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Abstract. We consider a model initial– and boundary–value problem for the third–

order wide–angle parabolic approximation of underwater acoustics with depth– and

range–dependent coefficients. We discretize the problem in the depth variable by the

standard Galerkin finite element method and prove optimal–order L2–error estimates

for the ensuing continuous–in–range semidiscrete approximation. The associated

o.d.e. systems are then discretized in range, first by a second–order accurate Crank–

Nicolson type method, and then by the fourth–order, two–stage Gauss–Legendre,

implicit Runge–Kutta scheme. We show that both these fully discrete methods are

unconditionally stable and possess L2–error estimates of optimal rates.

Dedicated to Professor Robert Vichnevetsky on the occasion of his 65th birthday.

1. Introduction

We shall study Galerkin finite element methods for approximating the solution of

the following model initial– and boundary–value problem for a complex Sobolev type

partial differential equation: Let R > 0 and zmax > 0 be given and let I be the interval

(0, zmax). We seek a complex–valued function u = u(z, r), (z, r) ∈ Ī × [0, R], satisfying
[

1 + σ(β(z, r) + iν(z, r))
]

ur + ασuzzr(1.1)

= iαuzz + i
[

β(z, r) + iν(z, r)
]

u, in Ī × [0, R],

u(0, r) = u(zmax, r) = 0, 0 ≤ r ≤ R,(1.2)

u(z, 0) = u0(z), z ∈ I.(1.3)

Here α and σ are real constants with α 6= 0, and β and ν are smooth, real–valued

functions on Ī × [0, R]. We shall assume that ν is nonnegative and that u0 is a given,

suitably smooth, complex–valued function on Ī. The p.d.e. (1.1) is written in the form

(1.4) (1 + ασR)ur = iαRu,
where Rv = vzz + α−1[β(z, r) + iν(z, r)]v.

The third–order p.d.e. (1.1) occurs in problems of wave propagation as a wide–angle,

parabolic approximation to the Helmholtz equation in cylindrical coordinates in the

absence of azimuthal dependence. In particular, we have in mind its application in the

area of underwater acoustics, [12], [14], where u is the value at depth z and range r

of a field variable generated by a harmonic point source in a single layer (water) of
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depth zmax with pressure release conditions at the surface and at the bottom. (For

simplicity, we shall analyze in detail the single–layer case. In the companion paper

[5] we have indicated how our results extend to more general interface problems with

multiple horizontal layers.) In (1.3) the initial value u0(z) models the effect of the

source at r = 0, while the particular form of (1.1) emerges as an approximation to

a pseudodifferential expression in which
√
1 + x is approximated near x = 0 by a

rational function with linear numerator and denominator of the form (1+px)/(1+qx),

p 6= q. The choice p = 3/4, q = 1/4, [9], corresponds to the (1,1)–Padé approximant

of
√
1 + x, whereas putting p = 1/2, q = 0 yields the linear Taylor polynomial of√

1 + x around x = 0 and corresponds to the standard, [20], parabolic approximation.

In this physical context the constants in (1.1) are given by the formulas α = (p− q)/k0
and σ = q/((p − q)k0), where k0 = 2πf/c0, f is the frequency of the source, and c0
a constant reference sound speed. In addition, β(z, r) = k0(p − q)((c0/c(z, r))

2 − 1),

where c(z, r) is the range–dependent sound speed of the medium, and ν(z, r) ≥ 0 is

an empirically determined dissipation coefficient of the form ν(z, r) = k0(p− q)θ(z, r),

where θ(z, r) incorporates various loss terms. We refer the reader to [12], [14], [17],

[10], for discussions of the justification of (1.1) as a wide–angle modification of the

standard parabolic equation. (The latter corresponds to σ = 0; here we shall assume

that σ 6= 0 and indeed that ασ = q/k20 > 0.)

The existence, uniqueness and regularity of solutions of initial– and boundary–value

problems such as the one given by (1.1)–(1.3) have been investigated in a more general

context by Lagnese, [16], who shows that if −1/ασ is not an eigenvalue of the operator

R for any r ∈ [0, R], then, existence, uniqueness and regularity of solutions follow

under standard hypotheses such as sufficient smoothness of the coefficients of (1.1)

and the initial value u0.

In the specific case of the p.d.e. (1.1) posed under the initial and boundary conditions

(1.2)–(1.3) the following facts are proved with energy techniques by the authors in [5]:

(i) If for each r ∈ [0, R], ν is positive at least on a nonempty subinterval of I, then

the operator 1 + ασR in (1.4) (acting, say, on C2(Ī) functions that vanish at 0

and zmax) is invertible and the problem (1.1)–(1.3) is well–posed.

(ii) If ν = 0 and 1 + σβ(z, r) < ασ(π/zmax)
2 for (z, r) ∈ Ī × [0, R], then 1 + ασR is

invertible and the problem (1.1)–(1.3) is well–posed.

(iii) If (1.1)–(1.3) has a solution, then

(1.5)

∫ zmax

0

|u(z, r)|2 dz ≤
∫ zmax

0

|u(z, t)|2 dz, 0 ≤ t ≤ r ≤ R,

with equality if ν = 0.

In what follows we shall assume that the data of (1.1)–(1.3) are such that the problem

possesses a unique solution which is smooth enough for the purposes of its numerical

approximation.

In section 2 below we analyze the standard Galerkin discretization of (1.1)–(1.3)

with respect to the depth variable (semidiscretization), and prove that its error is of
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optimal order of accuracy in L2. In section 3 we discretize the problem in r as well

using a Crank–Nicolson scheme, for which we also prove an L2 optimal rate result for

the error. A more accurate scheme for range–stepping (of fourth–order of accuracy in

r) is analyzed in section 4. It is based on the two–stage implicit Runge–Kutta method

of Gauss–Legendre type; issues of its efficient implementation are discussed in section

5.

In [15] and [5] various numerical experiments with finite element methods (such as

the ones analyzed herein) were presented, indeed in the presence of interfaces. For finite

element computations for the third–order wide–angle equation analyzed here and some

of its higher order extensions with a scheme that uses piecewise linear elements in the

depth variable and an ADI–Crank–Nicolson range–stepping we refer the reader to the

work of Collins, [10], [11]. For computations with and error analysis of finite difference

methods cf. e.g. [12], [14], [17], [8], [19], [2] and [6].

The following notation will be used in the sequel. For (complex–valued) f, g ∈ L2 =

L2(I), we let

(f, g) =

∫

I

f(z)g(z) dz,

where an overbar denotes complex conjugation. The associated L2 norm will be denoted

by ‖·‖. For integer s ≥ 1, Hs = Hs(I) will denote the usual, complex Sobolev (Hilbert)

spaces with corresponding norms ‖ · ‖s. We let H1
0 = H1

0 (I) = {v ∈ H1(I) : v(0) =

v(zmax) = 0} and by | · |∞ we denote the norm of L∞(I).

2. Semidiscretization

In this section we shall analyze the (standard) Galerkin semidiscrete approximation

of the solution of (1.1)–(1.3). To this effect we discretize the problem in z as follows:

For an integer M let {z0, z1, . . . , zM} be a (not necessarily uniform) partition of Ī such

that z0 = 0 and zM = zmax, and put ei = (zi−1, zi), hi = zi−zi−1 and h = max1≤i≤M hi.

Then, for integer s ≥ 2, define

Xh ={χ : χ ∈ Cs−2(Ī) complex–valued, χ|ēi ∈ Ps−1,

i = 1, . . . ,M, and χ(0) = χ(zmax) = 0},
where Pj are the polynomials of degree at most j. Xh is a family of finite–dimensional

subspaces of H1
0 , that satisfies the following approximation property: Given v ∈ Hs ∩

H1
0 , there exists an element vI ∈ Xh (the interpolant of v) such that

(2.1) ‖v − vI‖+ h‖v − vI‖1 ≤ chj‖v‖j, 1 ≤ j ≤ s,

for some constant c independent of h and v.

Define now the semidiscrete approximation of the solution u of (1.1)–(1.3) in XXh

as the map uh : [0, R] → Xh satisfying

(2.2)

([1 + σ(β(r) + iν(r))]uhr, χ)− ασB(uhr, χ) =
− iαB(uh, χ) + i([β(r) + iν(r)]uh, χ), ∀χ ∈ Xh,

uh(0) = u0h,
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where, for ϕ, χ ∈ H1(I), B(ϕ, χ) = (ϕ′, χ′), and where β(r) = β(·, r) etc.. We assume

that u0 ∈ Hs ∩H1
0 , and u

0
h ∈ Xh is an approximation to u0 such that

(2.3) ‖u0 − u0h‖ ≤ chs‖u0‖s.
E.g. u0h = Pu0, where P is the L2 projection operator onto Xh.

Introducing on Xh the linear operators Dh, Bh(r), Bh(r) and Lh(r), 0 ≤ r ≤ R,

defined for ϕ, χ ∈ Xh by

(2.4)

(Dhϕ, χ) = −B(ϕ, χ),
(Bh(r)ϕ, χ) = (β(r)ϕ, χ),

(Nh(r)ϕ, χ) = (ν(r)ϕ, χ),

Lh(r) = αDh + Bh(r) + iNh(r),

we may rewrite (2.2) as

(2.5) (1 + ασRh(r))uhr = iLh(r)uh, 0 ≤ r ≤ R, uh(0) = u0h,

where Rh = α−1Lh.

If we assume that −1/ασ is not an eigenvalue of the operator R = R(r) defined

after (1.4), then, for h sufficiently small, the operator 1 + ασRh(r) is invertible on Xh,

i.e. the o.d.e. initial–value problem (2.5) has a unique solution. This may be proved

by a duality argument in the standard manner, cf. [18]; here we outline the proof for

the reader’s convenience.

Given r ∈ [0, R], let vh ∈ Xh be a solution of the homogeneous linear system (1 +

ασRh(r))vh = 0, i.e. let

(2.6) ([1 + σ(β + iν)]vh, ϕ)− ασ(v′h, ϕ
′) = 0, ∀ϕ ∈ Xh.

Putting ϕ = vh and taking real and imaginary parts in the above we obtain, respec-

tively,

‖vh‖2 + σ(βvh, vh)− ασ‖v′h‖2 = 0,(2.7)

(νvh, vh) = 0.(2.8)

If ν(z, r) > 0 for z ∈ Ī, then (2.8) gives vh = 0 and the proof is ended. Otherwise,

(2.7) yields

(2.9) ‖v′h‖ ≤ c‖vh‖,
for some constant c. Consider now the indefinite, inhomogeneous elliptic problem

(1 + ασR∗(r))w = vh, i.e.

(2.10) ([1 + σ(β − iν)]w, ϕ)− ασ(w′, ϕ′) = (vh, ϕ), ∀ϕ ∈ H1
0 ,

which, by our assumption, has a unique solution w that can be shown to satisfy, cf.

[1], [16],

(2.11) ‖w‖2 ≤ c‖vh‖.



FINITE ELEMENT METHODS FOR A WIDE–ANGLE PARABOLIC EQUATION 5

Taking ϕ = vh in (2.10), letting wI ∈ Xh be the interpolant of w and using (2.6) yields

‖vh‖2 = ([1 + σ(β − iν)](w − wI), vh)− ασ(w′ − w′
I , v

′
h),

from which, in view of (2.1), (2.11) and the Poincaré inequality, we obtain

‖vh‖2 ≤ c‖w − wI‖ ‖vh‖+ ασ‖w′ − w′
I‖ ‖v′h‖

≤ ch2‖w‖2 ‖vh‖+ ch‖w‖2 ‖v′h‖
≤ ch‖vh‖ ‖v′h‖.

Hence

‖vh‖ ≤ ch‖v′h‖,
which, when combined with (2.9), yields, for h sufficiently small, vh = 0, q.e.d..

Using a straightforward energy technique one may show, cf. section 2 of [5], that the

L2(I) norm of uh(·, r) is a non–increasing function of r. Specifically we have

‖uh(r)‖ ≤ ‖uh(t)‖, for 0 ≤ t ≤ r ≤ R,

which holds as an equality in the nondissipative case ν = 0.

We proceed now to show an optimal–rate L2 estimate for the error of the semidiscrete

approximation. In the sequel we shall frequently use an elliptic projection operator

P1 : H
1
0 → Xh, defined by

(2.12) B(P1v, χ) = B(v, χ), ∀χ ∈ Xh.

It is well–known that, under our hypotheses,

(2.13) ‖v − P1v‖+ h‖v −P1v‖1 ≤ chj‖v‖j, 1 ≤ j ≤ s,

for v ∈ Hs ∩H1
0 .

Theorem 2.1. Let u and uh be the solutions of (1.1)–(1.3) and (2.2), respectively,

with u0h chosen so that (2.3) is satisfied. Then for u sufficiently smooth, there exists a

constant c = c(u,R) such that

(2.14) max
0≤r≤R

‖u(r)− uh(r)‖ ≤ chs.

Proof. We write uh − u = (uh − P1u) + (P1u− u) =: ϑ+ ̺. By (2.13)

(2.15) ‖̺(r)‖ ≤ chs‖u(r)‖s.
Since (P1u)r = P1ur, ϑ satisfies

([1 + σ(β(r) + iν(r))]ϑr, χ)− ασB(ϑr, χ)
+ iαB(ϑ, χ)− i((β(r) + iν(r))ϑ, χ) = (ω, χ),

for χ ∈ Xh, with ω = −[1 + σ(β(r) + iν(r))]̺r + i(β(r) + iν(r))̺. Taking χ = ϑ and

then real parts we have

(2.16)
Re((1 + σβ(r))ϑr, ϑ)− σ Im(ν(r)ϑr, ϑ)

− ασReB(ϑr, ϑ) + (ν(r)ϑ, ϑ) = Re(ω, ϑ).
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For χ = ϑr taking imaginary parts we have

(2.17)
σ(ν(r)ϑr, ϑr) + αReB(ϑ, ϑr)− Re(β(r)ϑ, ϑr)

+ Im(ν(r)ϑ, ϑr) = Im(ω, ϑr).

Multiplying (2.17) by σ and adding the resulting equation to (2.16) we get

1

2

d

dr
‖ϑ‖2 = Re(ϑr, ϑ)

= −σ2(νϑr, ϑr)− (νϑ, ϑ) + 2σ Im(νϑr, ϑ) + Re(ω, ϑ) + σ Im(ω, ϑr)

≤ Re(ω, ϑ) + σ Im(ω, ϑr)

= Re(ω, ϑ) + σ Im{ d
dr

(ω, ϑ)− (ωr, ϑ)}.

Integrating both sides with respect to r and using the Cauchy–Schwarz and the arithmetic–

geometric mean inequalities we have

(2.18) ‖ϑ(r)‖2 ≤ c(A+

∫ r

0

‖ϑ(t)‖2 dt),

where

A = ‖ϑ(0)‖2 + ‖ω(0)‖2 + ‖ω(r)‖2 +
∫ r

0

(‖ω(t)‖2 + ‖ωr(t)‖2) dt.

Using (2.3), (2.13) and (2.15) it is easily seen that A ≤ c(u,R)h2s. Then (2.18) and

Gronwall’s lemma imply that

max
0≤r≤R

‖ϑ(r)‖ ≤ chs.

Therefore (2.14) is proved in view of (2.15). �

3. Crank–Nicolson fully discrete scheme

Let k > 0 be a constant range step, such that R = Nk for some integer N . For

0 ≤ n ≤ N , we shall approximate un = u(·, rn), where rn = nk, by Un ∈ Xh which is

required to satisfy the following Crank–Nicolson type scheme:

(3.1)

([1 + σ(βn−1/2 + iνn−1/2)]∂rU
n, χ)− ασB(∂rUn, χ)

+ iαB(Un−1/2, χ)− i((βn−1/2 + iνn−1/2)Un−1/2, χ) = 0,

∀χ ∈ Xh, 1 ≤ n ≤ N,

U0 = u0h,

where Un−1/2 = (Un + Un−1)/2 and ∂rU
n = (Un − Un−1)/k, rn−1/2 = rn−1 + k/2,

βn−1/2 = β(·, rn−1/2), νn−1/2 = ν(·, rn−1/2) and u0h ∈ Xh is chosen to satisfy (2.3).

It is not hard to see that if Un satisfies (3.1) then

(3.2) ‖Un‖ ≤ ‖Un−1‖, 1 ≤ n ≤ N,
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with equality if ν = 0. In fact, putting χ = Un−1/2 in (3.1) and taking real parts we

have

(3.3)

‖Un‖2 − ‖Un−1‖2 + 2k(νn−1/2Un−1/2, Un−1/2)

− ασ{B(Un, Un)− B(Un−1, Un−1)} − 2σ Im(νn−1/2Un, Un−1)

+ σ{(βn−1/2Un, Un)− (βn−1/2Un−1, Un−1)} = 0.

On the other hand, putting χ = ∂rU
n in (3.1), taking imaginary parts, and multiplying

by σ we obtain

(3.4)

2kσ2(νn−1/2∂rU
n, ∂rU

n)− 2σ Im(νn−1/2Un, Un−1)

− σ{(βn−1/2Un, Un)− (βn−1/2Un−1, Un−1)}
+ ασ{B(Un, Un)− B(Un−1, Un−1)} = 0.

Adding (3.3) and (3.4), we obtain (3.2), with equality if ν = 0.

The existence and uniqueness of the solution of the linear system of equations repre-

sented by (3.1) for 0 ≤ n ≤ N follows from (3.2). Thus, the existence and uniqueness

of this fully discrete approximation does not depend on the invertibility of 1 + ασRh;

this is due to the artificial O(k) ‘absorption’ term introduced in the elliptic operator

by the Crank–Nicolson range discretization. Throughout the rest of this work we shall

denote by D differentiation with respect to z, with Djv = ∂jv/∂zj , while v(j) will

denote the jth derivative ∂jv/∂rj with respect to the range variable.

Theorem 3.1. Let Un and un = u(·, rn) be the solutions of (3.1) and (1.1)–(1.3),

respectively, and u0h be suitably chosen to satisfy (2.3). Then, for 0 ≤ n ≤ N , we have

(3.5) ‖Un − un‖ ≤ c(u,R)(hs + k2).

Proof. We write Un − un = (Un −P1u
n) + (P1u

n − un) =: ϑn + ̺n. From (2.1)

‖̺n‖ ≤ chs‖un‖s.

There remains to estimate ϑn. For 1 ≤ n ≤ N , we have for χ ∈ Xh

(3.6)
([1 + σ(βn−1/2 + iνn−1/2)]∂rϑ

n, χ)− ασB(∂rϑn, χ)
+ iαB(ϑn−1/2, χ)− i((βn−1/2 + iνn−1/2)ϑn−1/2, χ) = (ωn, χ),
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where we define ωn =
∑6

j=1 ω
n
j , with

ωn
1 = −[1 + σ(βn−1/2 + iνn−1/2)](P1 − I)∂ru

n,

ωn
2 = −[1 + σ(βn−1/2 + iνn−1/2)](∂ru

n − un−1/2
r ),

ωn
3 = −ασD2(∂ru

n − un−1/2
r ),

ωn
4 = iαD2(

un + un−1

2
− un−1/2),

ωn
5 =

i

2
(βn−1/2 + iνn−1/2)(P1 − I)(un + un−1),

ωn
6 = i(βn−1/2 + iνn−1/2)(

un + un−1

2
− un−1/2).

As has been done in the analogous context during the proof of (3.2), putting χ = ϑn−1/2

in equation (3.6) and taking real parts, and then taking χ = σ∂rϑ
n and imaginary parts,

and finally adding the resulting equations yields

‖ϑn‖2 − ‖ϑn−1‖2 ≤ 2k{Re(ωn, ϑn−1/2) + σ Im(ωn, ∂rϑ
n)}.

Therefore

‖ϑn‖2 − ‖ϑ0‖2 ≤ 2k
{

Re
n
∑

j=1

(ωj, ϑj−1/2) + σ Im
n
∑

j=1

(ωj, ∂rϑ
j)
}

= 2kRe

n
∑

j=1

(ωj, ϑj−1/2)− 2kσ Im

n
∑

j=2

(∂rω
j, ϑj−1)

+ 2σ Im{(ωn, ϑn)− (ω1, ϑ0)},

which implies

(3.7)

‖ϑn‖2 ≤ c(‖ω1‖2 + ‖ϑ0‖2 + ‖ωn‖2)+

ck(
n
∑

j=1

‖ωj‖2 +
n
∑

j=2

‖∂rωj‖2) + k

2R

n
∑

j=1

‖ϑj‖2.

We estimate next the ωj
i and ∂rω

j
i , 1 ≤ i ≤ 6. For simplicity, we let gj−1/2 = βj−1/2 +

iνj−1/2. From (2.13) and the Cauchy–Schwarz inequality we obtain

‖ωj
1‖2 ≤

ch2s

k

∫ rj

rj−1

‖ur(r)‖2s dr.

By Taylor’s theorem

∂rω
j
1 = −1 + σgj−1/2

k
(P1 − I)∂r(u

j − uj−1)− [σgj−1/2
r +O(k)](P1 − I)∂ru

j−1.

Since

∂r(u
j − uj−1) = −1

k

{

∫ rj

rj−1

(r − rj)u(2)(r) dr −
∫ rj−1

rj−2

(r − rj−2)u(2)(r) dr
}

,
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an application of the Cauchy–Schwarz inequality gives

‖∂rωj
1‖2 ≤

ch2s

k

∫ rj

rj−2

(‖u(2)(r)‖2s + ‖ur(r)‖2s) dr.

Next, since

∂ru
j − uj−1/2

r =
1

2k

{

∫ rj−1/2

rj−1

(r − rj−1)2u(3)(r) dr +

∫ rj

rj−1/2

(r − rj)2u(3)(r) dr
}

,

we obtain

‖ωj
2‖2 ≤ ck3

∫ rj

rj−1

‖u(3)(r)‖2dr.

In order to derive a bound for ∂rω
j
2, we write ωj

2 = (1 + σgj−1/2)ω̃j
2, where

ω̃j
2 =

1

6k

{

∫ rj−1/2

rj−1

(r − rj−1)3u(4)(r) dr +

∫ rj

rj−1/2

(r − rj)3u(4)(r) dr
}

− k2

24
u(3)j−1/2.

Then

∂rω
j
2 =

1 + σgj−1/2

k
(ω̃j

2 − ω̃j−1
2 ) + [σgj−1/2

r +O(k)]ω̃j−1
2 ,

and therefore

‖∂rωj
2‖2 ≤ ck3

∫ rj

rj−2

‖u(4)(r)‖2 dr + ck4
(

|u(3)j−3/2|2∞ + k

∫ rj−1

rj−2

‖u(4)(r)‖2 dr
)

.

Analogously, we obtain

‖ωj
3‖2 ≤ ck3

∫ rj

rj−1

‖D2u(3)(r)‖2 dr,

and

‖∂rωj
3‖2 ≤ ck3

∫ rj

rj−2

‖D2u(4)(r)‖2dr.

Using integration by parts we have

uj−1/2 − uj + uj−1

2
=

1

2

{

∫ rj−1/2

rj−1

(rj−1 − r)u(2)(r) dr +

∫ rj

rj−1/2

(r − rj)u(2)(r) dr
}

=
1

4

{

∫ rj−1/2

rj−1

(rj−1 − r)2u(3)(r) dr

−
∫ rj

rj−1/2

(r − rj)2u(3)(r) dr − k2

2
u(2)j−1/2

}

,

which implies

‖ωj
4‖2 ≤ ck3

∫ rj

rj−1

‖D2u(2)(r)‖2dr,

and

‖∂rωj
4‖2 ≤ ck3

∫ rj

rj−2

‖D2u(3)(r)‖2dr.



10 GEORGIOS D. AKRIVIS, VASSILIOS A. DOUGALIS, AND NIKOLAOS A. KAMPANIS

We also have

‖ωj
5‖2 ≤ ch2s(‖u0‖2s +

∫ rj

0

‖ur(r)‖2s dr).

Since

∂rω
j
5 =

igj−1/2

2k
(P1 − I)(uj − uj−2) +

i

2
[gj−1/2

r +O(k)](P1 − I)(uj−1 + uj−2),

we obtain

‖∂rωj
5‖ ≤ chs

k

∫ rj

rj−2

‖ur(r)‖s dr + chs
{

‖u0‖s +
∫ rj−1

0

‖ur(r)‖s dr
}

,

i.e.

‖∂rωj
5‖2 ≤

ch2s

k

∫ rj

rj−2

‖ur(r)‖2s dr + ch2s.

Further

‖ωj
6‖2 ≤ ck3

∫ rj

rj−1

‖u(2)(r)‖2 dr,

and (with a similar argument as that for ωj
4)

‖∂rωj
6‖2 ≤ ck3

∫ rj

rj−2

‖u(3)(r)‖2 dr + ck4
(

|u(2)j−3/2|2∞ + k

∫ rj−1

rj−2

‖u(3)(r)‖2 dr
)

.

Putting all these results together in (3.7), since ‖ϑ0‖ ≤ chs, we have

‖ϑn‖2 ≤ c(u,R)(k2 + hs)2 +
k

2R

n
∑

j=1

‖ϑj‖2.

Therefore

max
0≤j≤N

‖ϑj‖2 ≤ c(u,R)(k2 + hs)2 +
1

2
max
0≤j≤N

‖ϑj‖2,

i.e. ‖ϑn‖ ≤ c(u,R)(k2 + hs), 0 ≤ n ≤ N , and (3.5) is proved. �

4. A fourth–order Runge–Kutta scheme

In this section we shall discretize the o.d.e. system (2.5) by a higher–order accurate

range discretization scheme, namely the two–stage Gauss–Legendre, implicit Runge–

Kutta method of fourth–order accuracy, [13], [2], [3], [15].

Arguing as in section 2, we may suppose that 1 + ασRh is invertible. Then, for

purposes of error estimation only we write (2.5) as

(4.1) uhr = iFh(r)uh, 0 ≤ r ≤ R, uh(0) = u0h,

where the linear operator Fh(r) : Xh → Xh, 0 ≤ r ≤ R, is defined by

(4.2) Fh(r) = (1 + ασRh(r))
−1Lh(r).
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We now discretize (4.1) by the two–stage Gauss–Legendre method. We seek Un ∈ Xh,

0 ≤ n ≤ N , approximating un = u(·, rn), and Un,m ∈ Xh, 0 ≤ n ≤ N − 1, m = 1, 2,

satisfying

(4.3)

U0 = u0h,

for n = 0, . . . , N − 1 :

Un,m = Un + ik

2
∑

j=1

amjFn,j
h Un,j , m = 1, 2,

Un+1 = Un + ik
2
∑

j=1

bjFn,j
h Un,j ,

where rn,j = rn+τjk and Fn,j
h = Fh(r

n,j). The constants appropriate for the two–stage

Gauss–Legendre method are a11 = a22 = 1/4, a12 = 1/4 −
√
3/6, a21 = 1/4 +

√
3/6,

τ1 = 1/2−
√
3/6, τ2 = 1/2+

√
3/6, and b1 = b2 = 1/2. We also assume henceforth that

U0 = u0h has been chosen so that (2.3) is satisfied. In the next section we shall spell out

an efficient algorithm implementing the scheme (4.3) in a way that does not require

computing the operator Fh, i.e. finding the inverse of 1 + ασRh. For the purposes

of the theoretical analysis of the scheme we retain (4.3) and write it compactly in the

form

Un = Une+ ikAF n
h U

n,(4.4)

Un+1 = Un + ikbTF n
h U

n,(4.5)

where Un = (Un,1, Un,2)T ∈ (Xh)
2 and Fn

h : (Xh)
2 → (Xh)

2 is the diagonal operator

defined by

F n
h V = (Fn,1

h V 1,Fn,2
h V 2)T for V = (V 1, V 2)T ∈ (Xh)

2.

In our notation bTV =
∑2

i=1 biV
i, AV is the element of (Xh)

2 defined by (AV )i =
∑2

j=1 aijV
j , for V ∈ (Xh)

2, and finally Ue = (U, U)T ∈ (Xh)
2, for U ∈ Xh, i.e.

e = (1, 1)T .

In the analysis that follows we shall frequently refer to estimates from [3] in which the

analogous problem is analyzed in the case of the standard parabolic approximation. For

example, a straightforward computation shows that Im(Fhϕ, ϕ) ≥ 0, ∀ϕ ∈ Xh, 0 ≤ r ≤
R, with equality if ν = 0. Hence, we can apply Lemmata 2.1 and 2.2 of [3] and deduce

that, given Un ∈ Xh, the linear system (4.4) has a unique solution Un = (Un,1, Un,2)T ∈
(Xh)

2 which satisfies maxi=1,2 ‖Un,i‖ ≤ c‖Un‖. Moreover ‖Un‖ ≤ ‖Un−1‖, 1 ≤ n ≤ N ,

(with equality if ν = 0). Hence, the scheme (4.4)–(4.5) is unconditionally stable and

in fact conservative in the L2 sense in the absence of dissipation.

In the sequel we shall study the consistency and convergence of the scheme (4.3)

under the assumption that (1 + ασRh)
−1 exists and is bounded in L2, uniformly in

h and r. This holds again if h is sufficiently small in general, and −1/ασ is not an
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eigenvalue of the operator R = R(r) for any r ∈ [0, R]. To see this, given ϕ ∈ Xh let

ψ ∈ Xh solve the problem

(4.6) (1 + ασRh)ψ = ϕ,

where the r–dependence of Rh (and ψ) is suppressed in the notation. If ν(z, r) > 0 on

Ī × [0, R], taking in (4.6) L2–inner products of both sides with ψ and then imaginary

parts yields

σ(νψ, ψ) = Im(ϕ, ψ) ≤ ‖ϕ‖ ‖ψ‖,
from which

(4.7) ‖ψ‖ ≤ c‖ϕ‖,

for some constant c independent of h and r. If ν is not strictly positive, consider the

inhomogeneous indefinite elliptic problem

(4.8) (1 + ασR)w = ϕ,

for which, cf. section 2, we may assume that

(4.9) ‖w‖2 ≤ c‖ϕ‖.

Since ψ is the Galerkin approximation of w in Xh, it can be seen, cf. [18], that e.g.

‖w − ψ‖1 ≤ ch‖w‖2, for h sufficiently small. Therefore, by (4.9) ‖ψ‖1 ≤ ‖w‖1 +
ch‖w‖2 ≤ c‖ϕ‖, for some constant c independent of h and r, implying that (4.7) holds

again; (4.7) obviously implies the desired estimate ‖(1 + ασRh)
−1‖ ≤ c, where ‖ · ‖

denotes the L2 induced operator norm on Xh.

For the solution u(r) of (1.1)–(1.3) we denote by W = W (r) ∈ Xh, 0 ≤ r ≤ R, its

elliptic projection, i.e. let W (r) = P1u(r).

Let W n = W (rn) and consider the following auxiliary problem: Suppose V n,m,

1 ≤ n ≤ N − 1, m = 1, 2, and V n, 0 ≤ n ≤ N , are defined in Xh by

(4.10)

V 0 = W 0,

for n = 0, . . . , N − 1 :

V n,m =W n + ik
2
∑

j=1

amjFn,j
h V n,j, m = 1, 2,

V n+1 =W n + ik
2
∑

j=1

bjFn,j
h V n,j.

The following consistency result is the main ingredient of our convergence proof.

Proposition 4.1. Assume that the solution u of (1.1)–(1.3) is sufficiently smooth.

Then there exists a constant c such that

(4.11) max
0≤n≤N

‖V n −W n‖ ≤ ck(k4 + hs).
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Proof. We follow the steps of proof and the notation of Proposition 3.1 of [3]. Let

τi0 = 1, τij =
∑2

m=1 aimτm,j−1, j ≥ 1, i = 1, 2; then τij = (τi)
j/j!, 0 ≤ j ≤ 2, i = 1, 2.

Let 0 ≤ n ≤ N − 1 be given. Set ΛmW
n =

∑4
j=0 τmjk

jW (j)n, en,m = V n,m − ΛmW
n,

m = 1, 2. Then one can easily obtain, cf. [3],

‖V n+1 −W n+1‖ ≤ ck5 + ‖bTA−1en‖,
where en = (en,1, en,2)T ∈ (Xh)

2. It remains to prove that

(4.12) ‖bTA−1en‖ ≤ ck(k4 + hs).

Using (4.10) we have

(4.13) en,j = En,j + ik
2
∑

m=1

ajmFn,m
h en,m, j = 1, 2,

where

En,j = −ΛjW
n +W n + ik

2
∑

d=1

ajdFn,d
h ΛdW

n, j = 1, 2.

By Lemma 2.1 of [3] it suffices to estimate En,j. In fact

En,j = Ĩn,j1 + Ĩn,j2 +O(k5), j = 1, 2,

where

Ĩn,j1 := −
4
∑

m=1

τjmk
m(W (m)n − iFn

hW
(m−1)n),

Ĩn,j2 := i

2
∑

d=1

ajd(Fn,d
h −Fn

h )(

3
∑

m=0

τdmk
m+1W (m)n).

Define Gh(r) : Xh → Xh, 0 ≤ r ≤ R, as Gh(r) = Bh(r) + iNh(r). Using (4.2) and (2.4)

we obtain

(4.14)
W (m)n − iFn

hW
(m−1)n = (1 + ασRn

h)
−1{(W n

r + ασDhW
n
r − iαDhW

n)(m−1)

− Gn
h (iW

n − σW n
r )

(m−1)}.

Since (DhW,χ) = (D2u, χ), ∀χ ∈ Xh, we have for 0 ≤ r ≤ R,

(Wr + ασDhWr − iαDhW,χ) =

(PΨ, χ) + ((β(r) + iν(r))(iW − σWr), χ), ∀χ ∈ Xh,

where Ψ (r) = [1 + σ(β(r) + iν(r))](Wr − ur)− i(β(r) + iν(r))(W − u). Therefore, for

0 ≤ r ≤ R,

(4.15) Wr + σDhWr − iDhW = PΨ + Gh(r)(iW − σWr).

In view of (2.13), we have Ψ (j) = O(hs), j ≥ 0. Hence

(4.16) (1 + ασRh)Wr = iLhW +O(hs),
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where the remainder terms are understood in the L2 norm. Using (4.14) and (4.15) we

obtain (note the analogy with relation (3.27) of [3])

Ĩn,j1 =− (1 + ασRn
h)

−1
4
∑

m=1

τjmk
m{[Gn

h (iW
n − σW n

r )]
(m−1)

− Gn
h (iW

n − σW n
r )

(m−1)}+O(khs).

Since

Fn,d
h − Fn

h − (1 + ασRn
h)

−1(Ln,d
h − Ln

h) =

σ(1 + ασRn
h)

−1(Ln
h −Ln,d

h )(1 + ασRn,d
h )−1Ln,d

h ,

we can write

Ĩn,j2 = Ωn,j
1 +Ωn,j

2 ,

with

Ωn,j
1 = (1 + ασRn

h)
−1

2
∑

d=1

ajd(Ln,d
h − Ln

h)
{

3
∑

m=0

τdmk
m+1(iW (m)n)

}

,

and

Ωn,j
2 = − iσ(1 + ασRn

h)
−1
{

2
∑

d=1

ajd(Ln,d
h − Ln

h)

(1 + ασRn,d
h )−1Ln,d

h (
3
∑

m=0

τdmk
m+1W (m)n)

}

.

However
3
∑

m=0

τdmk
m+1W (m)n = kW n,d + An,d,

where

An,d = k
{

− 1

2

∫ rn,d

rn
(rn,d − r)2W (3)(r)dr + τd3k

3W (3)n
}

.

Hence,

Ωn,j
2 =− ikσ(1 + ασRn

h)
−1

2
∑

d=1

ajd(Ln,d
h − Ln

h)(1 + ασRn,d
h )−1Ln,d

h W n,d

− iσ(1 + ασRn
h)

−1

2
∑

d=1

ajd(Ln,d
h − Ln

h)(1 + ασRn,d
h )−1Ln,d

h An,d.

It can be proved (in a manner analogous to the proof of the estimate (3.5) of [3]), that

(4.17) ‖L(ℓ)
h (r)W (j)(t)‖ ≤ c, r, t ∈ [0, R], ℓ, j ≥ 0,

which implies that Ln,d
h An,d = O(k4). Then (4.16) and Taylor’s theorem yield

Ωn,j
2 = −kσ(1 + ασRn

h)
−1

2
∑

d=1

ajd(Ln,d
h − Ln

h)W
n,d
r +O(k(hs + k4)).
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Moreover,

W n,d
r =

3
∑

m=0

τdmk
mW (m)n

r +Bn,d,

where

Bn,d =
1

2

∫ rn,d

rn
(rn,d − r)2W (3)

r (r) dr− τd3k
3W (3)n

r .

Again (4.17) and Taylor’s theorem imply

(1 + ασRn
h)

−1

2
∑

d=1

ajd(Ln,d
h −Ln

h)B
n,d = O(k4).

Therefore

Ωn,j
2 = (1 + ασRn

h)
−1

2
∑

d=1

ajd(Ln,d
h − Ln

h)
{

3
∑

m=0

τdmk
m+1(−σW (m)n

r )
}

+O(khs + k5),

implying (note the analogy with relation (3.28) of [3])

Ĩn,j2 =(1 + ασRn
h)

−1
2
∑

d=1

ajd(Ln,d
h −Ln

h)

{

3
∑

m=0

τdmk
m+1(iW n − σW n

r )
(m)
}

+O(k(hs + k4)).

Now, set Z = iW − σWr, 0 ≤ r ≤ R. Then

Ĩn,j1 + Ĩn,j2 = (1 + ασRn
h)

−1(In,j1 + In,j2 ) +O(k(hs + k4)),

with

In,j1 = −
4
∑

d=2

kd
[

d−1
∑

m=1

γm,d
j

G(d−m)n
h Z(m−1)n

(d−m)!

]

,

and

In,j2 =

4
∑

d=2

kd
[

d−1
∑

m=1

δm,d
j

G(d−m)n
h Z(m−1)n

(d−m)!

]

,

where we have set, for 2 ≤ d ≤ 4, 1 ≤ m ≤ d− 1, j = 1, 2,

γm,d
j = τjd

(d− 1)!

(m− 1)!
, δm,d

j =
2
∑

ℓ=1

ajℓτ
d−m
ℓ τℓ,m−1,

(cf. (3.31)–(3.35) in Proposition 3.1 of [3]). Therefore

En,j =

4
∑

d=2

kd
[

d−1
∑

m=1

(δm,d
j − γm,d

j )G(d−m)n
h

Z(m−1)n

(d−m)!

]

+O(k(k4 + hs)).

Since γm,d
j = δm,d

j , 1 ≤ m ≤ d − 1, d = 1, 2, 3, (cf. Proposition 3.1 of [3]) we conclude

that

En,j = ϕn,j +O(k(k4 + hs)), j = 1, 2,
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where we have put

ϕn,j = k4
[

3
∑

m=1

(δm,4
j − γm,4

j )
G(4−m)n
h Z(m−1)n

(4−m)!

]

.

Since δm,4
j − γm,4

j 6= 0, we have ϕn,j = O(k4). Define now ẽn,j = en,j − ϕn,j, Ẽn,j =

En,j − ϕn,j, j = 1, 2. Then (4.13) is equivalently written as

ẽn,j =
(

Ẽn,j + ik
2
∑

d=1

ajdLn,d
h ϕn,d

)

+ ik
2
∑

d=1

ajdLn,d
h ẽn,d.

Since Ẽn,j = O(k(k4 + hs)) and (4.17) imply ‖Ln,j
h ϕn,j‖ ≤ ck4, by Lemma 2.1 of [3] we

have ẽn,j = O(k(k4 + hs)). Therefore

bTA−1en = O(k(k4 + hs)) + bTA−1ϕn,

where ϕn = (ϕn,1, ϕn,2)T ∈ (Xh)
2. By Lemma 3.1 of [3] we further have bTA−1(δm,4 −

γm,4) = 0, m = 1, 2, 3, where γm,4 = (γm,4
1 , γm,4

2 )T , δm,4 = (δm,4
1 , δm,4

2 )T , i.e. bTA−1ϕn =

0, which proves (4.12). �

The following theorem is an immediate consequence of the stability of the scheme

(4.3) and the consistency result just proved.

Theorem 4.1. Assume that the solution u of (1.1)–(1.3) is sufficiently smooth. Then

there exists a constant c such that

max
0≤n≤N

‖Un − un‖ ≤ c(k4 + hs).

Proof. Define V n,m, V n by (4.10) and let εn,m = Un,m − V n,m, εn = Un − V n and

ζn = Un −W n. Then, (4.3) and (4.10) give

εn,m = ζn + ik

2
∑

j=1

amjFn,j
h εn,j, m = 1, 2,

εn+1 = ζn + ik
2
∑

j=1

bjLn,j
h εn,j.

As in the stability proof (cf. Lemma 2.2 of [3]), we have that ‖εn+1‖ ≤ ‖ζn‖. Hence

‖ζn+1‖ ≤ ‖ζn‖ + ‖V n+1 − W n+1‖, which, in view of (4.11), (2.1) and (2.3) yields

‖ζn‖ ≤ c(k4 + hs). The result follows in view of (2.13). �

Remark 4.1. The ideas of the convergence proof just concluded do not change ap-

preciably if one discretizes the problem in the range variable using the general q–stage

Gauss–Legendre scheme. The resulting methods are unconditionally stable (conserva-

tive if ν = 0) and can be shown to satisfy the error estimate max0≤n≤N ‖Un − un‖ ≤
c(kmin(2q,q+2) + hs). For details cf. [3], [15].
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5. Efficient implementation of the Runge–Kutta scheme

In this section we shall study the efficient implementation of the fully discrete scheme

(4.3), following [15]. Let J = dimXh. The vector Un = (Un,1, Un,2)T is the solution of

the 2J × 2J (complex) linear system represented by the equation

(5.1) T nUn = Une,

where

T n = T n(rn,1, rn,2)

=

(

1− ia11k(1 + ασRn,1
h )−1Ln,1

h −ia12k(1 + ασRn,2
h )−1Ln,2

h

−ia21k(1 + ασRn,1
h )−1Ln,1

h 1− ia22k(1 + ασRn,2
h )−1Ln,2

h

)

.

We shall decouple (5.1) using the solution technique of [15], cf. also [2], [3], which is

based on an idea from [7] and may be summarized as follows: write (5.1) as

(5.2) T ∗nUn = (T ∗n − T n)Un + Une,

with T ∗n = T n(r∗n, r∗n), r∗n = rn + k/2, and solve (5.2) by a simple iterative method

suggested by its form. Denoting by jn, 0 ≤ n ≤ N , the number of iterations per-

formed at each range step to solve (5.2) (in practice jn = 1 or jn = 2), we compute

approximations Un
jn to Un by the following algorithm:

(5.3)

U0
j0
= U0.

for n = 0, . . . , N − 1 :

compute suitable Un,1
0 , Un,2

0 ,

for j = 0, . . . , jn+1 − 1 :

T ∗nUn
j+1 = (T ∗n − T n)Un

j + Un
jne,

Un+1
jn+1

= Un
jn +

√
3(Un,2

jn+1
− Un,1

jn+1
).

Each system in the inner (j) loop of (5.3) is of the form T ∗nV = Z̃, where V =

(V1, V2)
T , Z̃ = (Z̃1, Z̃2)

T ∈ (Xh)
2. Because the operators in the entries of T ∗n commute

now, we may compute the Vi, i = 1, 2, as solutions of the two (uncoupled) J×J complex

linear systems

H̃nK̃nV1 = Z̃1 + ik(1 + ασR∗n
h )−1L∗n

h (a12Z̃2 − a22Z̃1),

H̃nK̃nV2 = Z̃2 + ik(1 + ασR∗n
h )−1L∗n

h (a21Z̃1 − a11Z̃2),

where

H̃n = (1 + ασR∗n
h )−1Hn, K̃n = (1 + ασR∗n

h )−1Kn,

Hn = 1 + (σ − ikµ)L∗n
h , Kn = 1 + (σ − ikµ̄)L∗n

h ,

and µ = 1/4 − i
√
3/12. It can be proved that Hn and Kn are invertible, cf. [15]. By

(5.2) the right–hand side is

Z̃ =

(

(1 + ασR∗n
h )−1 0

0 (1 + ασR∗n
h )−1

)

Z,
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where Z = (Z1, Z2)
T ∈ (Xh)

2 is given by

Zm = ik
{

am1[(1 + ασR∗n
h )(1 + ασRn,1

h )−1Ln,1
n − L∗n

h ]Un,1

+ am2[(1 + ασR∗n
h )(1 + ασRn,2

h )−1Ln,2
n −L∗n

h ]Un,2
}

+ (1 + ασR∗n
h )Un, m = 1, 2.

Since ik(1 + ασR∗n
h )−1L∗n

h = −2i
√
3(H̃n − K̃n), we deduce

V1 = (Kn)−1(1 + ασR∗n
h )(Hn)−1Z1 − 2i

√
3[(Kn)−1 − (Hn)−1](a12Z2 − a22Z1),

V2 = (Kn)−1(1 + ασR∗n
h )(Hn)−1Z2 − 2i

√
3[(Kn)−1 − (Hn)−1](a21Z1 − a11Z2).

We see then that computing V , given Z, reduces to solving a number of complex linear

systems with operators Hn and Kn. At the matrix–vector level the corresponding J×J
matrices will be sparse if a finite element basis is chosen for Xh. The computational

costs for solving the systems consist of the LU–decomposition of the complex matrices

representing Hn and Kn, four backsolves to compute

(Kn)−1Zi, (Hn)−1Zi, i = 1, 2,

two matrix–vector multiplications to construct

(1 + ασR∗n
h )(Hn)−1Zi, i = 1, 2,

and two backsolves to compute

(Kn)−1(1 + ασR∗n
h )(Hn)−1Zi, i = 1, 2.

In addition, the computational cost to form Z1 and Z2 consists of the LU–decomposition

of the complex matrices representing 1 + ασRn,i
h , i = 1, 2, four matrix–vector multi-

plications to construct L∗n
h U

n,i, Ln,i
h Un,i, i = 1, 2, two backsolves to compute (1 +

ασRn,i
h )−1Ln,i

h Un,i, i = 1, 2, and three matrix–vector multiplications to construct

(1 + ασR∗n
h )Un, (1 + ασR∗n

h )(1 + ασRn,i
h )−1Ln,i

h Un,i, i = 1, 2.

When j = jn+1 − 1 in the inner loop of (5.3) a further simplification reduces by half

the computational cost of the last iteration. Since, eventually, only Un,2
jn+1

− Un,1
jn+1

is

required, it is not hard to see that one needs to compute

V2 − V1 =(1 + ασR∗n
h )−1(Z2 − Z1)

− 2i
√
3[(Kn)−1 − (Hn)−1]

{

[
1

2
− ik

12
L∗n

h (1 + ασR∗n
h )−1](Z2 − Z1)

+ (a21 + a22)Z1 − (a11 + a12)Z2

}

,

at a computational cost of three backsolves and a matrix–vector multiplication.

In practice we usually choose jn = 2. The starting values Un,1
0 and Un,2

0 , as well as

few of the initial approximations Un
jn , for 0 ≤ n ≤ n0 (usually n0 = 4) in (5.3), are

determined by polynomial extrapolation from previously computed values, cf. [3] and

[15] for details. The reader will duly notice the abundant natural parallelicity on two

processors of many of the computational tasks outlined above.
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