly implicit time discretization
of the Landau–Lifshitz equation (1.1) was proved by Cimrák [16]. Optimal-order
error bounds for linearly implicit time discretizations based on the backward Euler
and Crank–Nicolson methods combined with finite element full discretizations for
a different version of the Landau–Lifshitz equation (1.1) were obtained under suf-
ficient regularity assumptions by Gao [23] and An [7], respectively. In contrast to
[4, 5, 6, 11], these methods do not satisfy an energy inequality irrespective of the
solution regularity.

Numerical discretizations for the coupled system of the LLG equation (1.5) with
the eddy current approximation of the Maxwell equations are studied by Feischl &
Tran [21], with first-order error bounds in space and time under sufficient regular-
ity assumptions. This also yields the first result of first-order convergence of the
method of Alouges & Jaisson [4, 5].

There are several methods for the LLG equations that are of formal order 2 in
time (though only of order 1 in space), e.g., [35, 31, 19], but none of them comes
with an error analysis. Fully implicit BDF time discretizations for LLG equations
have been used successfully in the computational physics literature [37], though
without giving any error analysis.

To the authors’ knowledge, the second-order linearly implicit method proposed
and studied here is thus the first numerical method for the LLG (or LL) equa-
tion that has rigorous a priori error estimates of order 2 in both space and time
under high regularity assumptions and that satisfies a discrete energy inequality
irrespective of regularity.
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We conclude this brief survey of the literature with a remark: The existing con-
vergence results either give convergence of a subsequence without rates to a weak so-
lution (without imposing strong regularity assumptions), or they show convergence
with rates towards sufficiently regular solutions (as we do here). Both approaches
yield insight into the numerical methods and have their merits, and they comple-
ment each other. Clearly, neither approach is fully satisfactory, because convergence
without rates of some subsequence is nothing to observe in actual computations,
and on the other hand high regularity is at best provable for close to constant initial
conditions [22] or over short time intervals. We regard the situation as analogous
to the development of numerical methods and their analysis in other fields such as
nonlinear hyperbolic conservation laws: second-order methods are highly popular
in that field, even though they can only be shown to converge with very low order
(1/2 or less or only without rates) for available regularity properties; see, e.g., [32,
Chapter 3]. Nevertheless, second-order methods are favored over first-order meth-
ods in many applications, especially if they enjoy some qualitative properties that
give them robustness in non-regular situations. A similar situation occurs with the
LLG equation, where the most important qualitative property appears to be the
energy inequality.

1.4. Outline. In Section 2 we describe the numerical methods studied in this pa-
per. They use time discretization by linearly implicit BDF methods of orders up
to 5 and space discretization by finite elements of arbitrary polynomial degree in
a numerical scheme that is based on the weak formulation (1.5), with an approxi-
mate tangent space that enforces the orthogonality constraint approximately in an
L2-projected sense.

In Section 3 we state our main results:
• For the full discretization of (1.5) by linearly implicit BDF methods of orders 1
and 2 and finite element methods of arbitrary polynomial degree we give optimal-
order error bounds in the H1 norm, under very mild mesh conditions, in the case
of sufficiently regular solutions (Theorem 3.1). For these methods we also show a
discrete energy inequality that requires only very weak regularity assumptions on
the data (Proposition 3.1). This discrete energy inequality is of the same type as
the one used in [5, 11] for proving convergence without rates to a weak solution.
• For the linearly implicit BDF methods of orders 3 to 5 and finite element methods
with polynomial degree at least 2, we have optimal-order error bounds in the H1

norm only if the damping parameter α is larger than some positive threshold, which
depends on the order of the BDF method (Theorem 3.2). Moreover, a stronger (but
still mild) CFL condition τ 6 ch is required. A discrete energy inequality under
very weak regularity conditions is not available for the BDF methods of orders 3
to 5, in contrast to the A-stable BDF methods of orders 1 and 2.

In Section 4 we prove a perturbation result for the continuous problem by energy
techniques, as a preparation for the proofs of our error bounds for the discretization.

In Section 5 we study properties of the L2-orthogonal projection onto the discrete
tangent space, which are needed to ensure consistency of the full order and stability
of the space discretization with the higher-order discrete tangent space.

In Section 6 we study consistency properties of the methods and present the
error equation.

In Sections 7 and 8 we prove Theorems 3.1 and 3.2, respectively. The higher-
order convergence proofs are separated into consistency (Section 6) and stability
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estimates. The stability proofs use the technique of energy estimates, in an unusual
version where the error equation is tested with a projection of the discrete time
derivative of the error onto the discrete tangent space. These proofs are different
for the A-stable BDF methods of orders 1 and 2 and for the BDF methods of orders
3 to 5. For the control of nonlinearities, the stability proofs also require pointwise
error bounds, which are obtained with the help of finite element inverse inequalities
from the H1 error bounds of previous time steps.

In Section 9 we illustrate our results by numerical experiments.
In an Appendix we collect basic results on energy techniques for BDF methods

that are needed for our stability proofs.

2. Discretization of the LLG equation

We now describe the time and space discretization that is proposed and studied
in this paper.

2.1. Time discretization by linearly implicit BDF methods. We shall dis-
cretize the LLG equation (1.5) in time by the linearly implicit k-step BDF methods,
1 6 k 6 5, described by the polynomials δ and γ,

δ(ζ) =

k∑

ℓ=1

1

ℓ
(1 − ζ)ℓ =

k∑

j=0

δjζ
j , γ(ζ) =

1

ζ

[
1− (1− ζ)k

]
=

k−1∑

i=0

γiζ
i.

We let tn = nτ, n = 0, . . . , N, be a uniform partition of the interval [0, t̄ ] with
time step τ = t̄/N. For the k-step method we require k starting values mi for
i = 0, . . . , k − 1. For n > k, we determine the approximation mn to m(tn) as
follows. We first extrapolate the known values mn−k, . . . ,mn−1 to a preliminary
normalized approximation m̂n at tn,

(2.1) m̂n :=

k−1∑

j=0

γjm
n−j−1

/∣∣∣
k−1∑

j=0

γjm
n−j−1

∣∣∣.

To avoid potentially undefined quantities, we define m̂n to be an arbitrary fixed
unit vector if the denominator in the above formula is zero.

The derivative approximation ṁn and the solution approximation mn are re-
lated by the backward difference formula

(2.2) ṁn =
1

τ

k∑

j=0

δjm
n−j , i.e., mn =

(
−

k∑

j=1

δjm
n−j + τṁn

)
/δ0.

We determine mn by requiring that for all ϕ ∈ T (m̂n) ∩H1(Ω)3,

(2.3)
α
(
ṁn,ϕ

)
+
(
m̂n × ṁn,ϕ

)
+
(
∇mn,∇ϕ

)
=

(
H(tn),ϕ

)

ṁn ∈ T (m̂n), i.e., m̂n · ṁn = 0.

Here we note that on inserting the formula in (2.2) for mn in the third term of
(2.3), we obtain a linear constrained elliptic equation for ṁn ∈ T (m̂n) ∩ H1(Ω)3

of the form

α
(
ṁn,ϕ

)
+
(
m̂n × ṁn,ϕ

)
+
τ

δ0

(
∇ṁn,∇ϕ

)
=

(
fn,ϕ

)
∀ϕ ∈ T (m̂n) ∩H1(Ω)3,

where fn consists of known terms. The bilinear form on the left-hand side is
H1(Ω)3-coercive on T (m̂n) ∩ H1(Ω)3, and hence the above linear equation has a
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unique solution ṁn ∈ T (m̂n) ∩ H1(Ω)3 by the Lax–Milgram lemma. Once this
elliptic equation is solved for ṁn, we obtain the approximation mn ∈ H1(Ω)3 to
m(tn) from the second formula in (2.2).

2.2. Full discretization by BDF and higher-order finite elements. For a
family of regular and quasi-uniform finite element triangulations of Ω with maxi-
mummeshwidth h > 0 we form the Lagrange finite element spaces Vh ⊂ H1(Ω) with
piecewise polynomials of degree r > 1. We denote the L2-orthogonal projections
onto the finite element space by Πh : L

2(Ω) → Vh and Πh = I⊗Πh : L
2(Ω)3 → V 3

h .
With a functionm ∈ H1(Ω)3 that vanishes nowhere on Ω, we associate the discrete
tangent space

(2.4)
Th(m) = {ϕh ∈ V 3

h : (m ·ϕh, vh) = 0 ∀ vh ∈ Vh}

= {ϕh ∈ V 3
h : Πh(m ·ϕh) = 0}.

This space is different from the discrete tangent space used in [4, 5], where the
orthogonality constraint m · ϕh = 0 is required to hold pointwise at the finite
element nodes. Here, the constraint is enforced weakly on the finite element space,
as is done in various saddle point problems for partial differential equations, for
example for the divergence-free constraint in the Stokes problem [14, 25]. In contrast
to that example, here the bilinear form associated with the linear constraint, i.e.,
b(m;ϕh, vh) = (m·ϕh, vh), depends on the statem. This dependence substantially
affects both the implementation and the error analysis.

Following the general approach of [4, 5] with this modified discrete tangent space,
we discretize (1.5) in space by determining the time derivative ∂tmh(t) ∈ Th(mh(t))
such that (omitting the argument t)

(2.5)
α
(
∂tmh,ϕh

)
+
(
mh × ∂tmh,ϕh

)
+
(
∇mh,∇ϕh

)

=
(
H ,ϕh

)
∀ϕh ∈ Th(mh),

where the brackets (·, ·) denote again the L2 inner product over the domain Ω.
The full discretization with the linearly implicit BDF method is then readily

obtained from (2.3): determine ṁn
h ∈ Th(m̂

n
h) such that

(2.6) α
(
ṁn

h,ϕh

)
+
(
m̂n

h×ṁn
h,ϕh

)
+
(
∇mn

h ,∇ϕh

)
=

(
H(tn),ϕh

)
∀ϕh∈Th(m̂n

h),

where m̂n
h and ṁn

h are related tomn−j
h for j = 0, . . . , k in the same way as in (2.1)

and (2.2) above with mn−j
h in place of mn−j, viz.,

(2.7) ṁn
h =

1

τ

k∑

j=0

δjm
n−j
h , m̂n

h =

k−1∑

j=0

γjm
n−j−1
h

/∣∣∣
k−1∑

j=0

γjm
n−j−1
h

∣∣∣.

To avoid potentially undefined quantities, we define m̂n
h to be an arbitrary fixed

unit vector if the denominator in the above formula is zero. (We will, however,
show that this does not occur in the situation of sufficient regularity.)

To implement the discrete tangent space Th(m̂
n
h), there are at least two options:

using the constraints Πh(m · ϕh) = 0 or constructing a local basis of Th(m).
(a) Constraints : Let φi for i = 1, . . . , Nh := dimVh denote the nodal basis of

Vh and denote the basis functions of V 3
h by φi = ek ⊗ φi for i = (i, k), where ek

for k = 1, 2, 3 are the standard unit vectors of R3. We denote by M and A the
usual mass and stiffness matrices, respectively, with entries mij = (φi, φj)L2(Ω) and
aij = (∇φi,∇φj)L2(Ω)3 . We further introduce the sparse skew-symmetric matrix
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Sn = (sni,j) ∈ R3Nh×3Nh with entries sni,j = (m̂n
h × φi, φj)L2(Ω)3 and the sparse

constraint matrix Cn = (cni,j) ∈ R3Nh×Nh by cni,j = (m̂n
h · φi, φj)L2(Ω). Finally, we

denote the matrix of the unconstrained time-discrete problem as

Kn = αI⊗M +
τ

δ0
I⊗A+ Sn.

Let ṁn ∈ R3Nh denote the nodal vector of ṁn
h ∈ Th(m̂

n
h). In this setting, (2.6)

yields a system of linear equations of saddle point type

Knṁn + (Cn)Tλn = fn,

Cnṁn = 0,

where λn ∈ RNh is the unknown vector of Lagrange multipliers and fn ∈ R3Nh is
a known right-hand side.

(b) Local basis : It is possible to compute a local basis of Th(m) by solving small
local problems. To see that, let ω ⊂ Ω denote a collection of elements of the mesh
and let ω ⊃ ω denote the same set plus the layer of elements touching ω (the patch
of ω). A sufficient (and necessary) condition for ϕh ∈ V 3

h with supp(ϕh) ⊆ ω to
belong to Th(m) is

(2.8) (m · ϕh, ψh) = 0 for all ψh ∈ Vh with supp(ψh) ⊆ ω.

If we denote by #ω the number of generalized hat functions of Vh supported in ω,
the space of functions in V 3

h with support in ω is 3#ω-dimensional. On the other
hand, the space of test functions in (2.8) is #ω-dimensional. We may choose ω
sufficiently large (depending only on shape regularity) such that 3#ω > #ω and
hence (2.8) has at least one solution which is then a local basis function of Th(m).
Choosing different ω to cover Ω yields a full basis of Th(m).

Let us denote the so obtained basis of Th(m̂
n
h) by (ψn

ℓ ), given via ψn
ℓ =

∑
i φib

n
iℓ,

and the sparse basis matrix by Bn = (bniℓ). Then, the nodal vector ṁn = Bnxn is
obtained by solving the linear system

(Bn)TKnBnxn = (Bn)T fn.

An advantage of this approach is that the dimension is roughly halved compared
to the formulation with constraints. However, the efficiency of one approach versus
the other depends heavily on the numerical linear algebra used. Such comparisons
are outside the scope of this paper.

Remark 2.1. The algorithm described above does not enforce the norm constraint
|m| = 1 at the nodes. The user might add a normalization step in the definition
of mn in (2.2). However, here we do not consider this normalized variant of the
method, whose convergence properties are not obvious to derive.

Remark 2.2. Differently to [4], we do not use the pointwise discrete tangent space

T pw
h (m) = {ϕh ∈ V 3

h : m · ϕh = 0 at every node}
= {ϕh ∈ V 3

h : Ih(m · ϕh) = 0} = IhP(m)V 3
h ,

where Ih : C(Ω̄) → Vh denotes finite element interpolation and Ih = I ⊗ Ih :
C(Ω̄)3 → V 3

h . It is already reported in [4, Section 4] that an improvement of
the order with higher-degree finite elements could not be observed in numerical
experiments when using the pointwise tangent spaces in the discretization (2.5).
Our analysis shows a lack of consistency of optimal order in the discretization with
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T pw
h (m), which originates from the fact that IhP(m) is not self-adjoint. The order

reduction can, however, be cured by adding a correction term: in the nth time step,
determine ṁn

h ∈ T pw
h (m̂n

h) such that for all ϕh ∈ T pw
h (m̂n

h),

(2.9)
α
(
ṁn

h,ϕh

)
+
(
m̂n

h × ṁn
h,ϕh

)
+
(
∇mn

h,∇ϕh

)

−
(
∇m̂n

h ,∇(I−P(m̂n
h))ϕh

)
=

(
P(m̂n

h)H(tn),ϕh

)
,

with notation m̂n
h and ṁn

h as in (2.7). With the techniques of the present paper, it
can be shown that like (2.6), also this discretization converges with optimal order
in the H1 norm under sufficient regularity conditions. Since this paper is already
rather long, we do not include the proof of this result. In contrast to (2.6) for the
first- and second-order BDF methods, the method (2.9) does not admit an h- and
τ -independent bound of the energy that is irrespective of the smoothness of the
solution.

3. Main results

3.1. Error bound and energy inequality for BDF of orders 1 and 2. For
the full discretization with first- and second-order BDF methods and finite elements
of arbitrary polynomial degree r > 1 we will prove the following optimal-order error
bound in Sections 5 to 7.

Theorem 3.1 (Error bound for orders k = 1, 2). Consider the full discretization

(2.6) of the LLG equation (1.4) by the linearly implicit k-step BDF time discretiza-

tion for k 6 2 and finite elements of polynomial degree r > 1 from a family of

regular and quasi-uniform triangulations of Ω. Suppose that the solution m of the

LLG equation is sufficiently regular. Then, there exist τ̄ > 0 and h̄ > 0 such that

for numerical solutions obtained with step sizes τ 6 τ̄ and meshwidths h 6 h̄, which
are restricted by the very mild CFL-type condition

τk 6 c̄h1/2

with a sufficiently small constant c̄ (independent of h and τ), the errors are bounded

by

(3.1) ‖mn
h −m(tn)‖H1(Ω)3 6 C(τk + hr) for tn = nτ 6 t̄,

where C is independent of h, τ and n (but depends on α and exponentially on t̄ ),
provided that the errors of the starting values also satisfy such a bound.

The precise regularity requirements are as follows:

(3.2)
m ∈ Ck+1([0, t̄ ], L∞(Ω)3) ∩ C1([0, t̄ ],W r+1,∞(Ω)3),

∆m+H ∈ C([0, t̄ ],W r+1,∞(Ω)3).

Remark 3.1 (Discrepancy from normality). Since m(x, tn) are unit vectors, an
immediate consequence of the error estimate (3.1) is that

(3.3) ‖1− |mn
h|‖L2(Ω) 6 C(τk + hr) for tn = nτ 6 t̄,

with a constant C independent of n, τ and h. The proof of Theorem 3.1 also shows
that the denominator in the definition of the normalized extrapolated value m̂n

h

satisfies

(3.4)
∥∥∥1−

∣∣
k−1∑

j=0

γjm
n−j−1
h

∣∣
∥∥∥
L∞(Ω)

6 Ch−1/2(τk + hr) 6 1
2 for tn = nτ 6 t̄,
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which in particular ensures that m̂n
h is unambiguously defined. We note, however,

that (3.3) and (3.4) are not guaranteed to hold without sufficient regularity of the
solution.

Testing with ϕ = ∂tm ∈ T (m) in (1.5), we obtain (only formally, if ∂tm is not
in H1(Ω)3)

α(∂tm, ∂tm) + (∇m, ∂t∇m) = (H , ∂tm),

which, by integration in time and the Cauchy–Schwarz and Young inequalities,
implies the energy inequality

‖∇m(t)‖2L2 + 1
2α

∫ t

0

‖∂tm(s)‖2L2 ds 6 ‖∇m(0)‖2L2 +
1

2α

∫ t

0

‖H(s)‖2L2 ds.

Similarly, we test with ϕh = ṁn
h ∈ Th(m̂

n
h) in (2.6). Then we can prove the

following discrete energy inequality, which holds under very weak regularity as-
sumptions on the data.

Proposition 3.1 (Energy inequality for orders k = 1, 2). Consider the full dis-

cretization (2.6) of the LLG equation (1.4) by the linearly implicit k-step BDF time

discretization for k 6 2 and finite elements of polynomial degree r > 1. Then, the

numerical solution satisfies the following discrete energy inequality: for n > k with

nτ 6 t̄,

γ−k ‖∇mn
h‖2L2 + 1

2ατ

n∑

j=k

‖ṁj
h‖2L2 6 γ+k

k−1∑

i=0

‖∇mi
h‖2L2 +

τ

2α

n∑

j=k

‖H(tj)‖2L2 ,

where γ±1 = 1 and γ±2 = (3± 2
√
2)/4.

This energy inequality is an important robustness indicator of the numerical
method. In [5, 11], such energy inequalities are used to prove convergence without
rates for a subsequence τℓ → 0 and hℓ → 0 to a weak solution of the LLG equation
for the numerical schemes considered there. Those methods have γ± = 1, which is
inessential in the proofs, and the numerical approximation from those methods is
of unit norm at the finite element nodes, which appears essential in the proofs of
[5, 11].

As the proof of Proposition 3.1 is short, we give it here.

Proof. The proof relies on the A-stability of the first- and second-order BDF meth-
ods via Dahlquist’s G-stability theory as expressed in Lemma A.1 of the Appendix,

used with δ(ζ) =
∑k

ℓ=1(1 − ζ)ℓ/ℓ and µ(ζ) = 1. The positive definite symmetric

matrices G = (gij)
k
i,j=1 are known to be G = 1 for k = 1 and (see [27, p. 309])

G =
1

4

(
1 −2
−2 5

)
for k = 2,

which has the eigenvalues γ± = (3± 2
√
2)/4.

We test with ϕh = ṁn
h ∈ Th(m̂

n
h) in (2.6) and note

(
m̂n

h × ṁn
h, ṁ

n
h

)
= 0, so

that

α‖ṁn
h‖2L2 + (∇mn

h,∇ṁn
h) = (H(tn), ṁ

n
h).

The right-hand side is bounded by

(H(tn), ṁ
n
h) 6

α

2
‖ṁn

h‖2L2 +
1

2α
‖H(tn)‖2L2 .



10 GEORGIOS AKRIVIS, MICHAEL FEISCHL, BALÁZS KOVÁCS, AND CHRISTIAN LUBICH

Recalling the definition of ṁn
h, we have by Lemma A.1

(∇mn
h ,∇ṁn

h) >
1

τ

k∑

i,j=1

gij(∇mn−i+1
h ,∇mn−j+1

h )− 1

τ

k∑

i,j=1

gij(∇mn−i
h ,∇mn−j

h ).

We fix n̄ with k 6 n̄ 6 t̄/τ and sum from n = k to n̄ to obtain

k∑

i,j=1

gij(∇mn̄−i+1
h ,∇mn̄−j+1

h ) + 1
2ατ

n̄∑

n=k

‖ṁn
h‖2L2

6

k∑

i,j=1

gij(∇mk−i
h ,∇mk−j

h ) +
τ

2α

n̄∑

n=k

‖H(tn)‖2L2 .

Noting that

γ−‖∇mn̄
h‖2L2 6

k∑

i,j=1

gij(∇mn̄−i+1
h ,∇mn̄−j+1

h ),

k∑

i,j=1

gij(∇mk−i
h ,∇mk−j

h ) 6 γ+
k−1∑

i=0

‖∇mi
h‖2L2,

we obtain the stated result. �

3.2. Error bound for BDF of orders 3 to 5. For the BDF methods of orders
3 to 5 we prove the following result in Section 8. Here we require a stronger, but
still moderate stepsize restriction in terms of the meshwidth. More importantly, we
must impose a positive lower bound on the damping parameter α of (1.1).

Theorem 3.2 (Error bound for orders k = 3, 4, 5). Consider the full discretization

(2.6) of the LLG equation (1.4) by the linearly implicit k-step BDF time discretiza-

tion for 3 6 k 6 5 and finite elements of polynomial degree r > 2 from a family of

regular and quasi-uniform triangulations of Ω. Suppose that the solution m of the

LLG equation has the regularity (3.2), and that the damping parameter α satisfies

(3.5)
α > αk with

αk = 0.0913, 0.4041, 4.4348, for k = 3, 4, 5, respectively.

Then, for an arbitrary constant C̄ > 0, there exist τ̄ > 0 and h̄ > 0 such that for

numerical solutions obtained with step sizes τ 6 τ̄ and meshwidths h 6 h̄ that are

restricted by

(3.6) τ 6 C̄h,

the errors are bounded by

‖mn
h −m(tn)‖H1(Ω)3 6 C(τk + hr) for tn = nτ 6 t̄,

where C is independent of h, τ and n (but depends on α and exponentially on C̄ t̄),
provided that the errors of the starting values also satisfy such a bound.

Theorem 3.2 limits the use of the BDF methods of orders higher than 2 (and more
severely for orders higher than 3) to applications with a large damping parameter α,
such as cases described in [24, 39]. We remark, however, that in many situations
α is of magnitude 10−2 or even smaller [10]. A very small damping parameter α
affects not only the methods considered here. To our knowledge, the error analysis
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of any numerical method proposed in the literature breaks down as α → 0, as does
the energy inequality.

It is not surprising that a positive lower bound on α arises for the methods of
orders k > 3, since they are not A-stable and a lower bound on α is required also for
the simplified linear problem (α+i)∂tu = ∆u, which arises from (1.4) by freezingm
in the term m× ∂tm and diagonalizing this skew-symmetric linear operator (with
eigenvalues ±i and 0) and by omitting the projection P(m) on the right-hand side
of (1.4).

The proof of Theorem 3.2 uses a variant of the Nevanlinna–Odeh multiplier
technique [34], which is described in the Appendix for the convenience of the reader.
While for sufficiently large α we have an optimal-order error bound in the case of
a smooth solution, there is apparently no discrete energy inequality under weak
regularity assumptions similar to Proposition 3.1 for the BDF methods of orders 3
to 5.

As in Remark 3.1, the error bounds also allow us to bound the discrepancy from
normality.

4. A continuous perturbation result

In this section we present a perturbation result for the continuous problem,
because we will later transfer the arguments of its proof to the discretizations to
prove stability and convergence of the numerical methods.

Let m(t) be a solution of (1.4) for 0 6 t 6 t̄, and let m⋆(t), also of unit length,
solve the same equation up to a defect d(t) for 0 6 t 6 t̄:

(4.1)
α∂tm⋆ +m⋆ × ∂tm⋆ = P(m⋆)(∆m⋆ +H) + d

= P(m)(∆m⋆ +H) + r,

with

r = −
(
P(m)−P(m⋆)

)
(∆m⋆ +H) + d.

Then, m⋆ also solves the perturbed weak formulation

α(∂tm⋆,ϕ)+(m⋆×∂tm⋆,ϕ)+(∇m⋆,∇ϕ) = (r+H ,ϕ) ∀ϕ ∈ T (m)∩H1(Ω)3,

and the error e =m−m⋆ satisfies the error equation

(4.2)
α(∂te,ϕ) + (e× ∂tm⋆,ϕ) + (m× ∂te,ϕ) + (∇e,∇ϕ) = −(r,ϕ)

∀ϕ ∈ T (m) ∩H1(Ω)3.

Before we turn to the perturbation result, we need Lipschitz-type bounds for the
orthogonal projection P(m) = I−mmT applied to sufficiently regular functions.

Lemma 4.1. The projection P(·) satisfies the following estimates, for functions

m,m⋆,v : Ω → R
3, where m and m⋆ take values on the unit sphere and m⋆ ∈

W 1,∞(Ω)3:

‖(P(m)−P(m⋆))v‖L2(Ω)3 6 2 ‖v‖L∞(Ω)3‖m−m⋆‖L2(Ω)3 ,∥∥∇
(
(P(m)−P(m⋆))v

)∥∥
L2(Ω)3×3 6 2 ‖m⋆‖W 1,∞(Ω)3‖v‖W 1,∞(Ω)3‖m−m⋆‖L2(Ω)3

+ 6 ‖v‖L∞(Ω)3‖∇(m−m⋆)‖L2(Ω)3×3 .

Proof. Setting e =m−m⋆, we start by rewriting

(P(m)−P(m⋆))v = −(mmT −m⋆m
T
⋆ )v = −(meT + emT

⋆ )v.
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The first inequality then follows immediately by taking the L2 norm of both
sides of the above equality, using the fact that m and m⋆ are of unit length. The
second inequality is proved similarly, using the product rule

∂i(P(m)−P(m⋆))v = −∂i(eeT +m⋆e
T + emT

⋆ )v

=− (∂iee
T + e∂ie

T + ∂im⋆e
T +m⋆∂ie

T + ∂iem
T
⋆ + e∂im

T
⋆ )v

+ (meT + emT
⋆ )∂iv,

the L∞ bound of ∂im⋆, and the fact that ‖e‖L∞ 6 ‖m‖L∞ + ‖m⋆‖L∞ 6 2. �

We have the following perturbation result.

Lemma 4.2. Let m(t) and m⋆(t) be solutions of unit length of (1.5) and (4.1),
respectively, and suppose that, for 0 6 t 6 t̄, we have

(4.3)
‖m⋆(t)‖W 1,∞(Ω)3 + ‖∂tm⋆(t)‖W 1,∞(Ω)3 6 R

and ‖∆m⋆(t) +H(t)‖L∞(Ω)3 6 K.

Then, the error e(t) =m(t)−m⋆(t) satisfies, for 0 6 t 6 t̄,

(4.4) ‖e(t)‖2H1(Ω)3 6 C
(
‖e(0)‖2H1(Ω)3 +

∫ t

0

‖d(s)‖2L2(Ω)3 ds
)
,

where the constant C depends only on α,R,K, and t̄.

Proof. Let us first assume that ∂tm(t) ∈ H1(Ω)3 for all t. Following [21], we test
in the error equation (4.2) with ϕ = P(m)∂te ∈ T (m). By the following argument,
this test function is then indeed in H1(Ω)3 and can be viewed as a perturbation
of ∂te:

ϕ = P(m)∂te = P(m)∂tm−P(m)∂tm⋆

= P(m)∂tm−P(m⋆)∂tm⋆ − (P(m)−P(m⋆))∂tm⋆

= ∂tm− ∂tm⋆ − (P(m)−P(m⋆))∂tm⋆,

and so we have

(4.5) ϕ = P(m)∂te = ∂te+ q with q = −(P(m)−P(m⋆))∂tm⋆.

By Lemma 4.1 and using (4.3) we have

(4.6) ‖q‖L2 6 2R‖e‖L2 and ‖∇q‖L2 6 CR‖e‖H1 .

Testing the error equation (4.2) with ϕ = ∂te+ q, we obtain

α(∂te, ∂te+ q) + (e× ∂tm⋆, ∂te+ q) + (m× ∂te, ∂te+ q)

+ (∇e,∇(∂te+ q)) = −(r, ∂te+ q),

where, by (4.1) and Lemma 4.1 with (4.3), r is bounded as

(4.7)
‖r‖L2 6 ‖

(
P(m)−P(m⋆)

)
(∆m⋆ +H)‖L2 + ‖d‖L2

6 2K‖e‖L2 + ‖d‖L2.

By collecting terms, and using the fact that (m× ∂te, ∂te) vanishes, we altogether
obtain

α‖∂te‖2L2 +
1

2

d

dt
‖∇e‖2L2 =− α(∂te, q)− (e× ∂tm⋆, ∂te+ q)− (m× ∂te, q)

− (∇e,∇q)− (r, ∂te+ q).
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For the right-hand side, the Cauchy–Schwarz inequality and ‖m‖L∞ = 1 yield

α‖∂te‖2L2 +
1

2

d

dt
‖∇e‖2L2 6 α‖∂te‖L2‖q‖L2 +R‖e‖L2(‖∂te‖L2 + ‖q‖L2)

+ ‖∂te‖L2‖q‖L2 + ‖∇e‖L2‖∇q‖L2 + ‖r‖L2(‖∂te‖L2 + ‖q‖L2).

Young’s inequality and absorptions, together with the bounds in (4.6) and (4.7),
yield

α
1

2
‖∂te‖2L2 +

1

2

d

dt
‖∇e‖2L2 6 c‖e‖2H1 + c‖d‖2L2.

Here, we note that

1

2

d

dt
‖e‖2L2 = (∂te, e) 6

1
2‖∂te‖

2
L2+ 1

2‖e‖
2
L2, so that ‖∂te‖2L2 >

d

dt
‖e‖2L2−‖e‖2L2.

Combining these inequalities and integrating in time, we obtain

‖e(t)‖2H1 6 c‖e(0)‖2H1 + c

∫ t

0

‖e(s)‖2H1ds+ c

∫ t

0

‖d(s)‖2L2ds.

By Gronwall’s inequality, we then obtain the stated error bound.
Finally, if ∂tm(t) is not in H1(Ω)3 for some t, then a regularization and density

argument, which we do not present here, yields the result, since the error bound
does not depend on the H1 norm of ∂tm. �

5. Orthogonal projection onto the discrete tangent space

For consistency and stability of the full discretization, we need to study prop-
erties of the L2(Ω)-orthogonal projection onto the discrete tangent space Th(m),
which we denote by

Ph(m) : V 3
h → Th(m).

We do not have an explicit expression for this projection, but the properties stated
in Lemmas 5.1 to 5.3 will be used for proving consistency and stability. We recall
that we consider a quasi-uniform, shape-regular family Th of triangulations with
Lagrange finite elements of polynomial degree r.

The first lemma states that the projection Ph(m) approximates the orthogonal
projection P(m) = I−mmT onto the tangent space T (m) with optimal order. It
will be used in the consistency error analysis of Section 6.

Lemma 5.1. For m ∈W r+1,∞(Ω)3 with |m| = 1 almost everywhere we have

‖(Ph(m)−P(m))v‖L2(Ω)3 6 Chr+1 ‖v‖Hr+1(Ω)3 ,

‖(Ph(m)−P(m))v‖H1(Ω)3 6 Chr ‖v‖Hr+1(Ω)3 ,

for all v ∈ Hr+1(Ω)3, where C depends on a bound of ‖m‖W r+1,∞(Ω)3 .

The second lemma states that the projection Ph(m) has Lipschitz bounds of the
same type as those of the orthogonal projection P(m) given in Lemma 4.1. It will
be used in the stability analysis of Sections 7 and 8.

Lemma 5.2. Let m ∈ W 1,∞(Ω)3 and m̃ ∈ H1(Ω)3 with |m| = |m̃| = 1 almost

everywhere and ‖m‖W 1,∞ 6 R. There exist CR > 0 and hR > 0 such that for

h 6 hR, for all vh ∈ V 3
h ,

(i) ‖(Ph(m)−Ph(m̃))vh‖L2(Ω)3 6 CR‖m− m̃‖Lp(Ω)3‖vh‖Lq(Ω)3 ,
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for (p, q) ∈ {(2,∞), (∞, 2)}, and
(ii) ‖(Ph(m)−Ph(m̃))vh‖H1(Ω)3 6 CR‖m− m̃‖H1(Ω)3‖vh‖L∞(Ω)3

+ CR‖m− m̃‖L2(Ω)3‖vh‖W 1,∞(Ω)3 .

The next lemma shows the W s,p-stability of the projection. It is actually used
for p = 2 in the proof of Lemmas 5.1 and 5.2 and will be used for p = 2 in Section 6
and for p = ∞ in Sections 7 and 8.

Lemma 5.3. There exists a constant depending only on p ∈ [1,∞] and the shape

regularity of the mesh such that for all m ∈ W 1,∞(Ω)3 with |m| = 1 almost

everywhere,

‖Ph(m)vh‖W s,p(Ω)3 6 C‖m‖2W 1,∞(Ω)3‖vh‖W s,p(Ω)3

for all vh ∈ V 3
h and s ∈ {−1, 0, 1}.

These three lemmas will be proved in the course of this section, in which we
formulate also three more lemmas that are of independent interest but will not be
used in the following sections.

In the following, we use the dual norms

‖v‖W−1,q := sup
w∈W 1,p

(v, w)

‖w‖W 1,p

for 1/p+ 1/q = 1.

The spaceW−1,1(Ω) is not the dual space ofW 1,∞(Ω) but rather defined as the clo-
sure of L2(Ω) with respect to the norm ‖ ·‖W−1,1 . We also recall that Πh : W

s,p(Ω)
→ W s,p(Ω) is uniformly bounded for s ∈ {0, 1} and p ∈ [1,∞] (see, e.g., [20]
for proofs in a much more general setting). By duality, we also obtain uniform
boundedness for s = −1 and p ∈ [1,∞]. A useful consequence is that for vh ∈ Vh,

‖vh‖W−1,q = sup
w∈W 1,p

(vh, Πhw)

‖w‖W 1,p

6 sup
w∈W 1,p

(vh, Πhw)

‖Πhw‖W 1,p

sup
w∈W 1,p

‖Πhw‖W 1,p

‖w‖W 1,p

. sup
wh∈Vh

(vh, wh)

‖wh‖W 1,p

.

Lemma 5.4. There holds ‖v‖W s,p(Ω) ≃ supw∈W−s,q(Ω)
(v,w)

‖w‖W−s,q(Ω)
with 1/p +

1/q = 1 for p ∈ [1,∞] and s ∈ {−1, 0, 1}.

Proof. The interesting case is (s, p) = (1,∞) since all other cases follow by duality.
For v ∈ W 1,∞(Ω), there exists a sequence of functions qn ∈ C∞

0 (Ω)3 with ‖qn‖L1 =
1 such that

‖∇v‖L∞ = lim
n→∞

(∇v, qn) = lim
n→∞

−(v, div qn) 6 sup
q∈W 1,1

(v, div q)

‖q‖L1

.

Moreover, there holds

‖ div q‖W−1,1 6 sup
w∈W 1,∞

(q,∇w)
‖∇w‖L∞

6 ‖q‖L1.

Combining the last two estimates shows

‖∇v‖L∞ 6 sup
w∈W−1,1

(v, w)

‖w‖W−1,1

.
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Since

‖v‖L∞ = sup
w∈L1

(v, w)

‖w‖L1

6 sup
w∈W−1,1

(v, w)

‖w‖W−1,1

,

we conclude the proof. �

Let the discrete normal space Nh(m) := V 3
h ⊖ Th(m) be given as the L2-

orthogonal complement of Th(m) in V 3
h . We note that

(5.1) Nh(m) = {Πh(mψh) : ψh ∈ Vh}
by the definition of Th(m). The functions in the discrete normal space are bounded
from below as follows.

Lemma 5.5. For every R > 0, there exist hR > 0 and c > 0 such that for all

m ∈ W 1,∞(Ω)3 with |m| = 1 almost everywhere and ‖m‖W 1,∞(Ω) 6 R and for all

h 6 hR,
‖Πh(mψh)‖W s,p(Ω)3 > c ‖ψh‖W s,p(Ω)

for all ψh ∈ Vh and (s, p) ∈ {−1, 0, 1}× [1,∞].

Proof. (a) We first prove the result for s ∈ {−1, 0}. Let Ih : C(Ω) → V 3
h denote

the nodal interpolation operator and define mh := Ihm ∈ V 3
h .

There holds

‖Πh(mhψh)‖Lp > ‖mhψh‖Lp − ‖(I−Πh)(mhψh)‖Lp .

Moreover, stability of Πh in Lp(Ω)3, for 1 6 p 6 ∞, see [20], implies the estimate

‖(I−Πh)(mhψh)‖Lp 6 (1 + C) inf
vh∈V 3

h

‖mhψh − vh‖Lp .

In turn, this implies

‖(I−Πh)(mhψh)‖Lp . ‖(I− Ih)(mhψh)‖Lp

=
( ∑

T∈Th

‖(I− Ih)(mhψh)‖pLp(T )3

)1/p

.

For each element, the approximation properties of Ih show

‖(I− Ih)(mhψh)‖Lp(T )3 . hr+1‖∇r+1(mhψh)‖Lp(T )3

6 hr+1
∑

i+j=r+1

‖∇min{i,r}mh‖L∞(T )3‖∇min{j,r}ψh‖Lp(T )3 .

Thus, multiple inverse estimates yield

‖(I− Ih)(mhψh)‖Lp(T )3 . h‖mh‖W 1,∞‖ψh‖Lp(T )3 .

Moreover, we have

‖mhψh‖Lp > ‖mψh‖Lp − ‖(m−mh)ψh‖Lp > 1
2‖ψh‖Lp

provided that ‖m−mh‖L∞ 6 1
2 , which in view of

‖m−mh‖L∞ = ‖(I− Ih)m‖L∞ . h‖∇m‖L∞

is satisfied for h 6 hR with a sufficiently small hR > 0 that depends only on R.
Altogether, this shows

‖Πh(mhψh)‖Lp & ‖ψh‖Lp

for h 6 hR. Similarly we estimate

‖Πh((m−mh)ψh)‖Lp . ‖m−mh‖L∞‖ψh‖Lp . h‖∇m‖L∞‖ψh‖Lp .
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Altogether, we obtain

‖Πh(mψh)‖Lp & ‖Πh(mhψh)‖Lp − ‖Πh((mh −m)ψh)‖Lp & ‖ψh‖Lp

for h 6 hR. This concludes the proof for s = 0. Finally, for s = −1 we note that
by using the result for s = 0 and an inverse inequality,

‖(I−Πh)(mψh)‖W−1,p . h‖ψh‖Lp

. h‖Πh(mψh)‖Lp . ‖Πh(mψh)‖W−1,p .

Since ‖mψh‖W−1,p & ‖m‖−1
W 1,∞‖ψh‖W−1,p , this concludes the proof for s ∈ {−1, 0}.

(b) It remains to prove the result for s = 1. Note that the result follows from
duality if we show

(5.2) ‖Πh(m ·wh)‖W−1,q & ‖wh‖W−1,q

for all wh ∈ Nh(m). To see this, note that (5.2) implies

‖Πh(mψh)‖W 1,p > sup
wh∈Nh(m)

(ψh, Πh(m ·wh))

‖wh‖W−1,q

& sup
wh∈Nh(m)

(ψh, Πh(m ·wh))

‖Πh(m ·wh)‖W−1,q

= sup
ωh∈Vh

(ψh, ωh)

‖ωh‖W−1,q

≃ ‖ψh‖W 1,p ,

where we used in the second to last equality that part (a) for s = 0 already
shows that dim(Nh(m)) = dimVh and since (5.2) implies that the map Nh(m) →
Vh, wh 7→ Πh(m ·wh) is injective, it is already bijective. It remains to prove (5.2).
To that end, we first show for wh = Πh(mωh) ∈ Nh(m) for some ωh ∈ Vh, using
the reverse triangle inequality, that

‖m ·wh‖W−1,q > ‖ωh‖W−1,q − ‖m · (I−Πh)(mωh)‖W−1,q

& ‖m‖−1
W 1,∞‖wh‖W−1,q − ‖m · (I−Πh)(mωh)‖W−1,q .

With mh := Ih(m) ∈ V 3
h , the last term satisfies

‖m · (I−Πh)(mωh)‖W−1,q . h‖m‖W 1,∞‖(I−Πh)(mωh)‖Lq

. h‖m‖W 1,∞(‖m−mh‖L∞‖ωh‖Lq + h‖mh‖W 1,∞‖ωh‖Lq),

where we used the same arguments as in the proof of part (a) to get the estimate
‖(I − Πh)(mhωh)‖Lq . h‖mh‖W 1,∞‖ωh‖Lq . The fact ‖mh‖W 1,∞ . ‖m‖W 1,∞ ,
the approximation property ‖m−mh‖L∞ . h‖m‖W 1,∞ , and an inverse inequality
conclude

(5.3) ‖m ·wh‖W−1,q & ‖wh‖W−1,q

with (hidden) constants depending only on ‖m‖W 1,∞ and shape regularity of the
mesh.

To prove (5.2), it remains to bound the left-hand side above by ‖Πh(m·wh)‖W−1,q .
To that end, we note

‖(I −Πh)(m ·wh)‖W−1,q . h‖wh‖Lq = h sup
v∈Lp

(wh,v)

‖v‖Lp

. h sup
v∈Nh(m)

(wh,v)

‖v‖Lp

= h sup
v∈Vh

(Πh(m ·wh), v)

‖Πh(mv)‖Lp

. h‖Πh(m ·wh)‖Lq ,
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where we used part (a) for s = 0 for the last inequality. An inverse inequality
and the combination with (5.3) imply (5.2) for h > 0 sufficiently small in terms of
‖m‖−1

W 1,∞ . This concludes the proof. �

Lemma 5.6. Define the matrix M ∈ RNh×Nh , where Nh denotes the dimension

of Vh, by Mij := h−3(Πh(mφj),Πh(mφi)). Under the assumptions of Lemma 5.5,

there exists C > 0 such that for h 6 hR,

‖M‖p + ‖M−1‖p 6 C for 1 6 p 6 ∞,

where C depends only on the shape regularity.

Proof. Lemma 5.5 shows for x ∈ R
Nh

(5.4) Mx · x = h−3‖Πh(m

Nh∑

i=1

xiφi)‖2L2 & h−3‖
Nh∑

i=1

xiφi‖L2 ≃ |x|2,

where | · | denotes the Euclidean norm on RNh . Let d(i, j) := dist(zi, zj)h
−3 denote

the metric which (approximately) measures the number of elements between the
supports of φi and φj , corresponding to the nodes zi and zj, and let Bd(z) denote
the corresponding ball. In the following, we use a localization property of the
L2-projection, i.e., there exist a, b > 0 such that for all ℓ ∈ N,

(5.5) ‖Πh(mφi)‖L2(Ω\Bℓ(zi))3 6 ae−bℓ‖mφi‖L2.

The proof of this bound is essentially contained in the proof of [9, Lemma 3.1].
Since we use the very same arguments below, we briefly recall the strategy: First,

one observes that the mass matrix M̃ ∈ RNh×Nh with entries M̃ij := h−3(φj , φi) is

banded in the sense that d(i, j) & 1 implies M̃ij = 0, and it satisfies M̃x · x & |x|2.
As shown below, this implies that the inverse matrix M̃−1 satisfies |(M̃−1)ij | .
e−bd(i,j) for some b > 0 independent of h > 0. Note that each entry of the vector

fieldΠh(mφi) ∈ V 3
h can be represented by

∑Nh

j=1 xk,jφj , k = 1, 2, 3, and is computed

by solving M̃xk = gk ∈ RNh with m = (m1,m2,m3)
T and gk,j := (mkφi, φj).

Hence, the exponential decay of M̃−1 directly implies (5.5).
From the decay property (5.5), we immediately obtain

|Mij | 6 ãe−b̃d(i,j)

for all 1 6 i, j 6 Nh and some ã, b̃ > 0. This already proves ‖M‖p 6 C. We follow
the arguments from [28] to show that also M−1 decays exponentially. To that end,
note that (5.4) implies the existence of c > 0 such that ‖I − cM‖2 =: q < 1 and
hence

(5.6) M−1 = c(I − (I − cM))−1 = c

∞∑

k=0

(I − cM)k.

Clearly, I − cM inherits the decay properties from M and therefore

|((I − cM)k+1)ij | 6 ãk+1
Nh∑

r1,...,rk=1

e−b̃(d(i,r1)+···+d(rk,j))

6 ãk+1
(

max
s=1,...,Nh

Nh∑

r=1

e−b̃d(s,r)/2
)k

e−b̃d(i,j)/2.
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The value of maxs=1,...,Nh

∑Nh

r=1 e
−b̃d(s,r)/2 depends only on the shape regularity of

the triangulation and on b̃, but is independent of h (it just depends on the number
of elements contained in an annulus of thickness ≈ h). This implies the existence
of c̃ > 1 such that

|((I − cM)k+1)ij | 6 min{qk+1, c̃k+1e−b̃d(i,j)/2}.

Thus, for c̃k+1 6 eb̃d(i,j)/4, we have |((I − cM)k+1)ij | 6 e−b̃d(i,j)/4, whereas for

c̃k+1 > eb̃d(i,j)/4, we have |((I − cM)k+1)ij | 6 qk+1 < qb̃d(i,j)/(4 log(c̃)). Altogether,

we find some b̃ > 0 (we reuse the symbol), independent of h such that

|((I − cM)k+1)ij | 6 q(k+1)/2|((I − cM)k+1)ij |1/2 . q(k+1)/2e−b̃d(i,j).

Plugging this into (5.6), we obtain

|(M−1)ij | .
∞∑

k=0

q(k+1)/2e−b̃d(i,j) . e−b̃d(i,j).

This yields the stated result. �

We are now in a position to prove Lemma 5.3.

Proof of Lemma 5.3. (a) We first consider the case s = 0. In view of (5.1), we
write (I−Ph(m))vh ∈ Nh(m) as

(I−Ph(m))vh = h−3/2
Nh∑

i=1

xiΠh(mφi)

for some coefficient vector x ∈ RNh and let bi := h−3/2(vh,mφi) for i = 1, . . . , Nh.
Then, there holds Mx = b with the matrix M from Lemma 5.6. This lemma and
the Lp-stability of the L2-orthogonal projection Πh [20] imply that for p ∈ [1,∞],

‖(I−Ph(m))vh‖Lp = ‖Πhh
−3/2

Nh∑

i=1

ximφi‖Lp . ‖h−3/2
Nh∑

i=1

ximφi‖Lp

. h−3/2
( Nh∑

i=1

h3|xi|p
)1/p

= h3/p−3/2|x|p = h3/p−3/2|M−1b|p . h3/p−3/2|b|p.

With |bi| 6 h−3/2‖vh‖Lp(supp(φi))3h
3(1−1/p) = ‖vh‖Lp(supp(φi))3h

3/2−3/p, this shows

‖Ph(m)vh‖Lp . ‖vh‖Lp .

(b) We now turn to the cases s = ±1. Define the operator

P̃⊥
h (m)vh := Πh(mΠh(m · vh))

and note that P̃⊥
h (m)vh ∈ Nh(m) as well as ker P̃⊥

h (m) = Th(m) (due to Lemma 5.5).

However, P̃⊥
h (m) is no projection. We observe for vh = Πh(mψh) ∈ Nh(m) that

‖(I− P̃⊥
h (m))vh‖W−1,p = ‖Πhmψh −Πh(mΠh(m ·Πh(mψh)))‖W−1,p

. ‖m‖W 1,∞‖ψh −m ·Πh(mψh)‖W−1,p

= ‖m‖2W 1,∞‖(I−Πh)(mψh)‖W−1,p

. ‖m‖2W 1,∞ h‖ψh‖Lp .
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With Lemma 5.5 we conclude

‖(I− P̃⊥
h (m))vh‖W−1,p . ‖m‖2W 1,∞h‖vh‖Lp .

Since P̃⊥
h (m)Ph(m) = 0 by definition of Th(m), we obtain with part (a) and an

inverse inequality that for all vh ∈ V 3
h ,

‖(I−Ph(m)− P̃⊥
h (m))vh‖W−1,p = ‖(I− P̃⊥

h (m))(I−Ph(m))vh‖W−1,p

. ‖m‖2W 1,∞h‖(I−Ph(m))vh‖Lp

. ‖m‖2W 1,∞h‖vh‖Lp

. ‖m‖2W 1,∞‖vh‖W−1,p .

The W−1,p(Ω)-stability of Πh implies ‖P̃⊥
h (m)vh‖W−1,p . ‖m‖2W 1,∞‖vh‖W−1,p

and the triangle inequality concludes the proof for s = −1. The case s = 1 follows
by duality. �

Proof of Lemma 5.2. (a) (s = 0) The projection vh := Ph(m)v is given by the
equation

(vh,ϕh) = (v,ϕh) ∀ϕh ∈ Th(m),

which in view of the definition of Th(m) is equivalent to the solution of the saddle
point problem (with the Lagrange multiplier λh ∈ Vh)

(vh,wh) + (m ·wh, λh) = (v,wh) ∀wh ∈ V 3
h ,

(m · vh, µh) = 0 ∀µh ∈ Vh.

By the first equation, we also obtain the identity Πh(mλh) = (I−Ph(m))vh, which
will be used below. Furthermore, ṽh := Ph(m̃)v is given by the same system with

m̃ in place of m, yielding a corresponding Lagrange multiplier λ̃h. Hence, the

differences eh := vh − ṽh and δh := λh − λ̃h satisfy

(eh,wh) + (m ·wh, δh) = −(wh, (m− m̃)λ̃h) ∀wh ∈ V 3
h ,

(m · eh, µh) = −((m− m̃) · ṽh, µh) ∀µh ∈ Vh.

The classical results on saddle-point problems (see [13, Proposition 2.1]) require
two inf-sup conditions to be satisfied. First,

inf
qh∈Vh

sup
vh∈V 3

h

(m · vh, qh)
‖vh‖Hs‖qh‖H−s

> 0

holds uniformly in h due to Lemma 5.5. Second,

inf
wh∈Th(m)

sup
vh∈Th(m)

(vh,wh)

‖vh‖Hs‖wh‖H−s

> 0

holds uniformly in h due to the stability estimates from Lemma 5.3 (noting that
vh = Ph(m)vh and wh = Ph(m)wh for vh,wh ∈ Th(m)). For the above saddle-
point problems, these bounds for s = 0 give us an L2 bound for eh = Ph(m)v −
Ph(m̃)v: From [13] we obtain

‖ṽh‖L2 + ‖λ̃h‖L2 . ‖v‖L2

and

‖eh‖L2 + ‖δh‖L2 . ‖(m− m̃)λ̃h‖L2 + ‖(m− m̃) · ṽh‖L2.
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With the stability from Lemma 5.3 and Lemma 5.5, we also obtain

‖ṽh‖L∞ + ‖λ̃h‖L∞ . ‖Ph(m̃)v‖L∞ + ‖(I−Ph(m̃))v‖L∞ . ‖v‖L∞ .

Altogether, this implies

‖eh‖L2 + ‖δh‖L2 . ‖m− m̃‖Lp‖v‖Lq

for (p, q) ∈ {(2,∞), (∞, 2)}.
(b) (s = 1) For the H1(Ω)-estimate, we introduce the Riesz mapping Jh between

Vh ⊂ H1(Ω) and its dual Vh ⊂ H1(Ω)′, i.e., the isometry defined by

(vh, Jhψh)H1 = 〈vh, ψh〉 ∀vh ∈ Vh, ψh ∈ Vh.

By Jh := I ⊗ Jh we denote the corresponding vector-valued mapping on V 3
h . We

consider the bilinear form on V 3
h × V 3

h defined by

ah(vh,wh) = 〈vh,J−1
h wh〉, vh,wh ∈ V 3

h ,

and reformulate the saddle-point problem for (vh, λh) ∈ V 3
h×Vh ⊂ H1(Ω)3×H1(Ω)′

as
ah(vh,wh) + 〈m · J−1

h wh, λh〉 = a(v,wh) ∀wh ∈ V 3
h ,

〈m · vh, J−1
h µh〉 = 0 ∀µh ∈ Vh.

As in the case s = 0 (algebraically it is the same system), we have vh = Ph(m)v

and Πh(mλh) = (I − Ph(m))v. The system for eh = vh − ṽh and δh = λh − λ̃h
reads

ah(eh,wh) + 〈m · J−1
h wh, δh〉 = −〈(m− m̃) · J−1

h wh, λ̃h〉 ∀wh ∈ V 3
h ,

〈m · eh, J−1
h µh〉 = −〈(m− m̃) · ṽh, J−1

h µh〉 ∀µh ∈ Vh.

The above inf-sup bounds for s = 1 and s = −1 are precisely the inf-sup condi-
tions that need to be satisfied for these generalized saddle-point problems (see [15,
Theorem 2.1]), whose right-hand sides are bounded by

|ah(v,wh)| 6 ‖v‖H1 ‖J−1
h wh‖H−1 ≃ ‖v‖H1 ‖wh‖H1

and

|〈(m− m̃) · J−1
h wh, λ̃h〉| . ‖(m− m̃)λ̃h‖H1 ‖wh‖H1 ,

|〈(m− m̃) · ṽh, J−1
h µh〉| 6 ‖(m− m̃) · ṽh‖H1 ‖µh‖H1 .

As in the case s = 0, we obtain from Lemma 5.3 and Lemma 5.5 that

‖ṽh‖W 1,∞ + ‖λ̃h‖W 1,∞ . ‖Ph(m̃)v‖W 1,∞ + ‖(I−Ph(m̃))v‖W 1,∞

. ‖v‖W 1,∞ .

Hence, we obtain from [15, Theorem 2.1], for (p, q) ∈ {(2,∞), (∞, 2)},
‖eh‖H1 . ‖(m− m̃)λ̃h‖H1 + ‖(m− m̃) · ṽh‖H1

.

1∑

s′=0

(
‖m− m̃‖H1 ‖λ̃h‖W 1−s′,q + ‖m− m̃‖W s′,p ‖ṽh‖W 1−s′,q

)

.

1∑

s′=0

‖m− m̃‖W s′,p ‖v‖W 1−s′,q .

This implies the H1(Ω)3 estimate and hence concludes the proof. �
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Proof of Lemma 5.1. Since Ph(m)v is the Galerkin approximation of the saddle
point problem for P(m)v (as in the previous proof), the Céa lemma for saddle-
point problems (see [13, Theorem 2.1]) shows in L2

‖(Ph(m)−P(m))v‖L2

. inf
(wh,µh)∈V 3

h ×Vh

(
‖P(m)v −wh‖L2 + ‖m · v − µh‖L2

)

. hr+1‖m‖W r+1,∞‖v‖Hr+1

and similarly in H1, using [15, Theorem 2.1],

‖(Ph(m)−P(m))v‖H1

. inf
(wh,µh)∈V 3

h
×Vh

(
‖P(m)v −wh‖H1 + ‖m · v − µh‖H1

)

. hr‖m‖W r+1,∞‖v‖Hr+1 .

This concludes the proof. �

6. Consistency error and error equation

To study the consistency errors, we find it instructive to separate the issues of
consistency for the time and space discretizations. Therefore, we first show defect
estimates for the semidiscretization in time, and then turn to the full discretization.

6.1. Consistency error of the semi-discretization in time. The order of both
the fully implicit k-step BDF method, described by the coefficients δ0, . . . , δk and 1,
and the explicit k-step BDF method, that is the method described by the coefficients
δ0, . . . , δk and γ0, . . . , γk−1, is k, i.e.,

(6.1)
k∑

i=0

(k − i)ℓδi = ℓkℓ−1 = ℓ
k−1∑

i=0

(k − i− 1)ℓ−1γi, ℓ = 0, 1, . . . , k.

We first rewrite the linearly implicit k-step BDF method (2.3) in strong form,

(6.2) αṁn + m̂n × ṁn = P(m̂n)(∆mn +H(tn)),

with Neumann boundary conditions.
The consistency error dn of the linearly implicit k-step BDF method (6.2) for

the solutionm is the defect by which the exact solution misses satisfying (6.2), and
is given by

(6.3) dn = αṁn
⋆ + m̂n

⋆ × ṁn
⋆ −P(m̂n

⋆ )(∆m
n
⋆ +H(tn))

for n = k, . . . , N , where we use the notation mn
⋆ =m(tn) and

(6.4)

m̂n
⋆ =

k−1∑

j=0

γjm
n−j−1
⋆

/∣∣∣
k−1∑

j=0

γjm
n−j−1
⋆

∣∣∣,

ṁn
⋆ = P(m̂n

⋆ )
1

τ

k∑

j=0

δjm
n−j
⋆ ∈ T (m̂n

⋆ ).

Note that the definition of ṁn
⋆ contains the projection P(m̂n

⋆ ), while ṁn was
defined without a projection (see the first formula in (2.2)), since ṁn = P(m̂n)ṁn

is automatically satisfied due to the constraint in (2.3).
The consistency error is bounded as follows.
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Lemma 6.1. If the solution of the LLG equation (1.4) has the regularity

m ∈ Ck+1([0, t̄ ], L2(Ω)3)∩C1([0, t̄ ], L∞(Ω)3) and ∆m+H ∈ C([0, t̄ ], L∞(Ω)3),

then the consistency error (6.3) is bounded by

‖dn‖L2(Ω)3 6 Cτk

for n = k, . . . , N .

Proof. We begin by rewriting the equation for the defect as

(6.5)
dn = αṁn

⋆ + m̂n
⋆ × ṁn

⋆ −P(mn
⋆ )(∆m

n
⋆ +H(tn))

−
(
P(m̂n

⋆ )−P(mn
⋆ )
)
(∆mn

⋆ +H(tn)).

In view of (1.4), we have

P(mn
⋆ )(∆m

n
⋆ +H(tn)) = α∂tm(tn) +m

n
⋆ × ∂tm(tn),

and can rewrite (6.5) as

dn = α
(
ṁn

⋆ − ∂tm(tn)
)
+
(
m̂n

⋆ × ṁn
⋆ −mn

⋆ × ∂tm(tn)
)

−
(
P(m̂n

⋆ )−P(mn
⋆ )
)
(∆mn

⋆ +H(tn)),

i.e.,

dn = α
(
ṁn

⋆ − ∂tm(tn)
)
+ (m̂n

⋆ −mn
⋆ )× ṁn

⋆ +mn
⋆ ×

(
ṁn

⋆ − ∂tm(tn)
)

−
(
P(m̂n

⋆ )−P(mn
⋆ )
)
(∆mn

⋆ +H(tn)).

Therefore,

(6.6) dn = αḋn + d̂n × ṁn
⋆ +mn

⋆ × ḋn −
(
P(m̂n

⋆ )−P(mn
⋆ )
)
(∆mn

⋆ +H(tn)),

with

(6.7) ḋn := ṁn
⋆ − ∂tm(tn), d̂n := m̂n

⋆ −mn
⋆ .

Now, in view of the first estimate in Lemma 4.1, we have

‖
(
P(m̂n

⋆ )−P(mn
⋆ )
)
(∆mn

⋆ +H(tn))‖L2 6 C‖m̂n
⋆ −mn

⋆‖L2 ,

i.e.,

(6.8) ‖
(
P(m̂n

⋆ )−P(mn
⋆ )
)
(∆mn

⋆ +H(tn))‖L2 6 C‖d̂n‖L2.

Therefore, it suffices to estimate ḋn and d̂n.

To estimate d̂n, we shall proceed in two steps. First we shall estimate the
extrapolation error

(6.9)

k−1∑

j=0

γjm
n−j−1
⋆ −mn

⋆

and then d̂n.
By Taylor expanding about tn−k, the leading terms of order up to k − 1 cancel,

due to the second equality in (6.1), and we obtain

(6.10)

k−1∑

i=0

γim
n−i−1
⋆ −mn

⋆ =
1

(k − 1)!

[
k−1∑

j=0

γj

∫ tn−j−1

tn−k

(tn−j−1 − s)k−1m(k)(s)ds

−
∫ tn

tn−k

(tn − s)k−1m(k)(s)ds

]
,
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with m(ℓ) := ∂ℓm
∂tℓ , whence

(6.11)
∥∥∥

k−1∑

i=0

γim
n−i−1
⋆ −mn

⋆

∥∥∥
L2

6 Cτk.

Now, for a normalized vector a and a non-zero vector b, we have

a− b

|b| = (a− b) + 1

|b| (|b| − |a|)b,

whence
∣∣a− b

|b|
∣∣ 6 2|a− b|.

Therefore, (6.11) yields

(6.12) ‖d̂n‖L2 6 Cτk.

To bound ḋn, we use the fact that P(m(tn))∂tm(tn) = ∂tm(tn) ∈ T (m(tn)), so
that we have

ḋn = P(m̂n
⋆ )

1

τ

k∑

j=0

δjm(tn−j)− ∂tm(tn)

= P(m̂n
⋆ )
(1
τ

k∑

j=0

δjm(tn−j)− ∂tm(tn)
)
+
(
P(m̂n

⋆ )−P(m(tn))
)
∂tm(tn).

By Lemma 4.1 and (6.12), we have for the last term

‖
(
P(m̂n

⋆ )−P(m(tn))
)
∂tm(tn)‖L2 6 Cτk.

By Taylor expanding the first term about tn−k, we see that, due to the order
conditions of the implicit BDF method, i.e., the first equality in (6.1), the leading
terms of order up to k − 1 cancel, and we obtain

(6.13)

1

τ

k∑

j=0

δjm(tn−j)− ∂tm(tn) =
1

k!

[
1

τ

k∑

j=0

δj

∫ tn−j

tn−k

(tn−j − s)km(k+1)(s)ds

− k

∫ tn

tn−k

(tn − s)k−1m(k+1)(s)ds

]
,

whence

(6.14) ‖ḋn‖L2 6 Cτk,

provided the solutionm is sufficiently regular. Now, (6.6), (6.8), (6.14), and (6.12)
yield

(6.15) ‖dn‖L2 6 Cτk.

This is the desired consistency estimate, which is valid for BDF methods of arbitrary
order k. �
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6.2. Consistency error of the full discretization. We define the Ritz projec-
tion Rh : H

1(Ω) → Vh corresponding to the Poisson–Neumann problem via
(
∇Rhϕ,∇ψ

)
+
(
Rhϕ, 1

)(
ψ, 1

)
=

(
∇ϕ,∇ψ

)
+
(
ϕ, 1

)(
ψ, 1

)

for all ψ ∈ Vh, and we denote Rh = I ⊗ Rh : H
1(Ω)3 → V 3

h . We denote again
the L2-orthogonal projections onto the finite element space by Πh : L

2(Ω) → Vh
and Πh = I ⊗Πh : L

2(Ω)3 → V 3
h . As in the previous section, we write Ph(m) for

the L2-orthogonal projection onto the discrete tangent space at m. We insert the
following quantities, which are related to the exact solution,

mn
⋆,h = Rhm(tn),

m̂n
⋆,h =

k−1∑

j=0

γjm
n−j−1
⋆,h

/∣∣∣
k−1∑

j=0

γjm
n−j−1
⋆,h

∣∣∣,(6.16)

ṁn
⋆,h = Ph(m̂

n
⋆,h)

1

τ

k∑

j=0

δjm
n−j
⋆,h ∈ Th(m̂

n
⋆,h),

into the linearly implicit k-step BDF method (2.6) and obtain a defect dnh ∈
Th(m̂

n
⋆,h) from

(6.17)
α
(
ṁn

⋆,h,ϕh

)
+
(
m̂n

⋆,h × ṁn
⋆,h,ϕh

)
= −

(
∇mn

⋆,h,∇ϕh

)
+
(
H(tn),ϕh

)

+
(
dnh,ϕh

)

for all ϕh ∈ Th(m̂
n
⋆,h). By definition, there holds (Rhϕ, 1) = (ϕ, 1) (this can be

seen by testing with ψ = 1) and hence
(
∇mn

⋆,h,∇ϕ
)
=

(
∇m(tn),∇ϕ

)
= −

(
∆m(tn),ϕ

)
.

Thus, we obtain the consistency error for the full discretization by

(6.18) dnh = Ph(m̂
n
⋆,h)D

n
h with Dn

h = αṁn
⋆,h+m̂

n
⋆,h×ṁn

⋆,h−∆m(tn)−H(tn)

for n = k, . . . , N . The consistency error is bounded as follows.

Lemma 6.2. If the solution of the LLG equation (1.4) has the regularity

m ∈ Ck+1([0, t̄ ], L2(Ω)3) ∩C1([0, t̄ ],W r+1,∞(Ω)3) and

∆m+H ∈ C([0, t̄ ],W r+1,∞(Ω)3),

then the consistency error (6.18) is bounded by

‖dnh‖L2(Ω)3 6 C(τk + hr)

for n with kτ 6 nτ 6 t̄.

Proof. We begin by defining

Dn := α∂tm(tn) +m(tn)× ∂tm(tn)−∆m(tn)−H(tn)

and note that P(mn
⋆ )D

n = 0. Here we denote again mn
⋆ = m(tn) and in the

following we use also the notations ṁn
⋆ and m̂n

⋆ as defined in (6.4). With this, we
rewrite the equation for the defect as

dnh = Ph(m̂
n
⋆,h)D

n
h −P(mn

⋆ )D
n

= Ph(m̂
n
⋆,h)

(
Dn

h −Dn
)
+
(
Ph(m̂

n
⋆,h)−Ph(m̂

n
⋆ )
)
Dn

+
(
Ph(m̂

n
⋆ )−P(m̂n

⋆ )
)
Dn +

(
P(m̂n

⋆ )−P(mn
⋆ )
)
Dn
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≡ I + II + III + IV .

For the term IV we have by Lemma 4.1

‖IV ‖L2 6 2‖m̂n
⋆ −mn

⋆‖L2 ‖Dn‖L∞ ,

where the last term m̂n
⋆ −mn

⋆ has been bounded in the L2 norm by Cτk in the
proof of Lemma 6.1.

The term III is estimated using the first bound from Lemma 5.1, under our
regularity assumptions, as

‖III ‖L2 6 Chr.

For the bound on II we use Lemma 5.2 (i) (with p = 2 and q = ∞), to obtain

‖II‖L2 6 CR‖m̂n
⋆,h − m̂n

⋆‖L2‖Dn‖L∞,

where, using (7.11), we obtain

‖m̂n
⋆,h − m̂n

⋆‖L2 6
2‖∑k

i=1 γi(Rh − I)mn−i
∗ ‖L2

min
∣∣∑k

i=1 γim
n−i
∗

∣∣ 6 Chr.

The denominator is bounded from below by 1 − Cτk, because |mn
∗ | = 1 and

|∑k
i=1 γim

n−i
∗ −mn

∗ | 6 Cτk. For the first term we have

‖I ‖L2 6 ‖Dn −Dn
h‖L2

6 α‖∂tm(tn)− ṁn
⋆,h‖L2 + ‖m(tn)× ∂tm(tn)− m̂n

⋆,h × ṁn
⋆,h‖L2 .

The terms ‖∂tm(tn)− ṁn
⋆‖L2 and ‖mn

⋆ × ∂tm(tn)− m̂n
⋆ × ṁn

⋆‖L2 can be handled
as in the proof of Lemma 6.1. Standard error estimates for the Ritz projection Rh

(we do not exploit the Aubin–Nitsche duality here) imply

‖(I−Rh)ṁ
n
⋆‖L2 6 c hr‖ṁn

⋆‖Hr+1 .

Together this yields, under the stated regularity assumption,

‖I‖L2 6 C(τk + hr),

and the result follows. �

6.3. Error equation. We recall, from (2.6), the fully discrete problem with the
linearly implicit BDF method: find ṁn

h ∈ Th(m̂
n
h) such that for all ϕh ∈ Th(m̂

n
h),

(6.19) α(ṁn
h ,ϕh) + (m̂n

h × ṁn
h,ϕh) + (∇mn

h,∇ϕh) = (H(tn),ϕh).

Then, similarly as we have done in Section 4, we first rewrite (6.17): for all
ϕh ∈ Th(m̂

n
h),

(6.20) α(ṁn
⋆,h,ϕh) + (m̂n

⋆,h × ṁn
⋆,h,ϕh) + (∇mn

⋆,h,∇ϕh) = (rnh +H(tn),ϕh)

with

(6.21) rnh = −(Ph(m̂
n
h)−Ph(m̂

n
⋆,h))(∆m⋆(tn) +H(tn)) + d

n
h.

The error enh = mn
h − mn

⋆,h satisfies the error equation that is obtained by

subtracting (6.20) from (6.19). We use the notations

ênh = m̂n
h − m̂n

⋆,h,(6.22)

ėnh = ṁn
h − ṁn

⋆,h =
1

τ

k∑

j=0

δje
n−j
h + snh,(6.23)
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with snh = (I−Ph(m̂
n
⋆,h))

1

τ

k∑

j=0

δjm
n−j
⋆,h .

We have the following bound for snh.

Lemma 6.3. Under the regularity assumptions of Lemma 6.2, we have

(6.24) ‖snh‖H1(Ω)3 6 C(τk + hr).

Proof. We use Lemmas 5.1 and 5.3, and the bounds in the proof of Lemma 6.2.
We start by subtracting (I − P(m̂n

⋆,h))∂tm
n
⋆ = 0, and obtain (with ∂τmn

⋆,h :=
1
τ

∑k
j=0 δjm

n−j
⋆,h )

snh = (I−Ph(m̂
n
⋆,h))∂

τmn
⋆,h − (I−P(m̂n

⋆,h))∂tm
n
⋆

= (∂τmn
⋆,h − ∂tm

n
⋆ )−

(
Ph(m̂

n
⋆,h)∂

τmn
⋆,h −P(m̂n

⋆,h)∂tm
n
⋆

)
.

The first term above is bounded as O(τk +hr) via the techniques of the consistency
proofs, Lemma 6.1 and 6.2. For the second term we have

Ph(m̂
n
⋆,h)∂

τmn
⋆,h −P(m̂n

⋆,h)∂tm
n
⋆

= Ph(m̂
n
⋆,h)(∂

τmn
⋆,h − ∂tm

n
⋆ ) +

(
Ph(m̂

n
⋆,h)−P(m̂n

⋆,h)
)
∂tm

n
⋆ ,

where the first term is bounded as O(τk + hr), using Lemma 5.3 and the previous
estimate, while the second term is bounded as O(hr) by the H1 estimate from
Lemma 5.1. Altogether, we obtain the stated H1 bound for snh. �

We then have the error equation

(6.25) α(ėnh ,ϕh) + (ênh × ṁn
⋆,h,ϕh) + (m̂n

h × ėnh,ϕh) + (∇enh ,∇ϕh) = −(rnh ,ϕh),

for all ϕh ∈ Th(m̂
n
h), which is to be taken together with (6.21)–(6.23).

7. Stability of the full discretization for BDF of orders 1 and 2

For the A-stable BDF methods (those of orders 1 and 2) we obtain the follow-
ing stability estimate, which is analogous to the continuous perturbation result in
Lemma 4.2.

Lemma 7.1 (Stability for orders k = 1, 2). Consider the linearly implicit k-step
BDF discretization (2.6) for k 6 2 with finite elements of polynomial degree r > 1.
Let mn

h and mn
⋆,h = Rhm(tn) satisfy equations (2.6) and (6.17), respectively, and

suppose that the exact solution m(t) is bounded by (4.3) and ‖H(t)‖L∞ 6 M for

0 6 t 6 t̄. Then, for sufficiently small h 6 h̄ and τ 6 τ̄ , the error enh =mn
h −mn

⋆,h

satisfies the following bound, for kτ 6 nτ 6 t̄,

(7.1) ‖enh‖2H1(Ω)3 6 C
( k−1∑

i=0

‖eih‖2H1(Ω)3 + τ

n∑

j=k

‖djh‖2L2(Ω)3 + τ

n∑

j=k

‖sjh‖2H1(Ω)3

)
,

where the constant C is independent of h, τ and n, but depends on α,R,K,M ,

and t̄. This estimate holds under the smallness condition that the right-hand side

is bounded by ĉh with a sufficiently small constant ĉ (note that the right-hand side

is of size O((τk + hr)2) in the case of a sufficiently regular solution).



HIGHER-ORDER DISCRETIZATION OF THE LLG EQUATION 27

Combining Lemmas 7.1, 6.2 and 6.3 yields the proof of Theorem 3.1: These
lemmas imply the estimate

‖enh‖H1(Ω)3 6 C̃(τk + hr)

in the case of a sufficiently regular solution. Since then ‖Rhm(tn)−m(tn)‖H1(Ω)3 6

Chr and because ofmn
h −m(tn) = e

n
h +(Rhm(tn)−m(tn)), this implies the error

bound (3.1).
The smallness condition imposed in Lemma 7.1 is satisfied under the very mild

CFL condition, for a sufficiently small c̄ > 0 (independent of h, τ and n),

τk 6 c̄h1/2.

Taken together, this proves Theorem 3.1.

Proof. (a) Preparations. The proof of this lemma transfers the arguments of the
proof of Lemma 4.2 to the fully discrete situation, using energy estimates obtained
by testing with (essentially) the discrete time derivative of the error, as presented
in the Appendix, which is based on Dahlquist’s G-stability theory.

However, testing the error equation (6.25) directly with ėnh is not possible, since
ėnh is not in the tangent space Th(m̂

n
h). Therefore, as in the proof of Lemma 4.2, we

again start by showing that the test function ϕh = Ph(m̂
n
h)ė

n
h ∈ Th(m̂

n
h)∩H1(Ω)3

is a perturbation of ėnh itself:

ϕh = Ph(m̂
n
h)ė

n
h = Ph(m̂

n
h)ṁ

n
h −Ph(m̂

n
h)ṁ

n
⋆,h

= Ph(m̂
n
h)ṁ

n
h −Ph(m̂

n
⋆,h)ṁ

n
⋆,h + (Ph(m̂

n
⋆,h)−Ph(m̂

n
h))ṁ

n
⋆,h.

Here we note that Ph(m̂
n
h)ṁ

n
h = ṁn

h ∈ Th(m̂
n
h) by construction of the method

(2.6), and Ph(m̂
n
⋆,h)ṁ

n
⋆,h = ṁn

⋆,h ∈ Th(m̂
n
⋆,h) by the definition of ṁn

⋆,h in (6.4).
So we have

ϕh = ṁn
h − ṁn

⋆,h − (Ph(m̂
n
h)−P(m̂n

⋆,h))ṁ
n
⋆,h,

and hence

(7.2) ϕh = Ph(m̂
n
h)ė

n = ėnh + qnh with qnh = −(Ph(m̂
n
h)−P(m̂n

⋆,h))ṁ
n
⋆,h.

The proof now transfers the proof of the continuous perturbation result Lemma
4.2 to the discrete situation with some notable differences, which are emphasized
here:

(i) Instead of using the continuous quantities it uses their spatially discrete coun-
terparts, in particular the discrete projections Ph(m̂

n
h) and Ph(m̂

n
⋆,h), defined

and studied in Section 5. In view of the definition (2.1) and (6.16) of m̂n
h and

m̂n
⋆,h, respectively, this requires that

∑k−1
j=0 γjm

n−j−1
h (x) and

∑k−1
j=0 γjm

n−j−1
⋆,h (x)

are bounded away from zero uniformly for all x ∈ Ω.
(ii) Instead of Lemma 4.1 we use Lemma 5.2 (with m̂n

h and m̂n
⋆,h in the role of

m̃ and m, respectively) to bound the quantity qnh . This requires that m̂n
⋆,h and

ṁn
⋆,h are bounded in W 1,∞ independently of h.

Ad (i): In order to show that |∑k−1
j=0 γjm

n−j−1
h (x)| stays close to 1 for all x ∈ Ω,

we need to establish an L∞ bound for the errors en−j−1
h =mn−j−1

h −mn−j−1
⋆,h .

We use an induction argument and assume that for some time step number n̄
with n̄τ 6 t̄ we have

(7.3) ‖enh‖L∞ 6 ρ for 0 6 n < n̄,
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where we choose ρ sufficiently small independent of h and τ . (In this proof it suffices

to choose ρ 6 1/(4Cγ), where Cγ =
∑k−1

j=0 |γj | = 2k − 1.)

Note that the smallness condition of the lemma implies that (7.3) is satisfied
for n̄ = k, because for the L∞ errors of the starting values we have by an inverse
inequality, for i = 0, . . . , k − 1,

‖eih‖L∞ 6 Ch−1/2‖eih‖H1 6 Ch−1/2 (ĉh)1/2 = Cĉ1/2 6 ρ,

provided that ĉ is sufficiently small (independent of τ and h), as is assumed.
We will show in part (b) of the proof that with the induction hypothesis (7.3)

we obtain also ‖en̄h‖L∞ 6 ρ so that finally we obtain (7.3) for all n̄ with n̄τ 6 t̄.
Using reverse and ordinary triangle inequalities, the error bound of [12, Corol-

lary 8.1.12] (noting that m(t) ∈ W 2,∞(Ω) under our assumptions) and the L∞

boundedness of ∂tm, and the bound (7.3), we estimate

(7.4)

∥∥∥∥
∣∣∣
k−1∑

j=0

γjm
n−j−1
h

∣∣∣− 1

∥∥∥∥
L∞

=

∥∥∥∥
∣∣∣
k−1∑

j=0

γjm
n−j−1
h

∣∣∣− |mn
⋆ |
∥∥∥∥
L∞

6

∥∥∥∥
k−1∑

j=0

γjm
n−j−1
h −mn

⋆

∥∥∥∥
L∞

6
∥∥∥

k−1∑

j=0

γje
n−j−1
h

∥∥∥
L∞

+

∥∥∥∥
k−1∑

j=0

γj(Rhm
n−j−1
⋆ −mn−j−1

⋆ )

∥∥∥∥
L∞

+

∥∥∥∥
k−1∑

j=0

γj(m
n−j−1
⋆ −mn

⋆ )

∥∥∥∥
L∞

6
∥∥∥

k−1∑

j=0

γje
n−j−1
h

∥∥∥
L∞

+ Ch+ Cτ 6

k−1∑

j=0

|γj | · ρ+ Ch+ Cτ 6
1

2
,

provided that h and τ are sufficiently small. The same argument also yields that∥∥|∑k−1
j=0 γjm

n−j−1
⋆,h | − 1

∥∥
L∞

6 1
2 , and so we have

(7.5)
1

2
6

∣∣∣
k−1∑

j=0

γjm
n−j−1
h (x)

∣∣∣ 6 3

2
and

1

2
6

∣∣∣
k−1∑

j=0

γjm
n−j−1
⋆,h (x)

∣∣∣ 6 3

2

for all x ∈ Ω. In particular, it follows that m̂n
h and m̂n

⋆,h are unambiguously
defined.

Ad (ii): The requiredW 1,∞ bound formn
⋆,h = Rhm(tn) follows from theW 1,∞-

stability of the Ritz projection: by [12, Theorem 8.1.11] and by the assumed W 1,∞

bound (4.3) for m(t),

(7.6) ‖mn
⋆,h‖W 1,∞ 6 C‖m(tn)‖W 1,∞ 6 CR.

The bounds (7.5) and (7.6) for n 6 n̄ imply that also

(7.7) ‖m̂n
⋆,h‖W 1,∞ 6 CR

for n 6 n̄ (with a different constant C). Using this bound in Lemma 5.3 and the

assumed W 1,∞ bound (4.3) for ∂tm(t), we obtain with δ(ζ)/(1 − ζ) =
∑k

ℓ=1(1 −
ζ)ℓ−1/ℓ =:

∑k−1
j=0 µjζ

j that

‖ṁn
⋆,h‖W 1,∞ = ‖Ph(m̂

n
⋆,h)

1

τ

k∑

j=0

δjm
n−j
⋆ ‖W 1,∞
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= ‖Ph(m̂
n
⋆,h)

k−1∑

j=0

µj
1

τ
(mn−j

⋆ −mn−j−1
⋆ )‖W 1,∞

= ‖Ph(m̂
n
⋆,h)

k−1∑

j=0

µj
1

τ

∫ tn−j

tn−j−1

∂tm(t) dt‖W 1,∞

6 CR ‖
k−1∑

j=0

µj
1

τ

∫ tn−j

tn−j−1

∂tm(t) dt‖W 1,∞

6 CR

k−1∑

j=0

|µj |R.

We can now establish a bound for qnh as defined in (7.2), using Lemma 5.2 together
with the above W 1,∞ bounds for m̂n

⋆,h and ṁn
⋆,h to obtain

(7.8) ‖qnh‖L2 6 c‖ênh‖L2 and ‖∇qnh‖L2 6 c‖ênh‖H1 .

With the W 1,∞ bound of m̂n
⋆,h we also obtain a bound of rnh defined in (6.21).

Using Lemma 5.2 (i) and recalling the L∞ bound of ∆m+H of (4.3), we find that
rnh is bounded by

(7.9)
‖rnh‖L2 6 ‖(Ph(m̂

n
h)−Ph(m̂

n
⋆,h))(∆m

n
⋆ +Hn)‖L2 + ‖dnh‖L2

6 c‖ênh‖L2 + ‖dnh‖L2.

(b) Energy estimates. For n 6 n̄ with n̄ of (7.3), we test the error equation
(6.25) with ϕh = ėnh + qnh and obtain

α(ėnh , ė
n
h + qnh ) + (ênh × ṁn

⋆,h, ė
n
h + qnh) + (m̂n

h × ėnh, ėnh + qnh)

+ (∇enh ,∇(ėnh + qnh)) = −(rnh , ė
n
h + qnh ).

By collecting the terms, and using the fact that (m̂n
h × ėnh, ėnh) = 0, we altogether

obtain

α‖ėnh‖2L2 + (∇enh ,∇ėnh) = −α(ėnh, qnh)− (ênh × ṁn
⋆,h, ė

n
h + qnh)

− (m̂n
h × ėnh, qnh )− (∇enh ,∇qnh)− (rnh , ė

n
h + qnh).

We now estimate the term (∇enh ,∇ėnh) on the left-hand side from below using
Dahlquist’s Lemma A.1, so that the ensuing relation (A.2) yields

(∇enh,∇ėnh) >
1

τ

(
‖∇En

h‖2G − ‖∇En−1
h ‖2G

)
+ (∇enh ,∇snh),

where En
h = (en−k+1

h , . . . , enh) and the G-weighted semi-norm is given by

‖∇En
h‖2G =

k∑

i,j=1

gij(∇en−k+i
h ,∇en−k+j

h ).

This semi-norm satisfies the relation

(7.10) γ−
k∑

j=1

‖∇en−k+j
h ‖2L2 6 ‖∇En

h‖2G 6 γ+
k∑

j=1

‖∇en−k+j
h ‖2L2 ,

where γ− and γ+ are the smallest and largest eigenvalues of the positive definite
symmetric matrix G = (gij) from Lemma A.1.
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The remaining terms are estimated using the Cauchy–Schwarz inequality and
‖m̂n

h‖L∞ = 1; we altogether obtain

α‖ėnh‖2L2 +
1

τ

(
‖∇En

h‖2G − ‖∇En−1
h ‖2G

)
6 α‖ėnh‖L2‖qnh‖L2

+ ‖ênh‖L2(‖ėnh‖L2 + ‖qnh‖L2) + ‖ėnh‖L2‖qnh‖L2

+ ‖∇enh‖L2(‖∇qn‖L2 + ‖∇snh‖L2) + ‖rnh‖L2(‖ėnh‖L2 + ‖qnh‖L2).

We now show an L2 error bound for ênh in terms of (en−j−1
h )k−1

j=0 . Using the fact

that for a, b ∈ R3 \ {0},

(7.11)

∣∣∣∣
a

|a| −
b

|b|

∣∣∣∣ =
∣∣∣∣
(|b| − |a|)a+ |a|(a− b)

|a| |b|

∣∣∣∣ 6 2
|a− b|
|b| ,

and the lower bounds in (7.5) for both |
∑k−1

j=0 γjm
n−j−1
h | and |

∑k−1
j=0 γjm

n−j−1
⋆,h |,

we can estimate

(7.12) ‖ênh‖L2 =

∥∥∥∥∥∥∥∥∥∥∥

k−1∑

j=0

γjm
n−j−1
h

∣∣∣
k−1∑

j=0

γjm
n−j−1
h

∣∣∣
−

k−1∑

j=0

γjm
n−j−1
⋆,h

∣∣∣
k−1∑

j=0

γjm
n−j−1
⋆,h

∣∣∣

∥∥∥∥∥∥∥∥∥∥∥
L2

6 C
k−1∑

j=0

‖en−j−1
h ‖2L2.

To show a similar bound for ‖∇ênh‖L2 we need the following two observations: First,

the W 1,∞ bounds for mn−j−1
⋆,h from (7.6) imply W 1,∞ boundedness for m̂n

⋆,h by
∣∣∣∣∂j

(
b

|b|

)∣∣∣∣ 6
∣∣∣∣
∂jb

|b|

∣∣∣∣ +
∣∣∣∣
b(∂jb, b)

|b|3
∣∣∣∣ .

Second, similarly we have
∣∣∣∣∂j

(
a

|a| −
b

|b|

)∣∣∣∣ 6
∣∣∣∣
∂ja

|a| − ∂jb

|b|

∣∣∣∣+
∣∣∣∣
a(∂ja,a)|b|3 − b(∂jb, b)|a|3

|a|3 |b|3
∣∣∣∣

6

∣∣∣∣
∂ja

|a| − ∂jb

|b|

∣∣∣∣+
||a|3 − |b|3||∂jb|

|a|3 |b| +
|a(∂ja,a)− b(∂jb, b)|

|b|3

6

∣∣∣∣
∂ja

|a| − ∂jb

|b|

∣∣∣∣+
|a− b|(|b|2 + |b||a|+ |a|2)|∂jb|

|a|3 |b|

+
|a|2|∂ja− ∂jb|

|b|3 +
|a||∂jb||a− b|

|b|3 +
|a− b||∂jb|

|b|2 .

Combining these two observations, again with mh and m⋆,h in the role of a and
b, respectively, and the upper and lower bounds from (7.5) altogether yield

(7.13) ‖∇ênh‖2L2 6 C

k−1∑

j=0

‖en−j−1
h ‖2H1 .

We estimate further using Young’s inequality and absorptions into the term
‖ėn‖2L2 , together with the bounds in (7.8) and (7.9), to obtain

α
1

2
‖ėnh‖2L2 +

1

τ

(
‖∇En

h‖2G − ‖∇En−1
h ‖2G

)
6 c

k∑

j=0

‖en−j
h ‖2H1 + c‖dnh‖2L2 + c‖∇snh‖2L2.
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Multiplying both sides by τ , summing up from k to n 6 n̄, and using an absorption
yield

α
1

2
τ

n∑

j=k

‖ėjh‖2L2 + ‖∇En
h‖2G

6 ‖∇Ek−1
h ‖2G + cτ

n∑

j=k

‖ejh‖2H1 + cτ
n∑

j=k

(
‖djh‖2L2 + ‖sjh‖2H1

)
+ cτ

k−1∑

i=0

‖eih‖2H1 .

We then arrive, using (7.10), at

(7.14)

α
1

2
τ

n∑

j=k

‖ėjh‖2L2 + ‖∇enh‖2L2 6 cτ
n∑

j=k

‖ejh‖2H1 + cτ
n∑

j=k

(
‖djh‖2L2 + ‖sjh‖2H1

)

+ c

k−1∑

i=0

‖eih‖2H1 ,

with c depending on α.
Similarly as in the time continuous case in the proof of Lemma 4.2, we connect

‖enh‖2L2 and τ
∑n

j=k ‖ė
j
h‖2L2 . We rewrite the identity

1

τ

k∑

j=0

δje
n−j
h = ėnh − snh, n > k,

as
1

τ

n∑

j=k

δn−je
j
h = ėnh − snh − gnh , n > k,

with δℓ = 0 for ℓ > k and where

gnh :=
1

τ

k−1∑

i=0

δn−ie
i
h

depends only on the starting errors and satisfies gnh = 0 for n > 2k. With the
inverse power series of δ(ζ),

κ(ζ) =

∞∑

n=0

κnζ
n :=

1

δ(ζ)
,

we then have, for n > k,

enh = τ

n∑

j=k

κn−j(ė
j
h − sjh − gjh).

By the zero-stability of the BDF method of order k 6 6, the coefficients κn are
uniformly bounded: |κn| 6 c for all n > 0. Therefore we obtain via the Cauchy–
Schwarz inequality

‖enh‖2L2 6 2τ2
∥∥∥

n∑

j=k

κn−j(ė
j
h − sjh)

∥∥∥
2

L2
+ 2τ2

∥∥∥
2k−1∑

j=k

κn−jg
j
h

∥∥∥
2

L2

6 (2nτ)τc2
n∑

j=k

‖ėjh − sjh‖2L2 + 2τ2c2k
2k−1∑

j=k

‖gjh‖2L2
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6 Cτ

n∑

j=k

‖ėjh‖2L2 + Cτ

n∑

j=k

‖sjh‖2L2 + C

k∑

i=0

‖eih‖2L2.

Inserting this bound into (7.14) then yields

α‖enh‖2L2 + ‖∇enh‖2L2 6 cτ

n∑

j=k

‖ejh‖2H1 + cτ

n∑

j=k

(
‖djh‖2L2 + ‖sjh‖2H1

)
+ c

k−1∑

i=0

‖eih‖2H1 ,

and a discrete Gronwall inequality implies the stated stability result for n 6 n̄. It
then follows from this stability bound, the smallness condition of the lemma and
the inverse estimate from H1 to L∞ that (7.3) is satisfied also for n̄ + 1. This
completes the induction step for (7.3) and proves the stated error bound. �

8. Stability of the full discretization for BDF of orders 3 to 5

Stability for full discretizations using the BDF methods of orders 3 to 5 can be
shown under additional conditions on the damping parameter α and the stepsize τ .

Lemma 8.1 (Stability for orders k = 3, 4, 5). Consider the linearly implicit k-step
BDF discretization (2.6) for 3 6 k 6 5 with finite elements of polynomial degree

r > 2. Letmn
h andmn

⋆,h satisfy (2.6) and (6.17), respectively, and suppose that the

regularity assumptions of Lemma 7.1 hold. Furthermore, assume that the damping

parameter α satisfies

(8.1) α > αk :=
ηk

1− ηk

with the multiplier ηk of Lemma A.2, and that τ and h satisfy the mild CFL-type

condition, for some c̄ > 0,

(8.2) τ 6 c̄h.

Then, for sufficiently small h 6 h̄ and τ 6 τ̄ , the error enh = mn
h −mn

⋆,h satisfies

the following bound, for kτ 6 nτ 6 t̄,

(8.3) ‖enh‖2H1(Ω)3 6 C
( k−1∑

i=0

‖eih‖2H1(Ω)3 + τ

n∑

j=k

‖djh‖2L2(Ω)3 + τ

n∑

j=k

‖sjh‖2H1(Ω)3

)
,

where the constant C is independent of τ, h and n, but depends on α,R,K,M ,

and exponentially on c̄t̄. The bound holds under the smallness condition that the

right-hand side is bounded by ĉh3 with a constant ĉ (note that the right-hand side

is of size O((τk +hr)2) in the case of a sufficiently regular solution and sufficiently

accurate starting values).

Together with the defect bounds of Section 6, this stability lemma proves Theo-
rem 3.2. We remark that the thresholds αk > 0 defined here are the same as those
appearing in Theorem 3.2.

Proof. The proof of this lemma combines the arguments of the proof of Lemma 7.1
with a nonstandard variant of the multiplier technique of Nevanlinna and Odeh,
as outlined in the Appendix. Since the size of the parameter α determines which
BDF methods satisfy the stability estimate, the dependence on α will be carefully
traced all along the proof.



HIGHER-ORDER DISCRETIZATION OF THE LLG EQUATION 33

(a) Preparations. As in the previous proof, we make again the induction hypoth-
esis (7.3) for some n̄ with n̄τ 6 t̄, but this time with ρ = c0h for some positive
constant c0:

(8.4) ‖enh‖L∞ 6 c0h, n < n̄.

By an inverse inequality, this implies that ‖enh‖W 1,∞ has an h- and τ -independent
bound, and hence also ‖mn

h‖W 1,∞ for n < n̄. Together with (7.5), this implies

(8.5) ‖m̂n
h‖W 1,∞ 6 C

and further

(8.6) ‖ênh‖L∞ 6 Ch.

As in the Appendix, we aim to subtract ηk times the error equation for time
step n − 1 from the error equation for time step n, and then to test with ϕh =
Ph(m̂

n
h)ė

n
h ∈ Th(m̂

n
h) (similarly as in the proof of Lemma 7.1). However, this is

not possible directly due to the different test spaces at different time steps:

α(ėnh ,ϕh) + (ênh × ṁn
⋆,h,ϕh)

+ (m̂n
h × ėnh,ϕh) + (∇enh,∇ϕh) = −(rnh ,ϕh),

(8.7a)

for all ϕh ∈ Th(m̂
n
h), and

α(ėn−1
h ,ψh) + (ên−1

h × ṁn−1
⋆,h ,ψh)

+ (m̂n−1
h × ėn−1

h ,ψh) + (∇en−1
h ,∇ψh) = −(rn−1

h ,ψh),
(8.7b)

for all ψh ∈ Th(m̂
n−1
h ).

As in (7.2), we have

(8.8) ϕh = Ph(m̂
n
h)ė

n
h = ėnh + qnh , with qnh = −(Ph(m̂

n
h)−Ph(m̂

n
⋆,h))ṁ

n
⋆,h,

where qnh is bounded by (7.8).

In turn, the test function ψh = Ph(m̂
n−1
h )ėnh ∈ Th(m̂

n−1
h ) is a perturbation of

ϕh = ėnh + qnh , since using (8.8) we obtain

ψh = Ph(m̂
n−1
h )ėnh

= Ph(m̂
n
h)ė

n
h − (Ph(m̂

n
h)−Ph(m̂

n−1
h ))ėnh

= ėnh + qnh + pnh with pnh = −(Ph(m̂
n
h)−Ph(m̂

n−1
h ))ėnh.

The perturbation pnh is estimated using the second bound in Lemma 5.2 (i) with
p = ∞, q = 2, and noting (8.5). We obtain

‖pnh‖L2 6 ‖(Ph(m̂
n
h)−Ph(m̂

n−1
h ))ėnh‖L2

6 c‖ėnh‖L2‖m̂n
h − m̂n−1

h ‖L∞

6 c‖ėnh‖L2

(
‖ênh‖L∞ + ‖m̂n

⋆,h − m̂n−1
⋆,h ‖L∞ + ‖ên−1

h ‖L∞

)

6 c‖ėnh‖L2

(
‖ênh‖L∞ +

k−1∑

j=0

|γj |
∫ tn−j−1

tn−j−2

‖Rh∂tm(t)‖L∞ dt+ ‖ên−1
h ‖L∞

)
.

We have ‖Rh∂tm(t)‖L∞ 6 c‖∂tm(t)‖W 1,∞ by [12, Theorem 8.1.11]. In view of
(8.6) we obtain, for τ 6 C̄h,

(8.9) ‖pnh‖L2 6 Ch‖ėnh‖L2 ,
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and by an inverse estimate,

(8.10) ‖∇pnh‖L2 6 C‖ėnh‖L2.

We also recall the bound (7.9) for ‖rnh‖L2 .
(b) Energy estimates. By subtracting ηk(8.7b) from (8.7a) with the above choice

of test functions, we obtain

(8.11)

α(ėnh − ηkė
n−1
h , ėnh + qnh ) + (ênh × ṁn

⋆,h − ηkê
n−1
h × ṁn−1

⋆,h , ėnh + qnh )

+ (m̂n
h × ėnh − ηkm̂

n−1
h ×ėn−1

h , ėnh + qnh ) + (∇enh − ηk∇en−1
h ,∇(ėnh + qnh))

− ηk
[
α(ėn−1

h ,pnh) + (ên−1
h × ṁn−1

⋆,h ,pnh)

+ (m̂n−1
h × ėn−1

h ,pnh) + (∇en−1
h ,∇pnh)

]

= −(rnh − ηkr
n−1
h , ėnh + qnh )− ηk(r

n−1
h ,pnh).

We estimate the terms of the error equation (8.11) separately and track carefully
the dependence on ηk and α.

The term α(ėnh − ηkė
n−1
h , ėnh) is bounded from below, using Young’s inequality

and absorptions, by

α(ėnh − ηkė
n−1
h , ėnh) > α

(
1− 1

2ηk
)
‖ėnh‖2L2 − α

2 ηk‖ė
n−1
h ‖2L2,

while the term (∇enh−ηk∇en−1
h ,∇ėnh) is bounded from below, via the relation (A.2)

and (6.23), by

(∇enh − ηk∇en−1
h ,∇ėnh) >

1

τ

(
‖∇En

h‖2G − ‖∇En−1
h ‖2G

)
+ (∇enh − ηk∇en−1

h ,∇snh),

with En
h = (en−k+1

h , . . . , enh), and where the G-weighted semi-norm is generated by
the matrix G = (gij) from Lemma A.1 for the rational function δ(ζ)/(1− ηkζ).

The remaining terms outside the rectangular bracket are estimated using the
Cauchy–Schwarz and Young inequalities (the latter often with a sufficiently small
but fixed h- and τ -independent weighting factor µ > 0) and ‖m̂n

h‖L∞ = 1 and
orthogonality. We obtain, with varying constants c (which depend on α and are
inversely proportional to µ)

α(ėnh − ηkė
n−1
h , qnh) + (ênh × ṁn

⋆,h − ηkê
n−1
h × ṁn−1

⋆,h , ėnh + qnh)

+ (m̂n
h × ėnh − ηkm̂

n−1
h × ėn−1

h , ėnh + qnh) + (∇en − ηk∇en−1
h ,∇qnh)

6
(
αµ+ µ+ 1

2ηk
)
‖ėnh‖2L2 +

(
αµηk + 1

2ηk
)
‖ėn−1

h ‖2L2

+ c
(
‖qnh‖L2 + ‖ênh‖2L2 + ‖ên−1

h ‖2L2

)
+ 1

2

(
‖∇enh‖2L2 + η2k‖∇en−1

h ‖2L2 + ‖∇qnh‖L2

)

6
(
αµ+ µ+ 1

2ηk
)
‖ėnh‖2L2 +

(
αµηk + 1

2ηk
)
‖ėn−1

h ‖2L2 + c

k∑

j=0

‖en−j−1
h ‖2H1 ,

where in the last inequality we used (7.12) and (7.13) to estimate ênh.
The terms inside the rectangular bracket are bounded similarly, using (8.9) and

(8.10) and the condition τ 6 C̄h, by

α(ėn−1
h ,pnh) + (ên−1

h × ṁn−1
⋆,h ,pnh) + (m̂n−1

h × ėn−1
h ,pnh) + (∇en−1

h ,∇pnh)
6 µ‖ėnh‖2L2 + ch‖ėn−1

h ‖2L2 + c
(
‖ên−1

h ‖2L2 + ‖∇en−1
h ‖2L2

)

6 µ‖ėnh‖2L2 + c

k∑

j=0

‖en−j−1
h ‖2H1 .
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Here µ is an arbitrarily small positive constant (independent of τ and h), and c
depends on the choice of µ.

In view of (7.9), the terms with the defects rnh are bounded by

− (rnh − ηkr
n−1
h , ėnh + qnh )− ηk(r

n−1
h ,pnh)

6 µ‖ėnh‖2L2 + c
(
‖rnh‖2L2 + ‖rn−1

h ‖2L2 + ‖qnh‖2L2

)

6 µ‖ėnh‖2L2 + c

k∑

j=0

‖en−j−1
h ‖2L2 + c

1∑

j=0

‖dn−j
h ‖2L2 .

Combination of these inequalities yields
(
α(1− 1

2ηk)− 1
2ηk − µ

)
‖ėnh‖2L2 −

(
α
2 ηk +

1
2ηk + µαηk

)
‖ėn−1

h ‖2L2

+
1

τ

(
‖∇En

h‖2G − ‖∇En−1
h ‖2G

)

6 c

k∑

j=0

‖en−j−1
h ‖2H1 + c

1∑

j=0

‖dn−j
h ‖2L2 + c‖∇snh‖2L2 .

Under condition (8.1) we have

ω := α(1 − ηk)− ηk > 0.

Multiplying both sides by τ and summing up from k + 1 to n with n 6 n̄ yields,
for sufficiently small µ,

1
2ωτ

n∑

j=k+1

‖ėjh‖2L2 + ‖∇En
h‖2G

6 cτ‖ėkh‖2L2 + ‖∇Ek
h‖2G + cτ

n−1∑

j=0

‖ejh‖2H1 + cτ

n∑

j=k

‖djh‖2L2 + cτ

n∑

j=k

‖∇sjh‖2L2.

Moreover, testing the error equation (8.7a) for n = k with ėkh + qkh, we obtain by
more straightforward estimates

τ‖ėkh‖2L2 + ‖ekh‖2H1 6 cτ
(k−1∑

i=0

‖eih‖2H1 + ‖dkh‖2L2 + ‖∇skh‖2L2

)
,

which we insert in the above error bound. The proof is then completed using
exactly the same arguments as in the last part of the proof of Lemma 7.1, by
establishing an estimate between ‖enh‖2L2 and τ

∑n
j=k ‖ė

j
h‖2L2 and using a discrete

Gronwall inequality, and completing the induction step for (8.4). �

9. Numerical experiments

To obtain significant numerical results, we prescribe the exact solution m on
given three-dimensional domains Ω := [0, 1]× [0, 1]× [0, L] with L ∈ {1/100, 1/4}.
The discretizations of these domains will consist of a few layers of elements in z-
direction (one layer for L = 1/100 and ten layers for L = 1/4) and a later specified
number of elements in x and y directions. This mimics the common case of thin film
alloys as for example in the standard problems of the Micromagnetic Modeling Ac-
tivity Group at NIST Center for Theoretical and Computational Materials Science
(ctcms.nist.gov). Moreover, this mesh structure helps to keep the computational
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requirements reasonable and allow us to compute the experiments on a desktop
PC. We are aware that these experiments are only of preliminary nature and are
just supposed to confirm the theoretical results. A more thorough investigation
of the numerical properties of the developed method is needed. This will require
us to incorporate preconditioning, parallelization of the computations, as well as
lower order energy contributions in the effective field (1.3) to be able to compare to
benchmark results from computational physics. This, however, is beyond the scope
of this paper, and will be the topic of a subsequent work.

We consider the time interval [0, t̄ ] with t̄ = 0.2 and define two different exact
solutions. Since within our computational budget either the time discretization
error or the space discretization error dominates, we construct the solutions such
that the first one is harder to approximate in space, while the second one is harder to
approximate in time. Both solutions are constant in z-direction as is often observed
in thin-film applications.

9.1. Implementation. The numerical experiments were conducted using the fi-
nite element package FEniCS (www.fenicsproject.org) on a desktop computer.
As already discussed in Section 2.2, there are several ways to implement the tan-
gent space restriction. We decided to solve a saddle point problem (variant (a)
in Section 2.2) for simplicity of implementation. For preconditioning, we used
the black-box AMG preconditioner that comes with FEniCS. Although this might
not be the optimal solution, it keeps the number of necessary iterative solver steps
within reasonable bounds. Assuming perfect preconditioning, the cost per time-step
is then proportional to the number of mesh-elements. We observed this behavior
approximately, although further research beyond the scope of this work is required
to give a definite conclusion.

9.2. Exact solutions. We choose the damping parameter α = 0.2 and define
g(t) := (t̄+ 0.1)/(t̄+ 0.1− t) as well as d(x) := (x1 − 1/2)2 + (x2 − 1/2)2, which is
the squared distance of the projection of x to [0, 1]× [0, 1] and the point (1/2, 1/2).
For some constant C = 400 (a choice made to have pronounced effects), define

(9.1) m(x, t) :=




Ce−
g(t)

1/4−d(x) (x1 − 1/2)

Ce−
g(t)

1/4−d(x) (x2 − 1/2)√
1− C2e−2 g(t)

1/4−d(x) d(x)


 if d(x) 6

1

4
, m(x, t) :=



0
0
1


 else.

It is easy to check that |m(x, t)| = 1 for all (x, t) ∈ Ω×[0, t̄ ]. Moreover, ∂nm(x, t) =
0 for all x ∈ ∂Ω. We may calculate the time derivative of m in a straightforward
fashion, i.e., ∂tm(x, t) = 0 for d(x) > 1/4 and

∂tm(x, t) =




−g′(t)
1/4−d(x)Ce

− g(t)
1/4−d(x) (x1 − 1/2)

−g′(t)
1/4−d(x)Ce

− g(t)
1/4−d(x) (x2 − 1/2)

g′(t)
1/4−d(x)C

2e−2 g(t)
1/4−d(x)

d(x)
m3(x,t)


 if d(x) 6

1

4
.
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Figure 9.1. The first row shows the exact solution m(x, t)
from (9.1) for x ∈ [0, 1]× [0, 1]× {0} and t ∈ {0, 0.05, t̄} (from left
to right), whereas the second row shows the exact solution m̃(x, t)
from (9.2) for x ∈ [0, 1]× [0, 1]×{0} and t ∈ {0, 0.2/6, 0.2/3} (from
left to right). While the problems are three-dimensional, the solu-
tions are constant in z-direction and we only show one slice of the
solution.

Here, m3 denotes the third component of m as defined above.

The second exact solution is defined via

(9.2) m̃(x, t) :=



−(x31 − 3x21/2 + 1/4) sin(3πt/t̄)√

1− (x31 − 3x21/2 + 1/4)2

−(x31 − 3x21/2 + 1/4) cos(3πt/t̄)


 .

Due to the polynomial nature in the first and the third component, and the well-
behaved square-root, the space approximation error does not dominate the time
approximation.

9.3. The experiments. We now may compute the corresponding forcingsH resp.

H̃ to obtain the prescribed solutions by inserting into (1.4), i.e.,

H = α∂tm+m× ∂tm−∆m.

(Note that we may disregard the projection P(m) from (1.4) since we solve in
the tangent space anyway.) We compute H numerically by first interpolating m
and ∂tm and then computing the derivatives. This introduces an additional error
which is not accounted for in the theoretical analysis. However, the examples below
confirm the expected convergence rates and hence we conclude that this additional
perturbation is negligible. Figure 9.1 shows slices of the exact solution at different
time steps. Figure 9.2 shows the convergence with respect to the time step size τ ,
while Figure 9.3 shows convergence with respect to the spatial mesh size h. All
experiments confirm the expected rates for smooth solutions.
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Figure 9.2. The plots show the error between computed solutions
and exact solution m̃ for a given time stepsize with a spatial poly-
nomial degree of r = 2 and a spatial mesh size 1/40 which results
in ≈ 6 ·104 degrees of freedom per time step in the left plot. In the
right plot we use a thicker domainD = [0, 1]×[0, 1]×[0, 1/4]with 10
elements in z-direction. This results in ≈ 4 ·105 degrees of freedom
per timestep. We use the k-step methods of order k ∈ {1, 2, 3, 4}
and observe the expected ratesO(τk) indicated by the dashed lines.
The coarse levels of the higher order methods are missing because
the kth step is already beyond the final time t̄.

Finally, we consider an example with nonsmooth initial data and constant right-
hand side. The initial data are given by

(9.3) m0(x) :=



x1 − 1/2
x2 − 1/2√
1− d(x)


 if d(x) 6

1

4
and m0(x) :=



0
0
1


 else.

With the constant forcing fieldH := (0, 1, 1)T we compute a numerical approxima-
tion to the unknown exact solution. Note that we do not expect any smoothness
of the solution (even the initial data is not smooth). Figure 9.4 nevertheless shows
a physically consistent decay of the energy ‖∇m(t)‖L2(Ω)3 over time as well as a
good agreement between different orders of approximation. Moreover, the com-
puted approximation shows little deviation from unit length as would be expected
for smooth solutions.

Appendix: Energy estimates for backward difference formulae

The stability proofs of this paper rely on energy estimates, that is, on the use of
positive definite bilinear forms to bound the error e in terms of the defect d. This is,
of course, a basic technique for studying the time-continuous problem and also for
backward Euler and Crank–Nicolson time discretizations (see, e.g., Thomée [38]),
but energy estimates still appear to be not well known for backward difference
formula (BDF) time discretizations of order up to 5, which are widely used for
solving stiff ordinary differential equations. To illustrate the basic mechanism, we
here just consider the prototypical linear parabolic evolution equation in its weak



HIGHER-ORDER DISCRETIZATION OF THE LLG EQUATION 39

r = 1

r = 2

r = 3

r = 4

meshsize h

10−4

10−3

10−2

10−1

100

10−1

Figure 9.3. The plot shows convergence in meshsize h with re-
spect to the exact solution m from (9.1) on the domain D =
[0, 1]× [0, 1]× [0, 1/100] with one layer of elements in z-direction.
We used the second order BDF method with τ = 10−3 and spa-
tial polynomial degrees r ∈ {1, 2, 3, 4}. The mesh sizes range from
1/2 to 1/32. We observe the expected rates O(hr) indicated by the
dashed lines. The finest mesh-size for r = 4 does reach the expected
error level. This is due to the fact that the time-discretization er-
rors start to dominate in that region.
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Figure 9.4. Left plot: Decay of energies ‖∇m(t)‖L2(Ω)3 for the
approximations to the unknown solution with m0 and H given in
(9.3) and one line after (9.3). We plot four approximations of the
k-step method with polynomial degree r for r = k ∈ {1, 2, 3, 4}.
The spatial mesh-size is 1/40 and the size of the timesteps is 10−3

(blue) and 10−2 (red). Right plot: Deviation from unit length
‖1−|m(t)|2‖L∞(Ω) plotted over time for step sizes τ = 10−2 (blue),

τ = 10−3 (red), and τ = 10−4 (green). The solid lines indicate
k = 1, whereas the dashed lines indicate k = 2. The spatial mesh-
size is 1/40 with r = 1.
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formulation, given by two positive definite symmetric bilinear forms (·, ·) and a(·, ·)
on Hilbert spaces H and V with induced norms | · | and ‖ · ‖, respectively, and with
V densely and continuously embedded in H . The problem then is to find u(t) ∈ V
such that

(A.1) (∂tu, v) + a(u, v) = (f, v) ∀v ∈ V,

with initial condition u(0) = u0. If u⋆ is a function that satisfies the equation up
to a defect d, that is,

(∂tu
⋆, v) + a(u⋆, v) = (f, v) + (d, v) ∀v ∈ V,

then the error e = u−u⋆ satisfies, in this linear case, an equation of the same form,

(∂te, v) + a(e, v) = (d, v) ∀v ∈ V,

with initial value e0 = u0 − u⋆0. Testing with v = e yields

1

2

d

dt
|e|2 + ‖e‖2 = (d, e).

Estimating the right-hand side by (d, e) 6 ‖d‖⋆ ‖e‖ 6 1
2‖d‖2⋆+ 1

2‖e‖2, with the dual
norm ‖ · ‖⋆, and integrating from time 0 to t results in the error bound

|e(t)|2 6 |e(0)|2 +
∫ t

0

‖d(s)‖2⋆ ds.

On the other hand, testing with v = ∂te yields

|∂te|2 +
1

2

d

dt
‖e‖2 = (d, ∂te),

which leads similarly to the error bound

‖e(t)‖2 6 ‖e(0)‖2 +
∫ t

0

|d(s)|2 ds.

This procedure is all-familiar, but it is not obvious how to extend it to time dis-
cretizations beyond the backward Euler and Crank–Nicolson methods. The use of
energy estimates for BDF methods relies on the following remarkable results.

Lemma A.1. (Dahlquist [18]; see also [8] and [27, Section V.6]) Let δ(ζ) = δkζ
k +

· · ·+ δ0 and µ(ζ) = µkζ
k + · · ·+µ0 be polynomials of degree at most k (and at least

one of them of degree k) that have no common divisor. Let (·, ·) be an inner product

with associated norm | · |. If

Re
δ(ζ)

µ(ζ)
> 0 for |ζ| < 1,

then there exists a positive definite symmetric matrix G = (gij) ∈ Rk×k such that

for v0, . . . , vk in the real inner product space,

( k∑

i=0

δivk−i,

k∑

j=0

µjvk−j

)
>

k∑

i,j=1

gij(vi, vj)−
k∑

i,j=1

gij(vi−1, vj−1).

In combination with the preceding result for the multiplier µ(ζ) = 1 − ηkζ, the
following property of BDF methods up to order 5 becomes important.
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Lemma A.2. (Nevanlinna & Odeh [34]) For k 6 5, there exists 0 6 ηk < 1 such

that for δ(ζ) =
∑k

ℓ=1
1
ℓ (1− ζ)ℓ,

Re
δ(ζ)

1− ηkζ
> 0 for |ζ| < 1.

The smallest possible values of ηk are

η1 = η2 = 0, η3 = 0.0836, η4 = 0.2878, η5 = 0.8160.

Precise expressions for the optimal multipliers for the BDF methods of orders
3, 4 and 5 are given by Akrivis & Katsoprinakis [1].

An immediate consequence of Lemma A.2 and Lemma A.1 is the relation

(A.2)
( k∑

i=0

δivk−i, vk − ηkvk−1

)
>

k∑

i,j=1

gij(vi, vj)−
k∑

i,j=1

gij(vi−1, vj−1)

with a positive definite symmetric matrix G = (gij) ∈ Rk×k; it is this inequality
that plays a crucial role in our energy estimates, and the same inequality for the
inner product a(·, ·).

The error equation for the BDF time discretization of the linear parabolic prob-
lem (A.1) reads

(ėn, v) + a(en, v) = (dn, v) ∀v ∈ V, where ėn =
1

τ

k∑

j=0

δje
n−j ,

with starting errors e0, . . . , ek−1. When we test with v = en−ηken−1, the first term
can be estimated from below by (A.2), the second term is bounded from below by
(1 − 1

2ηk)‖en‖2 − 1
2ηk‖en−1‖2, and the right-hand term is estimated from above

by the Cauchy–Schwarz inequality. Summing up from k to n then yields the error
bound

(A.3) |en|2 + τ

n∑

j=k

‖ej‖2 6 Ck

(k−1∑

i=0

(
|ei|2 + τ‖ei‖2

)
+ τ

n∑

j=k

‖dj‖2⋆
)
,

where Ck depends only on the order k of the method. This kind of estimate for the
BDF error has recently been used for a variety of linear and nonlinear parabolic
problems [33, 3, 2, 30].

On the other hand, when we first subtract ηk times the error equation for n− 1
from the error equation with n and then test with ėn, we obtain

(ėn − ηkė
n−1, ėn) + a(en − ηke

n−1, ėn) = (dn − ηkd
n−1, ėn).

Here, the second term is bounded from below by (A.2) with the a(·, ·) inner product,
the first term is bounded from below by (1− 1

2ηk)|ėn|2− 1
2ηk|ėn−1|2, and the right-

hand term is estimated from above by the Cauchy–Schwarz inequality. Summing
up from k + 1 to n then yields the error bound

(A.4) ‖en‖2 + τ
n∑

j=k+1

|ėj |2 6 ck

( k∑

i=0

‖ei‖2 + ηkτ |ėk|2 + τ
n∑

j=k

|dj |2
)
.
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Moreover, testing the error equation for n = k with ėk and once again using the
Cauchy–Schwarz and Young inequalities yields

‖ek‖2 + τ |ėk|2 6 c̃k

(k−1∑

i=0

‖ei‖2 + τ |dk|2
)
.

When we insert this bound in (A.4), we finally arrive at the bound, valid for n > k,

(A.5) ‖en‖2 + τ

n∑

j=k

|ėj |2 6 Ck

(k−1∑

i=0

‖ei‖2 + τ

n∑

j=k

|dj |2
)
.

It is this type of estimate that we use in the present paper for the nonlinear problem
considered here. This technique has previously been used in [29].
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[17] I. Cimrák, A survey on the numerics and computations for the Landau–Lifshitz equation of

micromagnetism, Arch. Comput. Methods Eng. 15 (2008) 277–309.
[18] G. Dahlquist, G-stability is equivalent to A-stability, BIT 18 (1978) 384–401.



HIGHER-ORDER DISCRETIZATION OF THE LLG EQUATION 43

[19] G. Di Fratta, C. M. Pfeiler, D. Praetorius, M. Ruggeri, and B. Stiftner, Linear second-

order IMEX-type integrator for the (eddy current) Landau–Lifshitz–Gilbert equation, IMA J.
Numer. Anal. 40 (2020) 2802–2838.

[20] J. Douglas Jr., T. Dupont, and L. Wahlbin, The stability in L
q of the L

2-projection into

finite element function spaces, Numer. Math. 23 (1974/75) 193–197.
[21] M. Feischl and T. Tran, The eddy current–LLG equations: FEM–BEM coupling and a priori

error estimates, SIAM J. Numer. Anal. 55 (2017) 1786–1819.
[22] M. Feischl and T. Tran, Existence of regular solutions of the Landau-Lifshitz-Gilbert equation

in 3D with natural boundary conditions, SIAM J. Math. Anal. 49 (2017) 4470–4490.
[23] H. Gao, Optimal error estimates of a linearized backward Euler FEM for the Landau–Lifshitz

equation, SIAM J. Numer. Anal. 52 (2014) 2574–2593.
[24] I. Garate and A. H. MacDonald, Influence of a transport current on magnetic anisotropy in

gyrotropic ferromagnets, Phys. Rev. B 80 (2009) 134403.
[25] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory

and Algorithms, Springer-Verlag, Berlin, 1986.
[26] B. Guo and S. Ding, Landau-Lifshitz Equations, World Scientific, Hackensack, NJ, 2008.
[27] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II : Stiff and Differential–

Algebraic Problems, 2nd revised ed., Springer–Verlag, Berlin Heidelberg, Springer Series in
Computational Mathematics v. 14, 2002.

[28] S. Jaffard, Propriétés des matrices “bien localisées” près de leur diagonale et quelques appli-

cations, Ann. Inst. H. Poiccaré Non Linéaire 7 (1990) 461–476.
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