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Abstract. We construct and analyze iterative methods for the efficient solution of

the nonlinear equations that result from the application of Implicit Runge–Kutta

methods to the temporal integration of nonlinear evolution equations. Some of the

schemes we consider have as starting point Newton’s method and can be applied to

a large class of evolution equations.

RÈSUMÈ. On construit et analyse des méthodes itératives permettant une rśolution

efficace des systèmes non linéaires issus de la discrétisation en temps d’équations

d’évolution non linéaires par des méthodes de Runge–Kutta implicites. Certains

schémas considérés dérivent de la méthode de Newton et s’appliquent à une large

classe d’équations non linéaires.

1. Introduction

Whenever an implicit Runge–Kutta method is used to generate approximations of

solutions of evolution equations, the issue of solving the resulting system of equations

arises. One realises the importance of this simply by recognizing the fact that the

computational work is almost entirely concentrated there.

In this work, our aim is to propose and analyze efficient solutions to this problem.

With this in mind, the first issue that we needed to address was the choice of an ap-

propriate class of evolution problems to consider. This had to be sufficiently large to

encompass problems of practical interest and yet one that could be described simply.

Two specific types of problems we wished to study were stiff systems of nonlinear ordi-

nary differential equations (posed on R
m for some fixed m) and, mainly, large, sparse

stiff systems resulting from finite element or finite difference spatial semidiscretization

of initial and boundary value problems for nonlinear partial differential equations with

smooth solutions. In the latter case, the size of the systems increases without bound as

the spatial discretization parameters tend to zero. In order to conduct the analysis in a

unified manner we chose to work in the setting of a family of finite-dimensional Hilbert

spaces Hm parametrized by a positive parameter m that can take large values. This

family may reduce to a single member (Rm) in the case of a specific system of o.d.e.’s

or represent, for example, a sequence of finite element spaces of increasing dimension.

The work of these authors was supported by a Greece–USA Collaboration in Research and Tech-

nology Grant INT-9107457.
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In the case of a semidiscretization of a partial differential operator, the parameter m

also enters the problem as a measure of the magnitude of the error of the semidiscrete

approximation, through the comparability constants of several norms defined on Hm

for the purpose of the error analysis and through bounds on quantities associated with

the nonlinear part of the p.d.e. Since it is imperative that all the error constants be

bounded independently of m, all quantities depending on the latter must be carefully

monitored.

The techniques of error estimation are motivated by our previous studies of low- and

high-order accurate IRK temporal discretizations (and their efficient implementation)

in the context of the Korteweg–de Vries equation ([3], [8], [12], [4]) and the nonlinear

Schrödinger equation ([1], [11]). In the paper at hand we work in an abstract setting

and under assumptions on the nonlinear terms that permit the analysis to carry over to

more general problems and to other semidiscretization of nonlinear evolution equations

as well.

This paper is organized as follows. In Section 2 we introduce the problem and the

attendant notation and state the basic assumptions on the solution, the operators in

the differential equation and on the IRK schemes. A basic feature of our work is that

the assumptions an the nonlinear part of the operator afford us a considerable general-

ization over the (global) monotonicity condition frequently assumed in the literature.

Indeed, our methodology is designed to apply to specific classes of p.d.e.’s with spatial

derivatives in the nonlinear terms. In this approach, which invokes a local monotonic-

ity condition, one takes pains to operate in a neighborhood of (or in a tube around) a

smooth solution of the evolution equation. This idea is certainly not new. Indeed it

is a pervading, though not explicitly recognized theme in the works of many authors,

including the present ones, who have analyzed spatial and temporal discretizations of

solutions to time dependent p.d.e.’s. Its importance is beginning to be explicitly recog-

nized, see e.g. [2], [14]. The examples contained in this work should convince the reader

that the particular norm defining the tube around the solution is highly dependent on

the particular nonlinearity and is much more likely to be an L∞−based Sobolev norm

than the Hilbert space norm.

In Section 3 we introduce the base scheme that is obtained by applying the IRK

method to the initial-value problem. For the purposes of the error analysis we found

convenient to assume that the IRK schemes under consideration are algebraically sta-

ble, satisfy the usual simplifying assumptions on the order conditions and, also, a pos-

itivity property that guarantees the existence of solutions of the nonlinear system of

intermediate stages [7]. We consider issues of existence and uniqueness of the solutions

of the resulting discrete problems and estimate their errors. We then prove a general

convergence result for the base scheme with an error estimate of optimal-rate spatial

accuracy. The techniques we used are well-known and can be found, with references to

the original papers in [6], [9]. Nevertheless, we also note that the analysis presented,

especially in what concerns stability, uses only the local monotonicity condition alluded

to above rather than the global version.
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In Section 4 we consider Newton’s iterative method for solving the nonlinear system

of the intermediate equations. We show that it preserves the spatial and temporal

orders of accuracy of the base scheme, provided it is started with sufficiently accurate

initial conditions at each time step, if certain suitable mesh conditions are valid, and

if sufficiently many Newton iterations are performed at each time step. The number

of iterations needed depends on the accuracy of the starting values and the temporal

order of accuracy of the base scheme. It is shown that under some realistic conditions,

no more than one iteration is needed.

In Section 5 we study an efficient variant of Newton’s method, the so-called modified

Newton method. The obvious advantage that the Jacobian matrix need not be updated

at every iteration is enhanced by the possibility of decoupling and simultaneous solving

(“in parallel”) for the intermediate stages. The modified scheme no longer converges

quadratically; we show however that, with sufficiently many iterations, it preserves the

spatial and temporal orders of accuracy of the base scheme. In Section 6 we analyze an

even simpler iterative scheme, which is sometimes referred to as the “explicit–implicit”

method as it is based on a splitting of the linear and nonlinear parts of the operator.

The resulting method is very efficient in that the linear systems that need to be solved

have the same coefficient matrix, i.e. a matrix that does not vary with the time stepping.

However this scheme is not applicable to as a wide class of evolution equations as the

modified Newton method.

Finally, in Section 7 we apply the methodology developed in the previous sections

to two concrete examples corresponding to finite element semidiscretizations of the

Korteweg–de Vries (KdV) and the Cubic Schrödinger equations. In addition to pro-

viding illustrative examples to the formal approach adopted in the work at hand, the

results of this section supplement those in [12] and [11] by providing complete analyses

of efficient linearizations of the fully discrete schemes proposed in those works. Besides

establishing convergence, the following useful information is gleaned:

(i) The number of iterations required to preserve the rate of convergence of the base

scheme is determined for each linearization technique.

(ii) Typically, Courant number type stability conditions between the spatial and tem-

poral discretization parameters are required. These are explicitly exhibited.

Newton-type methods for solving the nonlinear systems resulting from IRK schemes

have often been considered in the literature of stiff systems of o.d.e.’s. For a survey of

the literature and a list of references we refer the reader to a recent paper of Alexan-

der, [2]. In that work, Alexander analyzes the modified Newton method as applied to

nonlinear systems resulting from the application of quite general IRK schemes to stiff

systems of o.d.e.’s, that have a Jacobian of the right-hand side term which is essentially

negative dominant and slowly varying. Using matrix methods he proves that the mod-

ified Newton iteration converges linearly to the locally unique solution of o.d.e.’s. In

this work, we emphasize models of stiff initial-value problems that are semidiscretiza-

tions of nonlinear p.d.e.’s. In such cases, especially if higher-order semidiscretizations

are used, the Jacobian may not be essentially negative dominant, or if such be the
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case, it may be quite difficult to establish this property given that the entries of the

Jacobian must be examined.

2. Preliminaries

2.1. The basic assumptions. Let M denote a set of positive numbers (infinite or

otherwise) and for m ∈ M , let (Hm, (·, ·)Hm
) denote a corresponding family of finite

dimensional (real) inner product spaces. In some applications M may be a set of

positive integers and m may denote the dimension of Hm; in others, m may be used to

denote a more general parameter for Hm.

We consider the following family of initial-value problems

(2.1)







dωm

dt
= Lmωm + ϕm(ωm) + εm(t), 0 ≤ t ≤ T,

ωm(0) = ω0
m,

for some T > 0, where ωm : [0, T ] → Hm, Lm : Hm → Hm are linear operators,

ϕm : Hm → Hm are smooth functions and εm : [0, T ] → Hm are smooth functions

satisfying

(H1) max
0≤t≤T

‖εm(t)‖Hm
≤ cm−s,

for some s > 0 and a constant c independent of m.

One area of application of (2.1) we have in mind is that when ωm represents a

continuous-in-time approximation to the solution u of the time dependent p.d.e.






du

dt
= Lu+ ϕ(u), 0 ≤ t ≤ T,

u(0) = u0.

In this case, the functions εm(t) may represent semidiscretization errors, and may be

unknown. In view of (H1) and other considerations to follow, it turns out that the

εm(t) will not play a major part in the time integration process.

We assume that for some constants λ, η, independent of m,

(Lmv, v)Hm
≤ λ‖v‖2Hm

, ∀v ∈ Hm,(H2)

(ϕm(v), v)Hm
≤ η‖v‖2Hm

, ∀v ∈ Hm.(H3)

Note that ϕm(0) = 0, as a consequence of (H3) and the continuity of ϕm. To simplify

matters, we assume that λ, η ≥ 0.

We assume that for each m,Hm is additionally equipped with norms ||| · |||i,m, i =

1, 2, 3, 4. These norms are obviously equivalent to ‖ · ‖Hm
. Specifically, let c > 0 and

s1, s2, s3, s4 ≥ 0 be constants independent of m such that

(2.2) |||v|||i,m ≤ cmsi‖v‖Hm
, i = 1, 2, 3, 4, ∀v ∈ Hm.

For m ∈ M , i = 1, 2, 3, 4 and ρ > 0, we introduce the sets

Bi,m(ρ) = {v ∈ Hm : |||v|||i,m ≤ ρ}.
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Now let M,K, β, γ and δ be given positive numbers. For m ∈ M , we introduce the

spaces F 1
m,K,M ,F

2
m,K,M,β,F

3
m,K,M,γ and F 4

m,K,M,γ by

F 1
m,K,M = {g : Hm → Hm| (g(u)−g(v), u−v)Hm

≤ K‖u−v‖2Hm
∀u ∈ B1,m(M), ∀v ∈ Hm},

F 2
m,K,M,β = {g : Hm → Hm| (Dg(u)v, v)Hm

≤ Kmβ‖v‖2Hm
∀u ∈ B2,m(M), ∀v ∈ Hm},

F 3
m,K,M,γ = {g : Hm → Hm| ‖Dg(u)v‖Hm

≤ Kmγ‖v‖Hm
∀u ∈ B3,m(M), ∀v ∈ Hm},

F 4
m,K,M,δ = {g : Hm → Hm| ‖D

2g(u)[v, w]‖Hm
≤ Kmδ‖v‖Hm

‖w‖Hm

∀u ∈ B4,m(M), ∀v, w ∈ Hm}.

Here, Dg,D2g are the first and second Fréchet derivatives of g, respectively.

We assume that there exist nonnegative constants M,K, β, γ, δ such that

ϕm ∈ F 1
m,K,M , ∀m ∈ M ,(H4)

ϕm ∈ F 2
m,K,M,β, ∀m ∈ M ,(H5)

ϕm ∈ F 3
m,K,M,γ, ∀m ∈ M ,(H6)

ϕm ∈ F 4
m,K,M,δ, ∀m ∈ M .(H7)

We observe that if (H2) holds, then it follows from (H4) and (H5) that ∀m ∈

M , Lm + ϕm ∈ F 1
m,K,M ,F

2
m,K,M,β, respectively with K replaced by K + λ.

The definition of F 1
m,K,M explicitly formulates what we previously referred to as the

local monotonicity condition: One of the two vectors u, v is restricted to a suitable ball

B1,m(M) containing the solution of the p.d.e. Let us also note that the lack of explicit

dependence on t is purely for the sake of simplicity.

For each m ∈ M , (2.1) has a unique solution ωm : [0, T ] → ∩4
j=1Bj,m

(M

2

)

.(H8)

max
0≤t≤T

∥

∥

dj

dtj
ωm(t)

∥

∥

Hm
≤ cj , j = 0, . . . , J,(H9)

for a sufficiently large J and constants cj independent of m.

To simplify the notation, we shall suppress subscripts m and Hm whenever possible.

Let us also mention that in case the problem is a stiff nonlinear system of o.d.e.’s, not

associated with any semidiscretization, we think of it as posed on Rm for a fixed m. In

such a case εm = 0.

Remark 2.1. One could argue that hypotheses (H2) and (H3) are global in nature;

however, many classes of important p.d.e.’s e.g. parabolic and hyperbolic, as well as

specific equations such as the Korteweg–de Vries equation, the Nonlinear Schrödinger

equation and the Navier–Stokes equations of fluid mechanics satisfy them. This is in

sharp contrast with hypotheses (H4)–(H7) which can only be used in a local setting in

order to treat the above-mentioned equations. �
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2.2. The Implicit Runge–Kutta methods. For q ≥ 1 integer, a q−stage IRK

method is given as a set of constants A = (aij) ∈ Rq×q, b = (b1, . . . , bq)
T ∈ Rq, τ =

(τ1, . . . , τq)
T ∈ Rq. We shall assume that these methods satisfy certain stability and

consistency conditions. Indeed, we require the algebraic stability condition cf. [6]

(S)











bi ≥ 0, i = 1, . . . , q,

the q × q array with entries mij = aijbi + ajibj − bibj

is positive semidefinite.

The consistency conditions are given by the simplifying assumptions [6]

q
∑

j=1

bjτ
ℓ
j =

1

ℓ+ 1
, ℓ = 0, . . . , ν − 1,(B)

q
∑

j=1

aijτ
ℓ
j =

τ ℓ+1
i

ℓ+ 1
, i = 1, . . . , q, ℓ = 0, . . . , p− 1,(C)

q
∑

i=1

aijτ
ℓ
i bi =

bj

ℓ+ 1
(1− τ ℓ+1

j ), j = 1, . . . , q, ℓ = 0, . . . , ρ− 1,(D)

for some integers ν, p, ρ ≥ 1. We assume that

ν ≤ ρ+ p+ 1,(2.3a)

ν ≤ 2p+ 2.(2.3b)

The existence of the numerical approximations is obtained by assuming the following

positivity property

(P)

{

A is invertible and there exists a positive diagonal matrix D such that

xTCx > 0, ∀x ∈ R
q, x 6= 0, where C = DA−1D−1.

Two classes of IRK methods satisfying the hypotheses above are the Gauss–Legendre

methods for which ν = 2q, p = q, ρ = q and the Radau IIA methods for which ν =

2q− 1, p = q, ρ = q− 1, [6]. We also mention two diagonally implicit (DIRK) methods

of orders 3 and 4, respectively. (The fourth-order method does not satisfy (2.3a).

However, cf. [12], [11], our theory holds for this method as well.)

3. The base scheme

As noted earlier, the techniques employed in this section are well known. The purpose

of the detailed treatment of the base scheme is to provide a benchmark (in terms of the

spatial and temporal orders of accuracy of its global error) against which we measure

the accuracy of the linearized schemes that are introduced in the subsequent sections.

We begin with a preliminary result which shows that in view of (H1) it is possible

to disregard the terms ε(t) while constructing the temporal discretizations. Denoting

L+ ϕ by f, we have



NONLINEAR SYSTEMS IN IMPLICIT RUNGE–KUTTA METHODS 7

Lemma 3.1. Let ω : [0, T ] → Hm be the solution of (2.1) and let v : [0, T ] → Hm be

a solution of the initial value problem

(3.1)







dv

dt
= f(v), 0 ≤ t ≤ T,

v(0) = ω0.

Then, there exists a constant c, independent of m such that

(3.2) max
0≤t≤T

‖(ω − v)(t)‖ ≤ cm−s.

Proof. From (2.1) and (3.1), we get,

d

dt
(ω − v) = f(ω)− f(v) + ε(t).

Taking the inner product with ω − v, from (H2) and (H4) we get

d

dt
‖ω − v‖2 ≤ 2(λ+K)‖ω − v‖2 + 2‖ε(t)‖ ‖ω − v‖, 0 ≤ t ≤ T.

Using (H1), we easily get (3.2). �

Let N be a positive integer and let k = T
N

represent the temporal step size. We

introduce the map R(k) = R : Hm → Hm as follows: For v ∈ Hm, let the intermediate

values vi ∈ Hm, 1 ≤ i ≤ q, be given by

(3.3) vi = v + k

q
∑

j=1

aijf(v
j), i = 1, . . . , q.

We then set

(3.4) Rv = v + k

q
∑

i=1

bif(v
i).

Note that the existence of Rv depends solely on the existence of the intermediate

values {vi}qi=1 satisfying (3.3). Furthermore, since A is invertible in view of (P), (3.4)

may be written as

(3.4′) Rv = (1− bTA−1
e)v + bTA−1(v1, . . . , vq)T ,

where e = (1, . . . , 1)T ∈ Rq.

We shall next consider the question of existence of the intermediate values. Using a

well-known version of Brouwer’s fixed point theorem, we shall prove that if k is suffi-

ciently small, then for each v ∈ Hm, there exists al least one solution set {{vi}qi=1,Rv}

to (3.3), (3.4). For simplicity of notation, we shall represent this set simply by Rv.

Note however that, for nonlinear f, the map R cannot be expected to be single-valued

in general.

Lemma 3.2. Let (H, (·, ·)H) be a finite dimensional Hilbert space and denote by ‖ · ‖H
the associated norm. Suppose that g : H → H is continuous and that there exists α > 0

such that (g(x), x)H ≥ 0 for all x ∈ H with ‖x‖H = α. Then, there exists x∗ ∈ H such

that g(x∗) = 0 and ‖x∗‖H ≤ α. �
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Proposition 3.1. Assume that (H2), (H3) and (P) hold. Then there exists k0 =

k0(A, b, λ, η) > 0 such that for each 0 < k ≤ k0, and each v ∈ Hm, there exists a

solution {{vi}qi=1,Rv} to (3.3), (3.4). Furthermore, all such solutions {{vi}qi=1} satisfy

(3.5) max
1≤i≤q

‖vi‖ ≤ c‖v‖,

for some constant c = c(A, λ, η) > 0. If (S) is also assumed to hold, then all such

solutions Rv satisfy the estimate

(3.6) ‖Rv‖ ≤ (1 + ck)‖v‖,

for some constant c = c(A, b, λ, η) > 0.

Proof. We first establish (3.5) and (3.6). From (3.3), we obtain

q
∑

j=1

cijdjv
j =

q
∑

j=1

cijdjv + kdif(v
i), i = 1, . . . , q,

where C,D are as in (P). Taking the inner product of the i−th equation with div
i,

summing over i, from (P), (H2) and (H3) it follows that for some constants c1, c2
depending only on A,

c1

q
∑

i=1

‖vi‖2 ≤ c2‖v‖
(

q
∑

i=1

‖vi‖2
)1/2

+ k(λ+ η)
(

max
i
d2i
)

q
∑

i=1

‖vi‖2.

Choosing k0 =
c1

2(λ+η)(maxi d2i )
, we obtain (3.5) for any 0 < k ≤ k0.

Now from (3.3) and (3.4) it follows that

‖Rv‖2 = ‖v‖2 + 2k

q
∑

i=1

bi(f(v
i), v) + k2

q
∑

i,j=1

bibj(f(v
i), f(vj))

= ‖v‖2 + 2k

q
∑

i=1

bi(f(v
i), vi)− k2

q
∑

i,j=1

mij(f(v
i), f(vj)).

Using (H2), (H3) and (S),

(3.7) ‖Rv‖2 ≤ ‖v‖2 + 2k(λ+ η)
(

max
1≤i≤q

bi
)

q
∑

i=1

‖vi‖2.

Using (3.5) in (3.7), we obtain (3.6).

Concerning the question of existence, we first note that if v = 0, then Rv = 0 is

a solution, in view of the fact that f(0) = 0. Hence, let v 6= 0 and define the map

G = (g1, . . . , gq)
T : (Hm)

q → (Hm)
q by

gi(V ) =

q
∑

j=1

cijdidj(v
i − v)− kd2i f(v

i), i = 1, . . . , q,

for V = (v1, . . . , vq)T , vi ∈ Hm, i = 1, . . . , q. Let ((·, ·)) denote the usual (product) inner

product on (Hm)
q, and ||| · ||| the associated norm.
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Then we have

((G(V ), V )) =

q
∑

i,j=1

cijdidj{(v
i, vj)− (v, vi)} − k

q
∑

i=1

d2i (f(v
i), vi).

We see immediately that for 0 < k ≤ k0

((G(V ), V )) ≥ c1|||V |||
2 − c2‖v‖ |||V ||| − k(λ+ η)

(

max
i
d2i
)

|||V |||2

≥ |||V |||
{c1

2
|||V ||| − c2‖v‖

}

.

Hence ((G(V ), V )) ≥ 0 for all V ∈ (Hm)
q satisfying |||V ||| = 2c2

c1
‖v‖. Using Lemma 3.2,

we infer that there exists V ∗ ∈ (Hm)
q such that G(V ∗) = 0. Obviously (v1, . . . , vq)T =

V ∗ is a solution of (3.3). �

We shall often use steps similar to those leading to the estimate (3.5). In such

occurrences, these shall be referred to as diagonalization arguments.

We next consider the following stability result

Proposition 3.2. Assume that (H2), (H4), (S) and (P) hold. Then, there exists

k0 = k0(A, b, λ,K) > 0 such that if {v, {vi}qi=1,Rv} and {w, {wi}qi=1,Rw} satisfy (3.3)

with 0 < k ≤ k0 and {vi}qi=1 ⊂ B1(M), (or {wi}qi=1 ⊂ B1(M)), then

(3.8) max
1≤i≤q

‖vi − wi‖ ≤ c‖v − w‖,

(3.9) ‖Rv − Rw‖ ≤ (1 + ck)‖v − w‖,

for some constant c = c(A, b, λ,K).

Proof. Applying a diagonalization procedure to the system

vi − wi = v − w + k

q
∑

j=1

aij
(

f(vj)− f(wj)
)

, i = 1, . . . , q,

we obtain (3.8) from (H2), (H4) and (P). Furthermore, using (S), we obtain

(3.10)

‖Rv − Rw‖2 ≤ ‖v − w‖2 + 2k

q
∑

i=1

bi
(

f(vi)− f(wi), vi − wi
)

− k2
q

∑

i,j=1

mij

(

f(vi)− f(wi), f(vj)− f(wj)
)

≤ ‖v − w‖2 + 2k
(

max
1≤i≤q

bi
)

(λ+K)

q
∑

i=1

‖vi − wi‖2.

(3.9) now follows from (3.8) and (3.10). �

Note that, as a result of the above, there exists at most one set {vi}qi=1 in B1(M)

satisfying (3.3).

We now focus attention on the local truncation errors. Letting tn = nk and tn,i =

tn + kτi, i = 1, . . . , q, n = 0, . . . , N − 1, we have:
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Proposition 3.3. Assume that hypotheses (H1), (H2), (H3), (H4), (H8), (H9), (B),

(C) and (P) hold. Then there exists k0 > 0 such that for all 0 < k ≤ k0 and for

n = 0, . . . , N − 1, there exist ωn,i, ωn+1 = Rω(tn) satisfying

(3.11) ωn,i = ω(tn) + k

q
∑

j=1

aijf(ω
n,j), i = 1, . . . , q,

(3.12) ωn+1 = Rω(tn) = ω(tn) + k

q
∑

i=1

bif(ω
n,i).

Furthermore,

(3.13) max
1≤i≤q

‖ω(tn,i)− ωn,i‖ ≤ ck(kp +m−s),

(3.14) ‖ωn+1 − ω(tn+1)‖ ≤ ck(kmin{p,ν} +m−s),

for some constant c independent of k and m.

Proof. The existence of {ωn,i}qi=1 and hence of ωn+1 follows from Proposition 3.1. Now

let {ρn,i}qi=1 and ρn+1 in Hm be given by

(3.15) ρn,i = ω(tn,i)− ω(tn)− k

q
∑

j=1

aijf(ω(t
n,j)),

(3.16) ρn+1 = ω(tn+1)− ω(tn)− k

q
∑

i=1

bif(ω(t
n,i)).

From (2.1), Taylor’s theorem, (H1) and (H9),

ρn,i = ω(tn,i)− ω(tn)− k

q
∑

j=1

aij
[dω

dt
(tn,j)− ε(tn,j)

]

=

p
∑

ℓ=1

kℓ
τ ℓi
ℓ!

dℓω

dtℓ
(tn)− k

q
∑

j=1

aij

p
∑

ℓ=1

kℓ−1
τ ℓ−1
j

(ℓ− 1)!

dℓω

dtℓ
(tn) +O(kp+1 + km−s).

Using (C), it follows easily that

(3.17) max
1≤i≤q

‖ρn,i‖ ≤ ck(kp +m−s).

Now it follows from (3.15) and (3.11) that

(3.18) ω(tn,i)− ωn,i = k

q
∑

j=1

aij
[

f(ω(tn,j))− f(ωn,j)
]

+ ρn,i.

In view of (P), (H2), (H4), (H8) and (3.17), a diagonalization argument gives (3.13)

for k sufficiently small.

Proceeding as is the derivation of (3.17) but using (B) instead of (C), we obtain

(3.19) ‖ρn+1‖ ≤ ck(kν +m−s).
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Moreover, it follows from (3.12), (3.16) and (3.18) that

ω(tn+1)− ωn+1 = k

q
∑

i=1

bi
[

f(ω(tn,i))− f(ωn,i)
]

+ ρn+1

=

q
∑

i,j=1

bi(A
−1)ij

[

ω(tn,j)− ωn,j − ρn,j
]

+ ρn+1.

(3.14) now follows from (3.13), (3.17) and (3.19). �

In case εm = 0, i.e., when we have no semidiscretization of a p.d.e. in mind, the

results of Propositions 3.3 hold without any spatial contribution m−s in the bounds

(3.13) or (3.14). The same holds for the rest of the analogous estimates in Sections

3–6.

We are now ready to state and prove the main result of this section.

Theorem 3.1. Assume that the hypotheses of Propositions 3.1, 3.2 and 3.3 hold.

Assume additionally that

(i) s1 ≤ s.

Then there exist k0, m0, c0 > 0 such that for all 0 < k ≤ k0 and all m ≥ m0 satisfying

(ii) kp+1ms1 ≤ c0,

there exists a sequence V 0, {{V n,i}qi=1, V
n+1}N−1

n=0 ⊂ Hm given by

(3.20)



































V 0 = ω0,

V n,i = V n + k

q
∑

j=1

aijf(V
n,j), i = 1, . . . , q,

V n+1 = RV n = V n + k

q
∑

i=1

bif(V
n,i).

In addition, the following estimate holds

(3.21) max
0≤n≤N

‖ω(tn)− V n‖ ≤ ck{kmin{p,ν} +m−s},

for some constant c independent of k and m. We shall call (3.20) the “base scheme”.

Proof. Applying Proposition 3.1 repeatedly, we can establish the existence of a sequence

{{V n,i}qi=1, V
n+1}N−1

n=0 satisfying (3.20). Now using (H8), (2.2) and (3.13),

|||ωn,i|||1 ≤ |||ωn,i − ω(tn,i)|||1 + |||ω(tn,i)|||1(3.22)

≤ cms1k{kp +m−s}+
M

2
, i = 1, . . . , q.

Hence, in view of (i) and (ii), for k sufficiently small, it follows that

(3.23) ωn,i ∈ B1

(

3
M

4

)

, i = 1, . . . , q, n = 0, . . . , N − 1.

Applying Proposition 3.2, we see that

‖ωn+1 − V n+1‖ ≤ (1 + ck)‖ω(tn)− V n‖.
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From (3.14) and the triangle inequality, it follows that for n = 0, . . . , N − 1,

‖ω(tn+1)− V n+1‖ ≤ (1 + ck)‖ω(tn)− V n‖+ ck{kmin{p,ν} +m−s}.

(3.21) now follows easily from recursion. �

Remarks

1) It is obvious that Theorem 3.1 remains valid for any choice of V 0 in Hm that

satisfies

(3.24) ‖V 0 − ω0‖ ≤ cm−s,

where c is independent of m. Consequently, we shall refer to (3.20) with V 0 satisfying

(3.24) as the “base scheme” as well.

2) (i) and (ii) form a set of convenient sufficient conditions that guarantee that

ωn,i ∈ B1(M) for all n, i. In special cases, (3.23) may be proved in a more direct

manner, cf. e.g. [3].

3) If sj ≤ s and kp+1msj ≤ c0 for some j, 1 ≤ j ≤ 4, c0 sufficiently small, then

(3.25) ωn,i ∈ Bj

(

3
M

4

)

, i = 1, . . . , q, 0 ≤ n ≤ N − 1.

In general 1 ≤ p ≤ q whilst ν may be as large as 2q, as in the case of Gauss–

Legendre methods. For some specific problems, using (D), (2.3a), (2.3b) and specialized

techniques, one may obtain an improved rate of convergence estimate for the base

scheme. See for instance [12], [11]. In order to accomodate such special cases, we shall

make the assumption

(H10) ‖ω(tn)− V n‖ ≤ c{kσ +m−s}, n = 0, . . . , N,

for some integer σ, with p ≤ σ ≤ ν and for some constant c independent of k and m.

Finally, let us remark that with slightly more stringent conditions than (i), (ii), one

may prove uniqueness of the V n,i as well. For example, consider the following

Corollary 3.1. Assume that (H10) holds and that in addition to the assumptions of

Theorem 3.1 we have

(i) s1 < s,

(ii) kσms1 ≤ c0, c0 sufficiently small.

Then, for a given choice of V 0 satisfying (3.24), there exists a unique solution {{V n,i}qi=1,

V n+1}N−1
n=0 to (3.20).

Proof. In view of Proposition 3.2, it suffices to show that

(3.26) max
1≤i≤q

|||V n,i|||1 ≤M, n = 0, . . . , N − 1.

To obtain this, from (3.8) and (H10) it follows that

max
1≤i≤q

‖V n,i − ωn,i‖ ≤ c‖V n − ω(tn)‖ ≤ c{kσ +m−s}.

Hence, using (i), (ii), (2.2) and (3.23), we obtain

max
1≤i≤q

|||V n,i|||1 ≤ cms1{kσ +m−s}+ max
1≤i≤q

|||ωn,i|||1 ≤M,
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which is the desired result. �

4. Newton’s method

To begin, let us recall that Newton’s method for approximating a root of a smooth

function g : X → X, where X is a normed linear space, is given by

Dg(xℓ)(xℓ+1 − xℓ) = −g(xℓ), ℓ = 0, 1, . . . , x0 given.

In our particular context, given approximations U j ∈ Hm, U
j ≈ u(tj), j = 0, . . . , n,

Newton’s iterative procedure for approximating the intermediate values {Un,i} takes

the form

U
n,i
ℓ+1 − k

q
∑

j=1

aijDf(U
n,j
ℓ )(Un,j

ℓ+1 − U
n,j
ℓ ) = Un + k

q
∑

j=1

aijf(U
n,j
ℓ ),(4.1)

i = 1, . . . , q, ℓ = 0, . . . , ℓn − 1.

The starting values Un,i
0 are assumed given, and ℓn ≥ 1 is the number of iterations

to be performed at step n. We then define Un+1 by

(4.2) Un+1 = (1− bTA−1
e)Un + bTA−1







U
n,1
ℓn
...

U
n,q
ℓn






.

Starting values Un,i
0 may be generated by a variety of techniques. For example, one

could use the collocation polynomial from the previous step as advocated in [9]. In

this paper, we generate them simply by extrapolation from previously computed values

Un, Un−1, . . . according to

(4.3) U
n,i
0 =

pn
∑

j=0

µ
pn
ij U

n−j , i = 1, . . . , q, n = 0, . . . , N − 1,

where pn ≤ n is a nonnegative integer and where the extrapolation coefficients are

generated as follows: For integer ℓ such that 0 ≤ ℓ ≤ n, let {Lℓ,n
i }ℓi=0 be the (Lagrange)

polynomials of degree ℓ that satisfy Lℓ,n
i (tn−j) = δij , 0 ≤ i, j ≤ ℓ. Then set

(4.4) µℓ
ij = L

ℓ,n
j (tn + kτi) =

ℓ
∏

r=0
r 6=j

τi + r

r − j
, 1 ≤ i ≤ q, 0 ≤ j ≤ ℓ.

Using Taylor’s theorem, it can be shown that for any smooth function u,

(4.5)

ℓ
∑

j=0

µℓ
iju(t

r−j) = u(tr + kτi) +O(kℓ+1), 1 ≤ i ≤ q, r ≥ ℓ.

In view of the fact that the accuracy of the extrapolated values is limited by the number

of available past data, as well as by p+ 1 and σ we shall take

(4.6) pn = min{n, p, σ − 1}.
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Theorem 4.1. Assume that (H10) and the hypotheses of Theorem 3.1 are satisfied

and that we are given initial data U0, . . . , U p̄, p̄ = min{p, σ − 1}, satisfying

(4.7) ‖U j − ω(tj)‖ ≤ c{kσ +m−s}, 0 ≤ j ≤ p̄,

for some constant c independent of k and m.

Assume in addition that

(i) (H5) holds,

(ii) (H7) holds and δ < s,

(iii) s1, s2, s3 < s,

(iv) ℓn ≥ log2(σ − p̄+ 1), p̄ ≤ n ≤ N − 1.

Then, there exist k0, m0, c0 > 0 such that for all 0 < k ≤ k0 and for all m ≥ m0

satisfying

(v) kKmβ ≤ c0,

(vi) kp̄+1msj ≤ c0, for j = 1, 2, 4,

(vii) kp̄+1mδ ≤ c0,

there exists a unique sequence {Un}Nn=0 which for p̄+1 ≤ n ≤ N is generated by (4.1),

(4.2) and (4.3) with pn = p̄. Furthermore,

(4.8) max
0≤n≤N

‖Un − ω(tn)‖ ≤ c{kσ +m−s},

for some constant c independent of k and m.

Moreover, if p ≤ σ ≤ 2p, then the conclusion of the theorem holds with ℓn = 1

provided

(viii) k2p̄−σ+2Kmδ is sufficiently small.

Proof. It follows from (4.7) and (H10) that

‖Un − V n‖ ≤ c{kσ +m−s}, 0 ≤ n ≤ p̄,

where V n is defined by (3.20). We shall prove inductively that there hold:

‖Un − V n‖ ≤ c̃n{k
σ +m−s}, p̄ ≤ n ≤ N,(Ii)

c̃n = {1 + c̃k}c̃n−1 + c̃k, p̄+ 1 ≤ n ≤ N,(Iii)

where the nonnegative constant c̃ depends only on the IRK method and the constant

c in (3.9). An important consequence of (Iii) is that

c̃n ≤ c∗ := (c̃p̄ + 1)ec̃T , p̄ ≤ n ≤ N.

Now assume that (Ii), (Iii) hold up to n, p̄ ≤ n ≤ N − 1. To extend these to n + 1,

we shall prove inductively that

U
n,i
ℓ ∈ Bj(M), ℓ ≥ 0, j = 1, 2, 4, i = 1, . . . , q,(IIi)

max
1≤i≤q

‖Ũn,i − U
n,i
ℓ ‖ ≤ (ckKmδ)2

ℓ−1 max
1≤i≤q

‖Ũn,i − U
n,i
ℓ ‖2

ℓ

, ℓ ≥ 0,(IIii)

where {Ũn,i}qi=1 are (exact) solutions of (3.3) with v = Un, Ũn+1 = RUn and where c

depends only on the IRK method. Note first that from (Ii) and (H10) it follows that

‖U j − ω(tj)‖ ≤ ‖U j − V j‖+ ‖V j − ω(tj)‖(4.9)
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≤ (c∗ + c){kσ +m−s}, 0 ≤ j ≤ n.

We next verify (IIi) for ℓ = 0. (Obviously (IIii) holds for ℓ = 0.) Indeed, from (4.5),

(4.9), (3.13),

‖Ũn,i − U
n,i
0 ‖ ≤ ‖Ũn,i − ωn,i‖+ ‖ωn,i − ω(tn,i)‖(4.10)

≤
∥

∥

p̄
∑

j=0

µ
p̄
ij

[

ω(tn−j)− Un−j
]∥

∥+
∥

∥ω(tn,i)−

p̄
∑

j=0

µ
p̄
ijω(t

n−j)
∥

∥

≤ ‖Ũn,i − ωn,i‖+ cc∗{kp̄+1 +m−s}, i = 1, . . . , q.

Now from (3.23), (3.8) and (4.9),

(4.11) ‖Ũn,i − ωn,i‖ ≤ c‖Un − ω(tn)‖ ≤ cc∗{kσ +m−s}, i = 1, . . . , q.

Hence, in view of (iii), (iv) and choosing k small and m large, we obtain

(4.12) |||Ũn,i − ωn,i|||j ≤ cc∗msj{kσ +m−s} ≤
M

8
, j = 1, 2, 4.

Thus, from (3.25) and (4.12) it follows that

(4.13) Ũn,i ∈ Bj

(

7
M

8

)

, j = 1, 2, 4.

Now from (4.10) and (4.11), it follows that

(4.14) ‖Ũn,i − U
n,i
0 ‖ ≤ c{kp̄+1 +m−s},

with c = Cc∗ where C does not depend on m, k, n and the induction indices. Choosing

k small and m large, |||Ũn,i − U
n,i
0 |||j ≤

M
8
. This, together with (4.13) give the desired

result.

Now assume that (IIi) and (IIii) hold up to some ℓ ≥ 0. To show that {Un,i
ℓ+1}

q
i=1

exist (uniquely) satisfying (4.1), we consider the associated homogeneous system

yi − k

q
∑

j=1

aijDf(U
n,j
ℓ )yj = 0, i = 1, . . . , q.

Using a diagonalization procedure, it follows from (IIi), (H2) and (H5) that

(

c1 − c2k(λ+Kmβ)
)

q
∑

i=1

‖yi‖2 ≤ 0,

for some constants c1, c2 depending only on A. Hence, taking kKmβ sufficiently small,

according to (v), forces yi = 0, i = 1, . . . , q.

We shall next prove the estimate

(4.15) max
1≤i≤q

‖Ũn,i − U
n,i
ℓ+1‖ ≤ ckKmδ max

1≤i≤q
‖Ũn,i − U

n,i
ℓ ‖2,
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for some c = c(A, q). Indeed, for i = 1, . . . , q,

(4.16)

Ũn,i − U
n,i
ℓ+1 = k

q
∑

j=1

aij
[

f(Ũn,j)− f(Un,j
ℓ )−Df(Un,j

ℓ )(Un,j
ℓ+1 − U

n,j
ℓ )

]

= k

q
∑

j=1

aij

[

Df(Un,j
ℓ )(Ũn,j − U

n,j
ℓ+1)

+

∫ 1

0

(1− t)D2ϕ
(

tŨn,j + (1− t)Un,j
ℓ

)

[Ũn,j − U
n,j
ℓ ]2 dt

]

,

where D2ϕ(u)[v]2 = D2ϕ(u)[v, v]. We need to estimate the argument of D2ϕ. From

(IIi), (4.13) and for 0 ≤ t ≤ 1, we have

max
1≤i≤q

|||tŨn,i + (1− t)Un,i
ℓ |||j ≤M, j = 1, 2, 4.

Thus, applying the diagonalization procedure to (4.16), from (H2), (H5) and (H7) we

obtain

c1

q
∑

i=1

‖Ũn,i − U
n,i
ℓ+1‖

2 ≤ c2k(λ+Kmβ)

q
∑

i=1

‖Ũn,i − U
n,i
ℓ+1‖

2

+ c3kKm
δ

q
∑

i=1

‖Ũn,i − U
n,i
ℓ ‖2 ‖Ũn,i − U

n,i
ℓ+1‖,

from which (4.15) follows if kKmβ is sufficiently small, with c = 2qc3
c1
. This in turn

implies that (IIii) holds for ℓ+ 1 as well. We next show that Un,i
ℓ+1 ∈ Bj(M).

From (IIii) and (4.14),

max
1≤i≤q

‖Ũn,i − U
n,i
ℓ+1‖ ≤ k2

ℓ+1−1c
(

cKmδ{kp̄+1 +m−s}
)2ℓ+1−1

{kp̄+1 +m−s},

for some c = Cc∗, with C as above. We choose k and m so that in view of (ii) and (vii)

we have c
(

cKmδ{kp̄+1 +m−s}
)2ℓ+1−1

≤ 1. We obtain

(4.17) max
1≤i≤q

‖Ũn,i − U
n,i
ℓ+1‖ ≤ k2

ℓ+1−1{kp̄+1 +m−s}.

As done before, choosing k small and m large, forces (IIi) to be satisfied for ℓ + 1.

This completes the secondary induction argument (II) and we return to the primary

argument (I). Now if ℓn ≥ log2(σ − p̄+ 1), it follows from (4.2) and (4.17) that

(4.18) ‖Ũn+1 − Un+1‖ ≤ c(A, b) max
1≤i≤q

‖Ũn,i − U
n,i
ℓn

‖ ≤ ck{kσ +m−s}.

Using the triangle inequality, (4.18), (3.9) and (Ii), we obtain

‖Un+1 − V n+1‖ ≤ ‖Un+1 − Ũn+1‖+ ‖Ũn+1 − V n+1‖(4.19)

≤
[

(1 + ck)c̃n + ck
]

{kσ +m−s}.
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This establishes both (Ii) and (Iii) and defines c̃n. (4.8) now follows from (Ii) and

(H10). Finally, if (viii) holds, then, from (4.14) and (4.15) we obtain

max
1≤i≤q

‖Ũn,i − U
n,i
1 ‖ ≤ ckKmδ(c∗)2{kp̄+1 +m−s}2

≤
(

(c∗)2k2p̄−σ+2Kmδ
)

ck{kσ +m−s}

≤ ck{kσ +m−s}.

Hence, we may establish (4.19) and thus (Ii), (Iii) for this case as well. The proof of

the theorem is now complete. �

We now consider briefly the practically important issue of generating initial data

U0, . . . , U p̄ satisfying (4.7). Indeed, this can be done by a variety of techniques in-

cluding the use of explicit Runge–Kutta methods or Taylor expansions. The iterative

scheme (4.1) can be used as well with the added benefit of the guidance offered by the

theoretical framework of Theorem 4.1 In this respect, the relevant considerations are

the following

(a) Take U0 = ω0 (or (ω0 +O(m−s)).

(b) Generate Un,i
0 by

U
n,i
0 =

n
∑

j=0

µn
ijU

n−j = Ũn,i +O(kn+1 +m−s), i = 1, . . . , q, n = 0, . . . , p̄− 1.

(c) Increase ℓn to compensate for the reduced accuracy of the initial approximations

U
n,i
0 and compute Un+1 by (4.2), 0 ≤ n ≤ p̄− 1.

(d) The desired estimates will hold if the two conditions kp̄+1msj ≤ c0 and k
p̄+1mδ ≤ c0

are replaced with kn+1msj ≤ c0 and kn+1mδ ≤ c0, respectively. If these conditions

become stringent for n = 0, we recommend the use of more accurate formulas based

on Taylor’s Theorem such as

U0,i = ω0 + kτiω
0
t = ω0 + kτif(ω

0)

= Ũ0,i +O(k2 +m−s).

5. Efficient implementation of Newton’s method

Newton’s scheme, as described in Theorem 4.1 and specifically in its implementation

(4.1), requires forming the operator J : (Hm)
q → (Hm)

q

J =











I − ka11Df(U
n,1
ℓ ) −ka12Df(U

n,2
ℓ ) . . . −ka1qDf(U

n,q
ℓ )

−ka21Df(U
n,1
ℓ ) I − ka22Df(U

n,2
ℓ ) . . . −ka2qDf(U

n,q
ℓ )

...
...

. . .
...

−kaq1Df(U
n,1
ℓ ) −kaq2Df(U

n,2
ℓ ) . . . I − kaqqDf(U

n,q
ℓ )











as well as solving the associated linear system at each new ℓ and n. In practice, this

translates into a q dimHm × q dimHm system. Obviously, this could be prove to be
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prohibitively costly when dimHm is very large. One possibility that immediately comes

to mind is to evaluate J at Un,j
0 and use it according to the iterative procedure

U
n,i
ℓ+1 − k

q
∑

j=1

aijDf(U
n,j
0 )(Un,j

ℓ+1 − U
n,j
ℓ ) = Un + k

q
∑

j=1

aijf(U
n,j
ℓ ), ℓ = 0, . . . , .

The usefulness of this particular approach is limited because we saw in Theorem 4.1

that, under rather general conditions, a single Newton iteration is sufficient to preserve

the convergence rate of the base scheme. On the other hand, we may use the same

operator over a number of time steps.

It is clear that a great number of strategies are possible for efficient implementation

of (4.1). We shall concentrate on evaluating the operators J at some Un
∗ independent

of the stage number j. to this end, let Un
∗ denote an appropriately chosen element of

Hm. Let U
n,i
ℓ satisfy

U
n,i
ℓ+1 − k

q
∑

j=1

aijDf(U
n
∗ )(U

n,j
ℓ+1 − U

n,j
ℓ ) = Un + k

q
∑

j=1

aijf(U
n,j
ℓ ),(5.1)

i = 1, . . . , q, ℓ = 0, . . . , ℓn − 1.

This scheme is known as the “modified Newton method”. Now assume that A has

distinct eigenvalues λ1, . . . , λq. This is indeed the case for the Gauss–Legendre and

the Radau IIA methods, cf. [6]. The decomposition A = S−1ΛS naturally induces a

decomposition of the system J z = b whereby q systems
(

I − kλiDf(U
n
∗ )
)

z̃i = b̃i, i =

1, . . . , q, are to be solved instead. These q systems are independent of each other and

can be solved simultaneously on a computer with at least q independent processors.

This strategy has been successfully implemented in some specific settings in [10].

Concerning the modified Newton method, we have

Theorem 5.1. Assume that (H10) and the hypotheses of Theorem 3.1 are satisfied

and that we are given initial data U0, . . . , U p̄, p̄ = min{p, σ − 1}, satisfying

(5.2) ‖U j − ω(tj)‖ ≤ c{kσ +m−s}, 0 ≤ j ≤ p̄,

for some constant c independent of k and m.

Assume in addition that

(i) (H5) holds,

(ii) (H7) holds and δ < s,

(iii) s1, s2, s3 < s,

(iv) ℓn ≥ σ − p̄, p̄ ≤ n ≤ N − 1.

Then, there exist k0, m0, c0 > 0 such that for all 0 < k ≤ k0 and for all m ≥ m0

satisfying

(v) kKmβ ≤ c0,

(vi) kKmδ ≤ c0,

(vii) kp̄+1msj ≤ c0, for j = 1, 2, 4,

(viii) kp̄+1mδ ≤ c0,
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there exists a unique sequence {Un}Nn=0, which for p̄+1 ≤ n ≤ N is generated by (5.1),

(4.2) and (4.3) with pn = p̄, and

(5.3) Un
∗ = Un.

Furthermore,

(5.4) max
0≤n≤N

‖Un − ω(tn)‖ ≤ c{kσ +m−s},

for some constant c independent of k and m.

Proof. We shall omit details that would otherwise be repetitions of similar ones exhib-

ited in the proof of Theorem 4.1. Again, we shall use the primary induction hypotheses

‖Un − V n‖ ≤ c̃n{k
σ +m−s}, 0 ≤ n ≤ N,(Ii)

c̃n = {1 + c̃k}c̃n−1 + c̃k, 1 ≤ n ≤ N,(Iii)

where the nonnegative constant c̃ depends only on the IRK method and the constant

c in (3.9) and (H10). Also, let c∗ be as in (4.9).

Assume that (Ii), (Iii) hold up to n, p̄ ≤ n ≤ N − 1. To extend these to n + 1, we

shall prove inductively that

U
n,i
ℓ ∈ Bj(M), ℓ ≥ 0, j = 1, 2, 4,(IIi)

max
1≤i≤q

‖Ũn,i − U
n,i
ℓ ‖ ≤ kℓ max

1≤i≤q
‖Ũn,i − U

n,i
0 ‖ℓ, ℓ ≥ 0,(IIii)

where {Ũn,i}qi=1 are the (exact) solutions of (3.3) with v = Un. Using arguments sim-

ilar to those used in the proof of Theorem 4.1, we may prove that, under the stated

conditions,

(5.5) Un, U
n,i
0 ∈ Bj(M), j = 1, 2, 4, i = 1, . . . , q.

Obviously (IIii) holds for ℓ = 0. Now assume that both (IIi) and (IIii) hold up to

some ℓ ≥ 0. We have

Ũn,i − U
n,i
ℓ+1 = k

q
∑

j=1

aij
[

f(Ũn,j)− f(Un,j
ℓ )−Df(Un)(Un,j

ℓ+1 − U
n,j
ℓ )

]

= k

q
∑

j=1

aij

[

Df(Un)(Ũn,j − U
n,j
ℓ+1)

+
[

Df(Un,j
ℓ )−Df(Un)

]

(Ũn,j − U
n,j
ℓ )

+

∫ 1

0

(1− t)D2f
(

tŨn,j + (1− t)Un,j
ℓ

)

[Ũn,j − U
n,j
ℓ ]2 dt

]

= k

q
∑

j=1

aij

[

Df(Un)(Ũn,j − U
n,j
ℓ+1)

+

∫ 1

0

(1− t)D2ϕ
(

tŨ
n,j
ℓ + (1− t)Un

)

[Un,j
ℓ − Un, Ũn,j − U

n,j
ℓ ] dt
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+

∫ 1

0

(1− t)D2ϕ
(

tŨn,j + (1− t)Un,j
ℓ

)

[Ũn,j − U
n,j
ℓ ]2 dt

]

.

As before, we can show that Ũn,i ∈ Bj(M), j = 1, 2, 4. Using a diagonalization argu-

ment, it follows from (5.5), (IIii), (H2), (H5) and (H7) that

c1 max
1≤i≤q

‖Ũn,i − U
n,i
ℓ+1‖ ≤ c2k max

1≤i≤q

{

(λ+Kmβ)‖Ũn,i − U
n,i
ℓ+1‖+Kmδ‖Ũn,i − U

n,i
ℓ ‖2

+Kmδ‖Un,i
ℓ − Un‖ ‖Ũn,i − U

n,i
ℓ ‖

}

,

for some constants c1, c2 depending only on the IRK method. Choosing k so that

c2k(λ+Kmβ) ≤ c1
2
, we obtain

(5.6)
max
1≤i≤q

‖Ũn,i − U
n,i
ℓ+1‖ ≤ c3kKm

δ max
1≤i≤q

{

‖Ũn,i − U
n,i
ℓ ‖2

+ ‖Un,i
ℓ − Un‖ ‖Ũn,i − U

n,i
ℓ ‖

}

.

We can show that for some constant c4 = c4(c
∗),

‖Un,i
ℓ − Un‖ ≤ c4{k +m−s}.

Similarly, from (IIii) and (4.14),

max
1≤i≤q

‖Ũn,i − U
n,i
ℓ ‖ ≤ c5{k

p̄+1 +m−s},

for some c5 = c5(c
∗). Choosing k and m so that

(5.7) max
{

c3c4Km
δ(k +m−s), c3c5Km

δ(kp̄+1 +m−s)
}

≤
1

2
,

we obtain (IIii) for ℓ + 1. Hence, we can now show that Un,i
ℓ+1 ∈ Bj(M), under the

stated conditions.

In view of the fact that ℓn ≥ σ− p̄, and proceeding exactly as we did in the proof of

Theorem 4.1, we can close the primary induction argument, proving the theorem. �

Remark 5.1. Theorem 5.1 requires in particular that kmδ be sufficiently small. This

condition may be weakened somewhat by modifying the proof as follows: We choose k

and m so that instead of (5.7) we have

(5.8) max
{

c3c4Km
δ(k1+ϑ +m−s), c3c5Km

δ(kp̄+1 +m−s)
}

≤
1

2
,

with 0 ≤ ϑ < 1, and require k1+ϑmδ to be small. As a consequence, (IIii) must be

modified to

max
1≤i≤q

‖Ũn,i − U
n,i
ℓ ‖ ≤ kℓ(1−ϑ) max

1≤i≤q
‖Ũn,i − U

n,i
0 ‖ℓ, ℓ ≥ 0.

As a result, an increased number of iterations must be performed.



NONLINEAR SYSTEMS IN IMPLICIT RUNGE–KUTTA METHODS 21

6. A simpler iterative scheme

We shall next consider an iterative scheme where J is constant and which is some-

times called an “explicit–implicit” type method. This extremely efficient option can

be applied however, only when the constant γ in (H6) is zero

U
n,i
ℓ+1 − k

q
∑

j=1

aijLU
n,j
ℓ+1 = Un + k

q
∑

j=1

aijϕ(U
n,j
ℓ ),(6.1)

i = 1, . . . , q, ℓ = 0, . . . , ℓn − 1.

From the error equation

Ũn,i − U
n,i
ℓ+1 − k

q
∑

j=1

aijL(Ũ
n,j − U

n,j
ℓ+1) = k

q
∑

j=1

aij
[

ϕ(Ũn,j)− ϕ(Un,j
ℓ )

]

= k

q
∑

j=1

aij

∫ 1

0

Dϕ(tŨn,j + (1− t)Un,j
ℓ )(Ũn,j − U

n,j
ℓ ) dt,

we obtain in view of (H2) and (H6) with γ = 0,

max
1≤i≤q

‖Ũn,i − U
n,i
ℓ+1‖ ≤ ckK max

1≤i≤q
‖Ũn,i − U

n,i
ℓ ‖.

Operating within the framework of an induction argument, we obtain

max
1≤i≤q

‖Ũn,i − U
n,i
ℓ ‖ ≤ (cK)ℓn(kc∗)kℓn−1{kp̄+1 +m−s}

≤ (cK)ℓnk{kσ +m−s},

for kc∗ ≤ 1 and ℓn ≥ σ − p̄+ 1. We have,

Theorem 6.1. Assume that (H10) and the hypotheses of Theorem 3.1 are satisfied

and that we are given initial data U0, . . . , U p̄, p̄ = min{p, σ − 1}, satisfying

‖U j − ω(tj)‖ ≤ c{kσ +m−s}, 0 ≤ j ≤ p̄,

for some constant c independent of k and m.

Assume in addition that

(i) (H6) holds and γ = 0,

(ii) s1, s2, s3, s4 < s,

(iii) ℓn ≥ σ − p̄+ 1, p̄ ≤ n ≤ N − 1.

Then, there exist k0, m0, c0 > 0 such that for all 0 < k ≤ k0, and for all m ≥ m0

satisfying

(iv) kp̄+1msj ≤ c0 for j = 1, 2, 3, 4,

there exists a unique sequence {Un}Nn=0 which for p̄+1 ≤ n ≤ N is generated by (6.1),

(4.2) and (4.3) with pn = p̄. Furthermore,

max
0≤n≤N

‖Un − ω(tn)‖ ≤ c{kσ +m−s},

for some constant c independent of k and m. �
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7. Examples

Let Ω be an open, bounded, connected subset of Rd. For integer µ ≥ 0 and p ∈ [0,∞],

let W µ,p = W µ,p(Ω) denote the usual Sobolev spaces of complex-valued functions

defined on Ω and having generalized derivatives up to order µ in Lp(Ω). The norm

on W µ,p will be denoted by ‖ · ‖µ,p. In particular, Lp = W 0,p(Ω) and for p = 2 we let

Hµ = W µ,2. We let ‖ · ‖ = ‖ · ‖0,2 and ‖ · ‖µ = ‖ · ‖µ,2. In some specific instances, as

in the case of the KdV equation below, we shall restrict attention to the real-valued

functions.

7.1. The Korteweg–de Vries equation. We consider the problem of approximating

1−periodic solutions of the KdV equation

(7.1.1)

{

ut + uux + uxxx = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

where u0 is a sufficiently smooth 1−periodic function, i.e. u0 ∈ Hµ
per = W µ,2

per for µ

sufficiently large, where for µ ≥ 1, 1 ≤ p ≤ ∞,

W µ,p
per = {v ∈ W µ,p(0, 1) : v(j)(0) = v(j)(1), 0 ≤ j ≤ µ− 1}.

For the existence, uniqueness and regularity of solutions of (7.1.1) we refer to [5].

Specifically, it is known that if u0 ∈ Hµ
per, µ ≥ 3, then there exists a solution u : [0, T ] →

Hµ
per, ∀T > 0. Moreover, for j ≥ 0 such that µ− 3j ≥ 0,

(7.1.2) sup
0≤t≤T

∥

∥

dju

dtj

∥

∥

µ−3j
≤ c(‖u0‖µ).

There is a large body of work devoted to the numerical approximation of solutions of

the KdV equation, including finite difference, finite element as well as spectral methods.

Herein, we operate within the framework already established in [3], [8] and [12]. In

particular, the analysis of convergence of the base scheme is drawn from [12].

For integer r ≥ 3, let Sr
h ⊂ Hr−1

per ∩W 2,∞
per denote the space of 1−periodic splines of

degree ≤ r − 1, defined on a uniform partition xj = jh, j = 0, . . . , m, of [0, 1], with

h = 1
m
. It is known that dimSr

h = m. We set Hm = Sr
h and equip it with the L2 inner

product

(v, w)m = (v, w) =

∫ 1

0

v(x)w(x) dx, ∀v, w ∈ Sr
h.

The spaces {Sr
h}h>0 possesses the following approximation property: For each v ∈ Hr

per,

there exists χ ∈ Sr
h such that

(7.1.3)

µ−1
∑

j=0

hj‖v − χ‖j ≤ chµ‖v‖µ, 1 ≤ µ ≤ r,

for some constant c independent of h and v. If in addition v ∈ W 2,∞
per , then

(7.1.4)

1
∑

j=0

hj‖v − χ‖j,∞ ≤ ch2‖v‖2,∞.
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Moreover, the spaces Sr
h possess the following inverse properties

(7.1.5) ‖χ‖β ≤ ch−(β−α)‖χ‖α, 0 ≤ α ≤ β ≤ r − 1,

(7.1.6) ‖χ‖α,∞ ≤ ch−(α+ 1
2
)‖χ‖, 0 ≤ α ≤ r − 1.

As basis for Sr
h, we use a set of modified basis functions ϕ̃1, . . . , ϕ̃m associated with

the nodes x1, . . . , xm (cf. [14]). For v ∈ H1
per, we define the quasi-interpolant ṽ by

ṽ(x) =
m
∑

j=1

v(xj)ϕ̃j(x).

It is known (cf. [14]) that the quasi-interpolant enjoys the following optimal approxi-

mation property: For v ∈ Hr
per,

(7.1.7) ‖v − ṽ‖ ≤ chr‖v‖r.

For r ≥ 3, let u : [0, T ] → Hr
per be the solution of (7.1.1) and let ω = ωh : [0, T ] → Sr

h

denote the quasi-interpolant ω(x, t) =
∑m

j=1 u(xj, t)ϕ̃j(x). It is shown in [8] that

(7.1.8) (ωt + ωωx, χ)− (ωxx, χx) = (ε(t), χ) 0 ≤ t ≤ T, ∀x ∈ Sr
h,

where ε : [0, T ] → Sr
h is a (small) smooth function (truncation error),

Define the operators Lh, ϕh : Sr
h → Sr

h by

(Lhv, χ) = (vxx, χx) ∀χ ∈ Sr
h,

(ϕh(v), χ) = −(vvx, χ) ∀χ ∈ Sr
h,

respectively. Note that ϕh(v) = −P0(vvx) where P0 denotes the L2−orthogonal pro-

jection operator onto Sr
h. We may rewrite (7.1.8) as

(7.1.9) ωt = Lhω + ϕh(ω) + ε(t), 0 ≤ t ≤ T.

Having cast our problem in the form of (2.1), we next undertake the systematic

verification of the hypotheses (H1)–(H10).

With s = r, (H1) is proved in [8] (inequality (1.33)). It easily follows from periodicity

that (H2) and (H3) hold with λ = η = 0.

We set all four norms ||| · |||i equal to ‖ · ‖1,∞. It then follows from (7.1.6) that (2.2)

holds with si =
3
2
, i = 1, 2, 3, 4. We also let

(7.1.10) M = 2 sup
0≤t≤T

[

c‖u(t)‖r + c‖u(t)‖2,∞ + ‖u(t)‖1,∞
]

,

where u is the solution of (7.1.1) and c is a constant depending on the constants in

(7.1.3), (7.1.4), (7.1.6) and (7.1.7). Also, in verifying hypotheses (H4)–(H7), we shall

use different constants Ki and then set K = max{K1, K2, K3, K4}.

Integrating by parts and using periodicity, we obtain

(ϕh(v)− ϕh(w), v − w) = −
1

2
(vx, [v − w]2)

≤
1

2
‖v‖1,∞ ‖v − w‖2 ∀v, w ∈ Sr

h.
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Hence we see that (H4) holds with K1 =
M
2
.

UsingDg(x)y = limε→0[g(x+εy)−g(x)],we see thatDϕh(v)w = −P0[(vw)x], ∀v, w ∈

Sr
h. Hence,

(Dϕh(v)w,w) = −((vw)x, w) = −
1

2
(vx, w

2)

≤
1

2
‖v‖1,∞ ‖w‖2.

So we see that (H5) holds with K2 =
M
2
and β = 0. Now, using (7.1.4),

‖Dϕh(v)w‖ ≤ ‖(vw)x‖

≤
(

‖v‖1,∞ + ch−1‖v‖0,∞
)

‖w‖

≤ ch−1‖v‖1,∞ ‖w‖.

Hence, we see that (H6) holds with K3 = cM and γ = 1.

Further, D2ϕh(z)[v, w] = −P0[(vw)x] for z, v, w ∈ Sr
h. Hence, we easily obtain

‖D2ϕh(z)[v, w]‖ ≤ ch−
3
2‖v‖ ‖w‖,

where c depends on the constants in (7.1.5) and (7.1.6). Thus, (H7) holds with K4 = c

and δ = 3
2
.

Now for 0 ≤ t ≤ T, choosing χ ∈ Sr
h suitably and using (7.1.3), (7.1.4), (7.1.6) and

(7.1.7), we obtain

‖ω − u‖1,∞ ≤ ‖ω − χ‖1,∞ + ‖χ− u‖1,∞(7.1.11)

≤ ch−
3
2‖ω − χ‖+ ch‖u‖2,∞

≤ ch−
3
2

{

‖ω − u‖+ ‖u− χ‖
}

+ ch‖u‖2,∞

≤ chr−
3
2‖u‖r + ch‖u‖2,∞.

It then follows from the triangle inequality that

sup
0≤t≤T

‖ω‖1,∞ ≤
M

2
.

Hence, (H8) is satisfied in view of (7.1.10). Indeed, this motivates our choice of M.

(H9) is inequality (1.35) in [8].

As for (H10), it is proved in [12] that the (temporal) rate of convergence of the

base scheme is the classical rate σ = ν. The results of Sections 4 and 5 apply, yielding

approximations Un satisfying max0≤n≤N ‖Un−ω(tn)‖ ≤ c(kσ+hr). Hence, from (7.1.7)

and the triangle inequality it follows that

max
0≤n≤N

‖u(tn)− Un)‖ ≤ c{kσ + hr},

where u is the solution of (7.1.1).

Let us note that the above results require certain relations between k and h to hold.

Specifically, Theorem 4.1 requires

(7.1.12) kh
− 3

2(p̄+1) ≤ c′0,
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for sufficiently small c′0. This is a mild condition except for the case p̄ = 0 corresponding

e.g. to the Backward Euler method. Also, (7.1.12) guarantees that taking ℓn = 1 in

Newton’s method will suffice.

On the other hand, condition (vi) of Theorem 5.1 translates into the requirement

kh−3/2 be sufficiently small. We may weaken this restriction say to kh−1 small by

taking ϑ = 1
2
in Remark 5.1. This will however come at the expense of doubling the

number of iterations.

7.2. The nonlinear Schrödinger equation. We consider the problem of approx-

imating the complex-valued solution u of the following initial and boundary value

problem for the cubic Schrödinger equation:

(7.2.1)











ut = i∆u+ i|u|2u, in Ω̄ × [0, T ],

u = 0, on ∂Ω × [0, T ],

u(x, 0) = u0(x), in Ω̄,

where Ω is an open, bounded, connected subset of Rd and u0 is a given complex-valued

function defined on Ω̄. We assume that (7.2.1) possesses a unique solution u which is

sufficiently smooth up to ∂Ω.

We shall operate within the framework established in [11]. In particular, we shall

use the space C(Ω̄) of continuous, complex-valued functions defined on Ω̄, and let H1
0

denote the subspace of H1 consisting of those functions that vanish on ∂Ω in the sense

of trace.

For integer r ≥ 2 and 0 < h < 1, Zr
h ⊂ H1 ∩ C0(Ω̄) will represent an approximating

finite-dimensional space of functions. Such spaces typically consist of piecewise poly-

nomial functions of degree ≤ r − 1 defined on a suitable partition of Ω. Note that the

elements of Zr
h are complex-valued. In particular, we assume that Zr

h = Sr
h+iSr

h where

Sr
h is an approximating space of real-valued functions. Indeed, the properties of Zr

h

listed below are all derived from corresponding properties of Sr
h.

We assume that these spaces possess good approximation properties; indeed that

there exists a constant c independent of h such that for each v ∈ Hr ∩H1
0 , there exists

χ ∈ Zr
h such that

(7.2.2) ‖v − χ‖ ≤ chr‖v‖r,

and if in addition v ∈ W 2,∞(Ω), then

(7.2.3) ‖v − χ‖L∞ ≤ ch2‖v‖2,∞.

We shall assume that the elements of Zr
h satisfy the following inverse inequalities

(7.2.4) ‖χ‖0,∞ ≤ ch−d/2‖χ‖,

(7.2.5) ‖χ‖1 ≤ ch−1‖χ‖.
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Let V = Zr
h + (H2 ∩H1

0 ). We assume the existence of a family of sesquilinear forms

Br
h : V × V → C with the following properties:

Br
h(v, v) is real for v ∈ V,(7.2.6)

Br
h(v, v) ≥ c‖v‖21 for c > 0, ∀v ∈ Zr

h,(7.2.7)

Br
h(v, χ) = −(∆v, χ) ∀χ ∈ Zr

h, v ∈ H2 ∩H1
0 .(7.2.8)

With Br
h we associate an elliptic projection operator PE : H2 ∩H1

0 → Zr
h by

(7.2.9) Br
h(PEv, χ) = Br

h(v, χ) = −(∆v, χ) ∀χ ∈ Zr
h.

We assume that for some constant c independent of h

(7.2.10) ‖PEv − v‖ ≤ chr‖v‖r ∀v ∈ Hr ∩H1
0 .

The most well-known family of such sesquilinear forms is provided by the so-called

standard Galerkin method. In this case Zr
h ⊂ H1

0 and

Br
h(v, w) =

∫

Ω

∇v · ∇w̄ dx.

Let uh : [0, T ] → Zr
h denote the elliptic projection PEu of the solution of (7.2.1).

Then

(7.2.11) (uht, χ) = −iBr
h(uh, χ) + i(|uh|

2uh + ψ(t), χ),

where ψ = P0[uht−ut−i(|uh|
2uh−|u|2u)] and P0 denotes the L

2−orthogonal projection

operator onto Zr
h. Then ψ satisfies

(7.2.12) sup
0≤t≤T

∥

∥

djψ

dtj

∥

∥ ≤ cjh
r, j = 0, 1, . . . .

To prove this one just needs to note that

sup
0≤t≤T

∥

∥

djuh

dtj

∥

∥

0,∞
≤ cj , j = 0, 1, . . . ,

for cj independent of h under the hypothesis that r > d
2
. Set

Hm = Sr
h × Sr

h, m = h−d, s =
r

d
.

We equip Hm with the inner product

(v, w) = (v, w)Hm
=

∫

Ω

(v1w1 + v2w2) dx, v = (v1, v2)
T , w = (w1, w2)

T ∈ Hm,

and associated norm ‖v‖ = ‖v‖Hm
= (v, v)1/2. We define the operator ∆h : Sr

h → Sr
h

by

(∆hv, χ) = −Br
h(v, χ), ∀χ ∈ Sr

h,

and thence the operator L : Hm → Hm by

L =

(

0 −∆h

∆h 0

)

.
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Now consider the function g : R2 → R2 given by

g(x, y) =
(

g1(x, y), g2(x, y)
)T

=
(

− (x2 + y2)y, (x2 + y2)x
)T
.

g naturally induces a map ϕ(v1, v2) =
(

ϕ1(v1, v2), ϕ2(v1, v2)
)T

: Hm → Hm where

(ϕ1(v1, v2), χ) = (g1(v1, v2), χ), ∀χ ∈ Sr
h,

(ϕ2(v1, v2), χ) = (g2(v1, v2), χ), ∀χ ∈ Sr
h.

With the maps ω, ε : [0, T ] → Hm given by ω = (Reuh, Imuh)
T , ε = (Reψ, Imψ)T , we

see that (7.2.11) can be written in the equivalent form

(7.2.13) ωt = Lω + ϕ(ω) + ε(t), 0 ≤ t ≤ T,

which is the required form (2.1).

However, it turns out that ϕ does not satisfy hypothesis (H4). In order to overcome

this difficulty, we introduce a map ϕ̃ : Hm → Hm as follows: Let z ∈ C∞
0 (R) be a cutoff

function

z(ξ) =

{

1 |ξ| ≤M,

0 |ξ| ≥ 2M.

We let g̃ : R2 → R2 be given by

g̃(x, y) =
(

g̃1(x, y), g̃2(x, y)
)T

=
(

− z(ξ)(x2 + y2)y, z(ξ)(x2 + y2)x
)T
, ξ = (x2 + y2)1/2.

Now let ϕ̃ be the map naturally induced by g̃

ϕ̃(v) = z(ξ)
(

− P0(v
2
1 + v22)v2, P0(v

2
1 + v22)v1

)T
,

v = (v1, v2)
T ∈ Hm, ξ = (v21 + v22)

1/2.

We shall show below that ω also satisfies the equation

(7.2.14) ωt = Lω + ϕ̃(ω) + ε(t), 0 ≤ t ≤ T.

Now (H1) follows from (7.2.12) and the fact that m−s = hr. Also, it is easily seen

that (Lv, v) = (ϕ̃(v), v) = 0, ∀v ∈ Hm. Thus (H2) and (H3) hold with λ = η = 0,

respectively.

Also, setting

(7.2.15) |||v|||i = ‖v‖0,∞ = max{‖v1‖0,∞, ‖v2‖0,∞}, i = 1, 2, 3, 4,

for v = (v1, v2)
T ∈ Hm, we see that (2.2) holds with si =

1
2
, i = 1, 2, 3, 4.

Now set

M = 2 sup
0≤t≤T

[

c‖u(t)‖r + c‖u(t)‖2,∞ + ‖u(t)‖0,∞
]

,

where u is the solution of (7.2.1) and c is a constant depending on the constants in

(7.2.2), (7.2.3) and (7.2.4).

It is clear that g̃ and its derivatives of arbitrary order are bounded on R2. Hence

it follows at once that ϕ̃ satisfies hypothesis (H4) without the stipulation that the

argument of ϕ̃ belong to B1(M).
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Also, for v, w ∈ Hm with ξ = (w2
1 + w2

2)
1/2,

Dϕ̃(w)v =

(

−P0{[z
′(ξ)ξ + 2z(ξ)]w1w2v1 + [z′(ξ)ξw1w2 + z(ξ)(3w2

2 + w2
1)]v2}

P0{[z
′(ξ)ξw2

1 + z(ξ)(3w2
1 + w2

2)]v1 + [z′(ξ)ξ + 2z(ξ)]w1w2v2}

)

.

It is easy to see that (H5) and (H6) hold with β = 0 and γ = 0, respectively, again

without restriction on the argument of ϕ̃.

Let z, v, w ∈ Hm with |||z|||4 ≤M. Then,

D2ϕ̃(z)[v, w] = D2ϕ(z)[v, w] = 2

(

−P0{z1w2v1 + z2w1v1 + 3z2w2v2 + z1w1v2}

P0{3z1w1v1 + z2w2v1 + z1w2v2 + z2w1v2}

)

.

From (7.2.4)

‖zivjwℓ‖ ≤M‖vj‖0,∞ ‖wℓ‖ ≤ ch−d/2‖vj‖ ‖wℓ‖;

so (H7) holds with δ = 1
2
.

To ascertain (H8), proceeding as we did in the case of the KdV equation, we obtain

from (7.2.2), (7.2.4) and (7.2.10),

‖uh − u‖ ≤ ch2‖u‖2,∞ + chr−d/2‖u‖r.

Since ‖ω‖0,∞ ≤ ‖uh‖0,∞, for r ≥
d
2
we obtain

sup
0≤t≤T

‖ω(t)‖0,∞ ≤ sup
0≤t≤T

[

c‖u(t)‖2,∞ + c‖u(t)‖r + ‖u(t)‖0,∞
]

≤
M

2
.

In view of (7.2.15), this not only establishes (H8), but also shows that (7.2.14) is

satisfied. Also, since the operators d
dt

and PE commute, we may easily verify (H9)

using (7.2.10).

To obtain the results of Sections 3, 4, 5 and 6, we argue as follows: In the case

of Theorem 3.1, given any V 0 satisfying (3.24), we obtain the existence of a unique

sequence {{V n,i}qi=1, V
n+1}N−1

n=0 satisfying (3.20) with f = L + ϕ̃, with {V n}Nn=0 sat-

isfying (3.21). In view of (3.26), (7.2.15) and the definition of ϕ̃, it follows that

V 0, {{V n,i}qi=1, V
n+1}N−1

n=0 is the solution of the base scheme. Furthermore, it is proved

in [11] that the following improved estimate holds

max
0≤n≤N

‖ω(tn)− V n‖ ≤ c{kσ + hr},

where the integer σ is given by

σ =

{

ν if Ω is polyhedral or d = 1,

min{p+ 3, ν} otherwise.

Let us note here that these results require the condition r > d
2
and kσh−d/2 ≤ c0.

A similar reasoning can be applied to the results of Sections 4, 5 and 6. Indeed, all

of these apply with f = L+ ϕ̃. Recall that a cornerstone of the proofs was the fact that

U
n,i
ℓ ∈ B1(M), and in addition Un = U∗ ∈ B1(M) in the case of Theorem 5.1. Since

ϕ(v) = ϕ̃(v), ∀v ∈ B1(M), the conclusions of Theorems 4.1, 5.1 and 6.1 remain in force

for f = L + ϕ as well. Furthermore, the iterative procedures (4.1), (5.1) and (6.1)

involve linear systems that are invertible under their respective prevailing conditions.

Hence, the schemes outlined have unique solutions, which may be calculated by using



NONLINEAR SYSTEMS IN IMPLICIT RUNGE–KUTTA METHODS 29

either ϕ or ϕ̃. Obviously, it would be more convenient to use ϕ, in which case, Dϕ

would be given by

Dϕ(w)v = 2

(

−P0[2w1w2v1 + (3w2
2 + w2

1)v2]

P0[(3w
2
1 + w2

2)v1 + 2w1w2v2]

)

.

Finally, using (7.2.10) and the triangle inequality, we obtain convergence of the numer-

ical approximations Un to u(tn) at the rate O(kσ + hr).

Of course the conditions of Theorems 4.1, 5.1 and 6.1 hold, under the guise of specific

constraints on k, h, r, d. In particular, the conditions sj < s translate into r > d
2
,

which was a basic assumption for the convergence of the base scheme. In addition, we

also require that kp̄+1h−d/2 ≤ c0. This is slightly more restrictive than the condition

kσh−d/2 ≤ c0. For d ≤ 3 and p̄ ≥ 1 a mild condition of the type k = o(h3/4) must be

satisfied. Also, Newton’s method will require only one iteration under the condition

that k be taken sufficiently small. On the other hand, condition (v) in Theorem 5.1

is equivalent to kh−d/2 being sufficiently small, which could be restrictive for d = 3.

Hence, the Explicit–Implicit iteration could provide a better alternative.
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