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Abstract. We construct and analyze efficient fully discrete Galerkin type methods

that are of high order of accuracy and conservative in the L2 sense for approximating

the solution of a form of the linear Schrödinger equation with a time-dependent

coefficient, found e.g. in underwater acoustics. The time stepping procedures are

based on the class of implicit Runge–Kutta methods known as the q−stage Gauss–

Legendre schemes. L2 error estimates are proved that are of optimal order in space

and of temporal order q+2. An iterative procedure at each time step for the efficient

implementation of the two-stage scheme is proposed and analyzed.

RÈSUMÈ. On construit et analyse des méthodes totalement discrètes du type Galerkin,

qui sont L2−conservatives et d’order arbitraire, pour approcher la solution d’une

forme de l’équation linéaire de Schrödinger avec un coefficient qui dépend du temps,

trouvée par exemple dans l’acoustique sous-marine. La procédure de discrétisation en

temps est basée sur la classe des méthodes implicites de Runge–Kutta connues comme

les schémas de Gauss–Legendre à q pas intermédiaires. On obtient des estimations

dans L2 pour les erreurs, qui sont d’order optimal en espace es d’order q + 2 en

temps. On propose et analyse aussi une procéduce itérative pour résoudre les systèmes

linéaires à chaque pas de temps pour une application efficace de schéma Gauss–

Legendre à deux pas intermédiaires.

Dedicated to Professor Dr. G. Hämmerlin on the occasion of his 60th birthday, July

31, 1988.

1. Introduction

In this paper we shall study conservative numerical methods of high order of accuracy

for approximating the solution of the following initial- and boundary-value problem for

a partial differential equation of the Schrödinger type. Let Ω be a bounded domain in

RN with smooth boundary ∂Ω and let 0 < T <∞ be given. We seek a complex-valued

function u = u(x, t), (x, t) ∈ Ω̄ × [0, T ], satisfying:

(1.1)

ut = iL(t)u := i
(

α∆u+ β(x, t)u
)

in Ω × [0, T ],

u = 0 on ∂Ω × [0, T ],

u(x, 0) = u0(x) in Ω̄,

where α is a given nonzero real number, β is a given smooth real-valued function on

Ω̄ × [0, T ] and u0 is a given smooth complex-valued function on Ω̄. We shall assume

Work supported by the Institute of Applied and Computational Mathematics of the Research

Center of Crete-FORTH.
1



2 GEORGIOS D. AKRIVIS AND VASSILIOS A. DOUGALIS

that the data of (1.1) are smooth and compatible enough to ensure that the problem

possesses a unique and smooth enough for our purposes solution; cf. e.g. [15, Chapter 5,

Section 12] and [4] for relevant existence, uniqueness and regularity results. This form

of the Schrödinger equation occurs, for example for N = 1, in underwater acoustics

as “parabolic approximation” to the Helmholtz equation, cf. e.g. [20], posed with a

variety of types of boundary conditions. For simplicity we consider here the case of

homogeneous Dirichlet boundary conditions. In (1.1) the Laplacian ∆ could have as

well been replaced by a second-order, symmetric, uniformly positive definite elliptic

operator on Ω̄ with space-dependent coefficients with no complications in the error

estimates.

We shall discretize (1.1) in space by a Galerkin-finite element type method and in

time by a class of implicit Runge–Kutta schemes of arbitrary order, known as the

Gauss–Legendre collocation type methods. We shall estimate the error of the fully dis-

crete approximations in L2 and point out efficient ways for implementing the methods.

Many finite difference and spectral schemes, usually of second-order temporal accu-

racy, have been proposed in the literature for problems such as (1.1); see e.g. the survey

[13], the collections of papers in [19] and [14] and their references. Galerkin-finite el-

ement methods have also been considered. For the linear Schrödinger equation with

time-independent coefficients early error estimates for semidiscrete approximations may

be found in [21], [23]. Semidiscrete and fully discrete Galerkin approximations with

Runge–Kutta time stepping have been analyzed in [4] in the general case where the

Laplacian in the right-hand side of the p.d.e. is replaced by a second-order elliptic op-

erator with space- and time-dependent coefficients. For alternative approaches based

on separating real and imaginary parts, cf. [10], [16]; in this paper we shall discretize

(1.1) directly using complex arithmetic. Among the growing literature on Galerkin

type methods for nonlinear Schrödinger equations, some error estimates are shown

in [17], where second-order time stepping procedures coupled with finite difference or

Galerkin type space discretizations are analyzed; for computations with such schemes

cf. e.g. [18].

We next introduce notation that will be used in the sequel. For integral s ≥ 0 let

Hs = Hs(Ω) denote the usual, complex (Hilbert) Sobolev spaces with corresponding

norm ‖ · ‖s. For f, g ∈ L2 = H0, let

(f, g) =

∫

Ω

f(x)g(x) dx

be their L2 inner product; here the overbar denotes complex conjugation. Let ‖ · ‖
denote the associated L2 norm and | · |∞ be the norm of L∞ = L∞(Ω). As usual, H1

0

will consist of the elements of H1 that vanish on ∂Ω in the sence of trace. We shall

discretize (1.1) in space by the standard Galerkin method, as follows. For 0 < h < 1,

let Sh be a family of finite-dimensional subspaces of H1
0 in which approximations to the

solution u(·, t) of (1.1) will be sought for given t ∈ [0, T ]. We assume that Sh satisfies

the approximation property that there exists an integer r ≥ 2 and a constant c > 0
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independent of h such that for v ∈ Hs ∩H1
0

(1.2) inf
ϕ∈Sh

(

‖v − ϕ‖+ h‖v − ϕ‖1
)

≤ chs‖v‖s, 1 ≤ s ≤ r

and the inverse property that for some c > 0 independent of h,

(1.3) ‖ϕ‖1 ≤ ch−1‖ϕ‖, ∀ϕ ∈ Sh.

As in (1.2), (1.3), in the sequel the symbols c, C, ci etc. will denote generic constants

independent of the discretization parameter h and the time step. Such constants may

also depend on the solution and the data of (1.1).

We define now the semidiscrete approximation of the solution u(t) = u(·, t) of (1.1)
in Sh in the customary way as the map uh : [0, T ] → Sh satisfying (with β(t) = β(·, t)):

(uht, ϕ) = −iαa(uh, ϕ) + i(β(t)uh, ϕ), ∀ϕ ∈ Sh, 0 ≤ t ≤ T,

uh(0) = u0h,
(1.4)

where, for ϕ, χ ∈ H1,

a(ϕ, χ) =

N
∑

j=1

(∂jϕ, ∂jχ).

In addition, we shall henceforth assume that u0 ∈ Hr ∩H1
0 and that u0h is an element

of Sh such that

(1.5) ‖u0 − u0h‖ ≤ chr‖u0‖r;
for example u0h = Pu0, where P : L2 → Sh is the L2−projection operator onto Sh. If

we introduce the linear operators ∆h : Sh → Sh and Bh(t) : Sh → Sh, Lh(t) : Sh →
Sh, 0 ≤ t ≤ T, by

(1.6) (∆hϕ, χ) = −a(ϕ, χ), ∀ϕ, χ ∈ Sh,

(1.7) (Bh(t)ϕ, χ) = (β(t)ϕ, χ), ∀ϕ, χ ∈ Sh, i.e., Bh(t)ϕ = P [β(·, t)ϕ],

(1.8) Lh(t) = α∆h +Bh(t), 0 ≤ t ≤ T,

and note that, since α and β are real, ∆h, Bh(t) and Lh(t), 0 ≤ t ≤ T, are Hermitian

operators on {Sh, (·, ·)}, we may write (1.4) as

uht = iLh(t)uh, 0 ≤ t ≤ T,

uh(0) = u0h.
(1.9)

The equations (1.4) or (1.9) represent an initial-value problem for a system of ordinary

differential equations that obviously has a unique solution uh(t) for 0 ≤ t ≤ T ; they

will only be used in the sequel in order to motivate the fully discrete approximations.

Let us only remark here that it is not hard to show, by comparing e.g. uh to the

elliptic projection of u in the standard way, cf. [22], [4] that if u0h satisfies (1.5), then

for t ∈ [0, T ] there holds

‖(u− uh)(t)‖ ≤ chr
{

‖u0‖r +
∫ t

0

(

‖u(s)‖r + ‖ut(s)‖r
)

ds
}

,
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i.e. that uh(t) satisfies an optimal-order L2 error estimate if u is smooth enough.

We shall discretize (1.9) in time using the well-known class of implicit Runge–Kutta

procedures of collocation type known as the q−stage (q ≥ 1 integer) Gauss–Legendre

methods, [5], [6], [9]. The methods are defined by constants A = (aij) ∈ Rq×q, b =

(b1, . . . , bq)
T ∈ Rq, τ = (τ1, . . . , τq)

T ∈ Rq that are constructed in the standard way.

Specifically, the τi are the —distinct, in (0, 1)— zeros of the shifted Legendre polyno-

mials (d/dx)q
(

xq(1− x)q
)

, the weights bi are defined as the solution of the q× q linear

system of equations represented by (3.1.1) below for 1 ≤ ℓ ≤ q, while the coefficients aij
are defined for each i, 1 ≤ i ≤ q, as solutions of the q×q linear system of equations rep-

resented by (3.1.2). Let k > 0 be the (constant) time step, let tn = nk, n = 0, 1, . . . ,M,

where T = Mk, and tn,i = tn + τik, 1 ≤ i ≤ q. Then, the q−stage Gauss–Legendre

methods applied to the system of ordinary differential equations represented by (1.9)

yield the following full discretization of (1.1): For 0 ≤ n ≤ M, we seek Un ∈ Sh,

approximating u(tn), and Un,m ∈ Sh, 1 ≤ m ≤ q, that satisfy

(a) U0 = u0h,

for n = 0, 1, . . . ,M − 1 :

(b) Un,m = Un + ik

q
∑

j=1

amjL
n,j
h Un,j, 1 ≤ m ≤ q,

(c) Un+1 = Un + ik

q
∑

j=1

bjL
n,j
h Un,j ,

(1.10)

where Ln
h = Lh(t

n), Ln,j
h = Lh(t

n,j).

In Section 2 we shall show that, for each n, the system (1.10b) has a unique solution

{Un,m}, 1 ≤ m ≤ q, in (Sh)
q and therefore that Un+1 is defined uniquely in Sh for

0 ≤ n ≤M − 1, by (1.10c). We shall also verify that (1.10) is unconditionally stable in

L2 and, in particular, conservative, i.e. that it satisfies ‖Un‖ = ‖U0‖, 0 ≤ n ≤M ; thus

it mimicks the behavior of (1.1) and (1.9) for which ‖u(t)‖ = ‖u0‖ and ‖uh(t)‖ = ‖u0h‖
hold, respectively, for 0 ≤ t ≤ T.

In Section 3 we shall estimate the error of the approximation Un in the L2 norm;

specifically, we shall show in Theorem 3.1, which is the main result of the paper, that

(1.11) max
0≤n≤M

‖Un − u(tn)‖ ≤ c
(

kmin(2q,q+2) + hr
)

.

This error bound is of optimal order in space. As far as the temporal rate of convergence

is concerned, it is well-known that the q−stage Gauss–Legendre methods have (clas-

sical) order 2q when applied to nonstiff ordinary differential equations. Therefore our

proof certainly gives optimal-order temporal convergence, resp. 2, 4, for the one- and

two-stage, resp., methods that seem to enjoy current practical importance. For q > 2

our result — O(kq+2) in time — shows the effect of “reduction of order due to stiffness”.

This result is no worse than analogous estimates proven in the literature for Runge–

Kutta full discretizations of initial- and boundary-value problems for p.d.e.’s with time-

dependent coefficients or nonlinear terms, posed with Dirichlet boundary conditions: In
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his thesis Brocéhn, [4], considers full discretizations of the Schrödinger equation with

a general second-order elliptic operator with time-dependent coefficients using some

semi-implicit Runge–Kutta methods. (The class of Gauss–Legendre schemes consid-

ered here is not semi-implicit with the exception of the one-stage scheme.) For his

schemes, using different estimation techniques, he proves error bounds with temporal

order of accuracy equal to min(p, q + 1), where, in his notation, q is the order of the

quadrature rule associated with the intermediate stages of the Runge–Kutta method

and plays an analogous role to the q used here, and p is the classical order (equal to 2q

for the Gauss–Legendre methods). For the special elliptic operator of the right-hand

side of (1.1) he obtains a temporal rate of q + 2, if p = q − 2, and under the mesh

condition that kh−2 remain bounded as k, h → 0. In Theorem 2 of [8], the temporal

discretization, by a class of Runge–Kutta schemes (disjoint from the Gauss–Legendre

methods but suitable for parabolic problems) of an abstract semilinear parabolic equa-

tion is shown to have a rate of convergence exhibiting an analogous limitation to our

q + 2 result. In [3] the Gauss–Legendre methods are applied to a nonlinear p.d.e., the

generalized Korteweg–de Vries equation, posed in one space dimension with periodic

boundary conditions and discretized in space with smooth periodic splines on a uni-

form mesh. The exact analog to (1.11) is proved then by a different technique from

the one at hand, with the details of the space discretization and the periodicity of the

exact and discrete solutions playing a crucial role. (After the completion of the original

version of the paper at hand, we learnt that Karakashian and McKinney, [12], proved

the optimal order 2q for the Korteweg–de Vries equation; their remarkable proof again

relies heavily on the periodic boundary conditions.)

Finally, in Section 4 we confine attention to the 2−stage Gauss–Legendre method and

devise a scheme that avoids solving the 2 dimSh × 2 dimSh linear system represented

by (1.10b) for q = 2. A suitable decoupling strategy and an iteration scheme enables

us to produce stable and optimal-order accurate approximations to Un by solving a

number of linear systems of size dimSh × dimSh at each time step; these systems will

have sparse matrices if Sh is furnished with a finite element basis with elements of small

support.

Acknowledgement. The authors record their thanks to a referee for pointing out

reference [4] to them.

2. Existence and stability of the fully discrete approximations

In this section we shall show that for each n the linear system represented by (1.10b)

has a unique solution Un,m, 1 ≤ m ≤ q, and that the resulting overall fully discrete

scheme (1.10) is stable (conservative) in the L2 norm. For this purpose we shall make

use of the following well-known properties of the Gauss–Legendre methods, [6], [9]:
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For each q ≥ 1 there exists a diagonal q × q matrix D with positive(2.1)

diagonal elements, such that the matrix DAD−1 is positive definite on R
q.

(See e.g. [9, Theorem 5.5.6, Cor. 5.1.4 and (5.1.23)].)

bi > 0, biaij + bjaji − bibj = 0, 1 ≤ i, j ≤ q,(2.2)

i.e. the Gauss–Legendre methods are conservative in the nonlinear context;

cf. e.g. [7], [9, p.117].

We first examine the existence of solutions Un,m of the linear system (1.10b). On

the product space (Sh)
q we let Un denote the vector (Un,1, . . . , Un,q)T and Ln

h : (Sh)
q →

(Sh)
q be the diagonal operator given, for V ∈ (Sh)

q, by Ln
hV = (Ln,1

h V1, . . . , L
n,q
h Vq)

T .

We write then the equations (1.10a,b) respectively as

(2.3a) U
n = Un

e+ ikALn
hU

n,

(2.3b) Un+1 = Un + ikbTLn
hU

n.

In (2.3a,b) and in the sequel, abusing notation a bit to avoid tensor products, for V ∈
(Sh)

q we let bTV =
∑q

i=1 biVi, AV ∈ (Sh)
q : (AV)i =

∑q
j=1 aijVj , e = (1, 1, . . . , 1)T ∈ Rq

and for U ∈ Sh, Ue = (U, U, . . . , U)T ∈ (Sh)
q. The existence of Un, solution of (2.3a),

will follow from the following general lemma. (In the sequel we let ((·, ·)), resp. ||| · |||,
denote the product inner product, resp. norm, in (L2)q.)

Lemma 2.1. Suppose that V = (Vi) and W = (Wi) in (Sh)q satisfy the equation

(2.4) V = W+ ikAF(V),

where F : (Sh)
q → (Sh)

q is a diagonal mapping such that (F(V ))i = Fi(Vi), 1 ≤ i ≤ q,

where Fi : Sh → Sh are given mappings with the property that Im(Fi(ϕ), ϕ) = 0, for

ϕ ∈ Sh, 1 ≤ i ≤ q. Then, there exists a constant c, depending only on the constants of

the Gauss–Legendre method, such that

(2.5) |||V||| ≤ c|||W|||.

Proof. Let D = diag (d1, . . . , dq), di > 0, be the diagonal matrix mentioned in (2.1).

Multiplying (2.4) by D2A−1 on the left and taking the (L2)q inner product with V we

obtain

(2.6) ((D2A−1
V,V)) = ((D2A−1

W,V)) + ik((D2
F(V),V)).

By our hypotheses Re[ik((D2F(V),V))] = 0. Hence, taking real parts in (2.6) gives

(2.7) Re((D2A−1
V,V)) = Re((D2A−1

W,V)).
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Denote DA−1D−1 =: B = (bij) ∈ Rq×q. By (2.1) there exists λ > 0 such that
∑q

i,j=1 bijξiξj ≥ λ
∑q

i=1 ξ
2
i for every ξ ∈ Rq. Hence, putting DV = Y we have

Re((D2A−1
V,V)) = Re((DA−1D−1

Y,Y)) = Re((BY,Y))

≥ λ
(

|||ReY|||2 + ||| ImY|||2
)

= λ|||Y|||2

≥ λmin
i
d2i |||V|||2.

(2.5) follows then by (2.7) and the Cauchy–Schwarz inequality. �

Given now Un ∈ Sh apply Lemma 2.1 to the linear system (2.3a) where F(V) =

Ln
hV, Fi(Vi) = Ln,i

h Vi and Im(Ln,i
h ϕ, ϕ) = 0 for ϕ ∈ Sh. By (2.5) we see that the

homogeneous system (Un = 0 in (2.3a)) has only the trivial solution. Hence, given

Un ∈ Sh, (2.3a) has a unique solution Un = (Un,i) in (Sh)
q, which satisfies

(2.8) max
i

‖Un,i‖ ≤ c‖Un‖,

for some constant c that depends only on the Gauss–Legendre method.

The stability (conservativeness) of the scheme (1.10) follows from the following result,

stated again in slightly more general terms:

Lemma 2.2. Suppose, given U ∈ Sh, that V ∈ (Sh)
q and Y ∈ Sh satisfy the equations

(2.9a) V = Ue + ikAF(V),

(2.9b) Y = U + ikbTF(V),

where F is a mapping that satisfies the hypotheses of Lemma 2.1. Then

(2.10) ‖Y ‖ = ‖U‖.

Proof. (2.9b) gives

‖Y ‖2 = ‖U‖2 + ik(bTF(V), U)− ik(U, bTF(V)) + k2(bTF(V), bTF(V))

= ‖U‖2 − 2k Im

q
∑

j=1

bj(Wj , U) + k2
q
∑

j,ℓ=1

bjbℓ(Wj ,Wℓ),

where Wj = Fj(Vj). Let W = (W1, . . . ,Wq)
T . Replacing U in the right-hand side of the

above equation by its expression U = Vj − ik(AW)j that (2.9a) gives, we see, using the

properties of F and (2.2) that

‖Y ‖2 = ‖U‖2 − 2k2
q
∑

i=1

bi Re(Wi, (AW)i) + k2
q
∑

i,j=1

bibj(Wi,Wj)

= ‖U‖2 − k2
[

q
∑

i,j=1

(biaij + bjaji − bibj)(Wi,Wj)
]

= ‖U‖2. �

Applying this result to the scheme (1.10) we obtain

(2.11) ‖Un‖ = ‖U0‖, 0 ≤ n ≤M,

i.e. that our fully discrete method is conservative in the L2 sense.
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3. Consistency and convergence

In this section we shall study the consistency of the fully discrete scheme (1.10)

and prove the error estimate (1.11). To this effect we shall first list some well-known

algebraic properties of the Gauss–Legendre methods, [6], [9], that will be used in the

sequel along with (2.1) and (2.2).

The q−stage Gauss–Legendre method is consistent of order 2q (i.e. has(3.1)

accuracy of order 2q when applied to an ordinary differential equation

y′ = f(t, y), where f and its partial derivatives of sufficiently high order

with respect to y and t are smooth and bounded), and satisfies the following

order (simplifying) conditions, [5]:

(3.1.1)

q
∑

i=1

biτ
ℓ−1
i = ℓ−1, 1 ≤ ℓ ≤ 2q,

(3.1.2)

q
∑

j=1

aijτ
ℓ−1
j = τ ℓi /ℓ, 1 ≤ i, ℓ ≤ q,

(3.1.3)

q
∑

i=1

biτ
ℓ−1
i aij = ℓ−1bj(1− τ ℓj ), 1 ≤ j, ℓ ≤ q.

The q−stage Gauss–Legendre method corresponds to the q − th diagonal(3.2)

Padé rational approximation to the exponential, i.e. if

r(z) = 1 + zbT (I − zA)−1
e, e = (1, . . . , 1)T ∈ R

q,

then r(z) is the q−th diagonal Padé approximant to exp(z).

For the purposes of the proof of convergence we shall compare the solution Un of

(1.10) to the elliptic projection W = W (t) ∈ Sh, 0 ≤ t ≤ T, of the solution u(t) of

(1.1), defined as usual by

(3.3) (∆hW,ϕ) = −a(W,ϕ) = (∆u, ϕ) ∀ϕ ∈ Sh.

We shall denote the associated (time-independent) elliptic projection operator onto

Sh (defined onH2∩H1
0 ) by PI . In this notation,W (t) = PIu(t) and obviouslyW (j)(t) =

PIu
(j)(t); here and in the sequel v(j)(t) = (d/dt)jv(t). By our assumptions on Sh there

follows that

(3.4) ‖v − PIv‖+ h‖v − PIv‖1 ≤ chr‖v‖r, ∀v ∈ Hr ∩H1
0 .

Obviously (3.3) implies that ‖W (j)(t)‖1 ≤ c‖u(j)(t)||1 ≤ cj, j ≥ 0. In addition, there

exist constants cj such that ‖Lh(t)W
(j)(s)‖ ≤ cj, t, s ∈ [0, T ], j ≥ 0; this follows from
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the observation that for any ϕ ∈ Sh

∣

∣

(

Lh(t)W
(j)(s), ϕ

)
∣

∣ =
∣

∣α(∆hW
(j)(s), ϕ) + (β(t)W (j)(s), ϕ)

∣

∣

≤
(

|α| ‖∆u(j)(s)‖+ |β(t)|∞‖u(j)(s)‖1
)

‖ϕ‖
≤ c‖u(j)(s)‖2 ‖ϕ‖.

In fact, if L
(j)
h (t) : Sh → Sh denotes the j−th time derivative of the operator Lh(t),

given by (L
(j)
h (t)ϕ, χ) = (∂jt β(·, t)ϕ, χ), j ≥ 1, for χ, ϕ ∈ Sh, i.e. by L

(j)
h = B

(j)
h , j ≥ 1,

we have ‖L(i)
h (t)W (j)(s)‖ ≤ ci‖u(j)(s)‖1, i ≥ 1, j ≥ 0. Thus, we can generalize the

previous estimate to

(3.5) ‖L(i)
h (t)W (j)(s)‖ ≤ cij, i, j ≥ 0, t, s ∈ [0, T ],

and also note that

(3.6) ‖L(i)
h (t)‖ ≤ ci, i ≥ 1,

where ‖ · ‖ denotes here the L2 induced operator norm on Sh.

We shall also make use of the following property of the elliptic projection, namely

that for constants cij

(3.7) ‖Lh(t)B
(j)(s)W (i)(s)‖ ≤ cij, i, j ≥ 0, t, s ∈ [0, T ],

which may be proved as follows. We have

(3.8) Lh(t)B
(j)
h (s)W (i)(s) = α∆hB

(j)
h (s)W (i)(s) +Bh(t)B

(j)
h (s)W (i)(s).

Since for j ≥ 0, B
(j)
h (t)ϕ = P (∂jtβ(t)ϕ), we have ‖B(j)

h ϕ‖ ≤ cj‖ϕ‖ for ϕ ∈ Sh. Hence

in (3.8)

(3.9) ‖Bh(t)B
(j)
h (s)W (i)(s)‖ ≤ cij .

Also for ϕ ∈ Sh we obtain, suppressing the dependence on s,

−(∆h(t)B
(j)
h W (i), ϕ) = a(B

(j)
h W (i), ϕ) = a(P [β(j)W (i)], ϕ)

= a(P [β(j)W (i)]− β(j)u(i), ϕ) + a(β(j)u(i), ϕ).
(3.10)

We obviously have

(3.11) |a(β(j)u(i), ϕ)| = |(∆(β(j)u(i)), ϕ)| ≤ cij‖ϕ‖,

and by (1.3)

|a(P [β(j)W (i)]− β(j)u(i), ϕ)| ≤ ‖P [β(j)W (i)]− β(j)u(i)‖1 ‖ϕ‖1
≤ ch−1‖P [β(j)W (i)]− β(j)u(i)‖1 ‖ϕ‖.

(3.12)

Now

(3.13) ‖P [β(j)W (i)]− β(j)u(i)‖1 ≤ ‖P [β(j)(W (i) − u(i))]‖1 + ‖P [β(j)u(i)]− β(j)u(i)‖1.



10 GEORGIOS D. AKRIVIS AND VASSILIOS A. DOUGALIS

Since, as it may easily be seen from (1.3), (3.4), ‖Pv−v‖1 ≤ chr−1‖v‖r for v ∈ Hr∩H1
0 ,

and since for β and u sufficiently smooth β(j)u(i) ∈ Hr ∩H1
0 , there follows

‖P [β(j)(W (i) − u(i))]‖1 + ‖P [β(j)u(i)]− β(j)u(i)‖1
≤ ch−1‖P [β(j)(W (i) − u(i))]‖+ cijh

r−1

≤ cijh
r−1.

These estimates, when substituted in (3.13), yield, in conjunction with (3.10)–(3.12),

that ‖∆hB
(j)
h W (i)‖ ≤ cij since r ≥ 2. Then (3.7) follows from (3.8) and (3.9).

We now embark upon the proof of the main result of this section. For a function v

defined on [0, T ] we generally denote vn = v(tn). We first define, for the purposes of

the proof of consistency, V n,m for 0 ≤ n ≤ M − 1, 1 ≤ m ≤ q and V n, 0 ≤ n ≤ M in

Sh by

(a) V 0 = W 0,

(b) V n,m = W n + ik

q
∑

j=1

amjL
n,j
h V n,j, 1 ≤ m ≤ q,

(c) V n+1 =W n + ik

q
∑

j=1

bjL
n,j
h V n,j.

(3.14)

In Proposition 3.1 below we shall prove the consistency result, valid for u sufficiently

smooth:

(3.15) max
0≤n≤M

‖V n −W n‖ ≤ ck
(

kmin(2q,q+2) + hr
)

.

If this holds, then a simple stability calculation, as the following theorem shows, gives

the error bound (1.11):

Theorem 3.1. Let u be sufficiently smooth and suppose that (3.15) holds. Then

(3.16) max
0≤n≤M

‖Un − un‖ ≤ c
(

kmin(2q,q+2) + hr
)

.

Proof. Let V n,m, V n be defined by (3.14) and let εn,m = Un,m−V n,m, εn = Un−V n, ζn =

Un −W n. Then (1.10) and (3.14) yield

εn,m = ζn + ik

q
∑

j=1

amjL
n,j
h εn,j, 1 ≤ m ≤ q,

εn+1 = ζn + ik

q
∑

j=1

bjL
n,j
h εn,j.

The stability Lemma 2.2 gives then that ‖εn+1‖ = ‖ζn‖. Hence, for 0 ≤ n ≤M − 1,

‖ζn+1‖ ≤ ‖εn+1‖+ ‖V n+1 −W n+1‖ = ‖ζn‖+ ‖V n+1 −W n+1‖.
Therefore, by (3.15) ‖ζn‖ ≤ ‖ζ0‖ + c(kmin(2q,q+2) + hr), 0 ≤ n ≤ M, and the result

follows from (3.4), (1.5) and the triangle inequality. �

Hence our task is to prove consistency:
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Proposition 3.1. If u is sufficiently smooth, (3.15) holds.

Proof. We follow, up to a point, the technique of the consistency proof for Runge–

Kutta discretizations of partial differential equations introduced in [11]. First define

τij , 1 ≤ i ≤ q, j ≥ 0 by

τi0 = 1, τij =

q
∑

ℓ=1

aiℓτℓ,j−1, 1 ≤ i ≤ q, j ≥ 0,

⇐⇒ τij = (Aj
e)i, 1 ≤ i ≤ q, j ≥ 0.

(3.17)

Note that by (3.1.2) we may infer that

(3.18) τij = (τi)
j/j!, 1 ≤ i ≤ q, 0 ≤ j ≤ q.

Also define, for 1 ≤ m ≤ q, 0 ≤ n ≤M − 1

(3.19) ΛmW
n =

2q
∑

j=0

τmjk
jW (j)n,

(3.20) en,m = V n,m − ΛmW
n.

We now make a preliminary observation. By (3.14) and (3.20) we have

(3.21) V n+1 =W n +

q
∑

m,j=1

bm(A
−1)mj(ΛjW

n −W n) + bTA−1en,

where en = (en,1, . . . , en,q)T ∈ (Sh)
q. Using (3.19) and (3.17) we can write

q
∑

m,j=1

bm(A
−1)mj(ΛjW

n −W n) =

q
∑

m,j=1

bm(A
−1)mj

[

2q
∑

ℓ=1

(Aℓ
e)jk

ℓW (ℓ)n
]

=

2q
∑

ℓ=1

(bTAℓ−1
e)kℓW (ℓ)n =

2q
∑

ℓ=1

kℓW (ℓ)n/ℓ!

where in the last equality we used the identities

(3.22) bTAℓ−1
e = 1/ℓ!, 1 ≤ ℓ ≤ 2q,

that follow from the fact that the rational approximation r(z), cf. (3.2), corresponding

to the q−stage Gauss–Legendre method is an O(z2q+1) approximation to exp(z) as

z → 0. We conclude therefore by (3.21) and Taylor’s theorem that

‖V n+1 −W n+1‖ ≤ ck2q+1 + ‖bTA−1en‖.

Hence, in order to prove (3.15) our preliminary observation is that it is sufficient to

obtain an estimate of the form

(3.23) ‖bTA−1en‖ ≤ ck
(

kmin(2q,q+2) + hr
)

.



12 GEORGIOS D. AKRIVIS AND VASSILIOS A. DOUGALIS

Note that (3.20) when substituted in (3.14b) yields for 0 ≤ n ≤M − 1

(3.24) en,j = En,j + ik

q
∑

ℓ=1

ajℓL
n,ℓ
h en,ℓ, 1 ≤ j ≤ q,

where we have put

(3.25) En,j = −ΛjW
n +W n + ik

q
∑

ℓ=1

ajℓL
n,ℓ
h ΛℓW

n, 1 ≤ j ≤ q.

The first main step of the proof consists of some long intermediate calculations, in-

evitable in any order estimation of Runge–Kutta methods, aiming towards transform-

ing the right-hand side of (3.25) to a form more suitable for our purposes. To simplify

notation a bit, in the sequel by ϕ = O(kλ + hµ) we shall mean that there exists a

constant c > 0 independent of k and h such that ‖ϕ‖ ≤ c(kλ + hµ) for k, h sufficiently

small.

First, using (3.25), (3.5), (3.17), (3.19) we have for 1 ≤ j ≤ q

En,j = −ΛjW
n +W n + ik

q
∑

ℓ=1

ajℓL
n,ℓ
h

(

2q−1
∑

m=0

τℓmk
mW (m)n

)

+ ik

q
∑

ℓ=1

ajℓτℓ,2qk
2qLn,ℓ

h W (2q)n

= −ΛjW
n +W n + ik

q
∑

ℓ=1

ajℓL
n,ℓ
h

(

2q−1
∑

m=0

τℓmk
mW (m)n

)

+ ik

q
∑

ℓ=1

ajℓ(L
n,ℓ
h − Ln

h)
(

2q−1
∑

m=0

τℓmk
mW (m)n

)

+O(k2q+1)

= −
2q
∑

m=1

τjmk
mW (m)n +

2q
∑

m=1

(

q
∑

ℓ=1

ajℓτℓ,m−1

)

ikmLn
hW

(m−1)n

+ ik

q
∑

ℓ=1

ajℓ(L
n,ℓ
h − Ln

h)
(

2q−1
∑

m=0

τℓmk
mW (m)n

)

+O(k2q+1)

= −
2q
∑

m=1

τjmk
m
(

W (m)n − iLn
hW

(m−1)n
)

+ ik

q
∑

ℓ=1

ajℓ(L
n,ℓ
h − Ln

h)
(

2q−1
∑

m=0

τℓmk
mW (m)n

)

+O(k2q+1)

= In,j1 + In,j2 +O(k2q+1),

(3.26)

where

(3.27) In,j1 := −
2q
∑

m=1

τjmk
m
(

W (m)n − iLn
hW

(m−1)n
)

, 1 ≤ j ≤ q,
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(3.28) In,j2 := i

q
∑

ℓ=1

ajℓ(L
n,ℓ
h − Ln

h)
(

2q−1
∑

m=0

τℓmk
m+1W (m)n

)

, 1 ≤ j ≤ q.

In In,j1 we have, using (1.8)

(3.29) W (m)n − iLn
hW

(m−1)n = ∂m−1
t

(

W n
t − iα∆hW

n
)

− iBn
hW

(m−1)n.

Introducing now for 0 ≤ t ≤ T ψ(t) := Wt − ut − iβ(t)
(

W (t) − u(t)
)

, for which (3.4)

shows that ψ(j)(t) = O(hr), we can write using (3.3) and (1.1) that

(3.30) Wt − iα∆hW = Pψ + iBh(t)W.

Differentiating (3.30) with respect to t and using (3.29) we rewrite (3.27) as

In,j1 = −i

2q
∑

m=1

τjmk
m
[

∂m−1
t (Bn

hW
n)− Bn

hW
(m−1)n

]

+O(khr)

= −i

2q
∑

m=2

τjmk
m
[

m−2
∑

ℓ=0

(

m− 1

ℓ

)

B
(m−1−ℓ)n
h W (ℓ)n

]

+O(khr).

(3.31)

Turning now to the term In,j2 we obtain by (3.6) and Taylor’s theorem

(3.32) In,j2 = i

q
∑

ℓ=1

ajℓ

(

2q−1
∑

µ=1

(τℓk)
µB

(µ)n
h /µ!

)(

2q
∑

m=1

τℓ,m−1k
mW (m−1)n

)

+O(k2q+1).

Use of (3.5) yields for 1 ≤ ℓ ≤ q that

Zn
ℓ :=

2q−1
∑

j=1

2q
∑

m=1

(τℓ)
jτℓ,m−1k

j+mB
(j)n
h W (m−1)n/j!

=

2q
∑

λ=2

kλ
[

λ−1
∑

m=1

(τℓ)
λ−mτℓ,m−1B

(λ−m)n
h W (m−1)n/(λ−m)!

]

+O(k2q+1).

Therefore (3.32) gives for 1 ≤ j ≤ q

In,j2 = i

q
∑

ℓ=1

ajℓ

{

2q
∑

λ=2

kλ
[

λ−1
∑

m=1

(τℓ)
λ−mτℓ,m−1B

(λ−m)n
h W (m−1)n/(λ−m)!

]}

+O(k2q+1).

(3.33)

Summarizing, we obtain by (3.26), (3.31) and (3.33) for 1 ≤ j ≤ q

En,j = i

2q
∑

λ=2

kλ
[

λ−1
∑

m=1

(δm,λ
j − γm,λ

j )B
(λ−m)n
h W (m−1)n/(λ−m)!

]

+O(k2q+1 + khr),

(3.34)

where, for 1 ≤ j ≤ q, λ = 2, . . . , 2q,m = 1, . . . , λ− 1:

(3.35) δm,λ
j =

q
∑

ℓ=1

ajℓ(τℓ)
λ−mτℓ,m−1, γm,λ

j = τjλ(λ− 1)!/(m− 1)!.
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We immediately observe, using (3.18), that for λ = 1, . . . , q + 1, 1 ≤ m ≤ λ− 1

δm,λ
j =

q
∑

ℓ=1

ajℓ(τℓ)
λ−1/(m− 1)! =

(

(λ− 1)!/(m− 1)!
)

q
∑

ℓ=1

ajℓτℓ,λ−1 = γm,λ
j .

Therefore, we finally conclude that if q ≥ 2, (3.34) yields for 1 ≤ j ≤ q

En,j = i

2q
∑

λ=q+2

kλ
[

λ−1
∑

m=1

(δm,λ
j − γm,λ

j )B
(λ−m)n
h W (m−1)n/(λ−m)!

]

+O(k2q+1 + khr),

(3.36)

while, simply, if q = 1

(3.37) En,1 = O
(

k(k2 + hr)
)

.

Note that (3.37) used in conjunction with

(3.38) max
1≤j≤q

‖en,j‖ ≤ c max
1≤j≤q

‖En,j‖,

(which follows from the stability estimate of Lemma 2.1 applied to the equations (3.24))

gives the desired estimate (3.23) in the case q = 1. Therefore we henceforth concentrate

on the cases q ≥ 2 for which En,j is given by (3.36). To this end let for 1 ≤ j ≤ q,

(3.39) ϕn,j = i

2q
∑

λ=q+2

kλ
[

λ−1
∑

m=1

(δm,λ
j − γm,λ

j )B
(λ−m)n
h W (m−1)n/(λ−m)!

]

.

Then (3.36) is written as

(3.40) En,j = ϕn,j +O(k2q+1 + khr), 1 ≤ j ≤ q.

Obviously, (3.5) gives that ϕn,j = O(kq+2) since δm,λ
j − γm,λ

j are not zero in general

if λ ≥ q + 2. (3.40) then gives that En,j = O(kq+2 + khr) and (3.38) implies in turn

that en,j = O(kq+2+khr) thus yielding the estimate bTA−1en = O(k(kq+1+hr)). (This

concludes essentially the application of the idea of the consistency proof of [11] to the

case at hand).

The second step in the proof is the improvement of the q + 1 exponent of k to the

better value q+2. For this purpose we use the fact that we must actually estimate not

the individual en,j but their particular linear combination

bTA−1en =

q
∑

i,j=1

bi(A
−1)ije

n,j .

First note that defining

(3.41) ẽn,j = en,j − ϕn,j, Ẽn,j = En,j − ϕn,j

we may rewrite (3.24) as

(3.42) ẽn,j =
(

Ẽn,j + ik

q
∑

ℓ=1

ajℓL
n,ℓ
h ϕn,ℓ

)

+ ik

q
∑

ℓ=1

ajℓL
n,ℓ
h ẽn,ℓ.
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Recall from (3.40), (3.41) that Ẽn,j = O(k2q+1+ khr). Also, (3.7) and (3.39) yield that

‖Ln,j
h ϕn,j‖ ≤ ckq+2, 1 ≤ j ≤ q. Hence, the stability estimate of Lemma 2.1, applied to

(3.42), yields ẽn,j = O(kq+3 + khr). Therefore, it follows from (3.41) that

(3.43) bTA−1en = O(k(kq+2 + hr)) + bTA−1ϕn,

where ϕn = (ϕn,1, . . . , ϕn,q)T ∈ (Sh)
q. Hence, the desired estimate (3.23) will follow

from the fact that actually

(3.44) bTA−1ϕn = 0,

which is a consequence of (3.39) and the following cancellation property of the Gauss–

Legendre methods that we state as a separate lemma:

Lemma 3.1. Let δm,λ
j , γm,λ

j be defined for 1 ≤ j ≤ q, λ = 2, . . . , 2q,m = 1, . . . , λ−1 by

(3.35) and denote δm,λ =
(

δm,λ
1 , . . . , δm,λ

q

)T
and γm,λ =

(

γm,λ
1 , . . . , γm,λ

q

)T ∈ Rq. Then

(3.45) bTA−1(δm,λ − γm,λ) = 0.

Proof. For λ ≤ q + 1, 1 ≤ m ≤ λ− 1, we have already established by the simple calcu-

lation following (3.35) that δm,λ = γm,λ. Hence we restrict attention to the interesting

case q + 2 ≤ λ ≤ 2q, 1 ≤ m ≤ λ − 1. Define for the purposes of this lemma T ∈ Rq×q

as T = diag (τ1, . . . , τq) — no confusion with the T of (1.1) will arise — and note that

(3.1.1), (3.1.2) can be written equivalently as

(3.1.1′) bTT ℓ−1
e = 1/ℓ, 1 ≤ ℓ ≤ 2q,

(3.1.2′) AT ℓ−1
e = T ℓ

e/ℓ, 1 ≤ ℓ ≤ q,

respectively; (3.1.2′) implies that

(3.1.2′′) Aℓ
e = T ℓ

e/ℓ!, 0 ≤ ℓ ≤ q.

Now, (3.17) gives that δm,λ = AT λ−mAm−1
e. On the other hand, using (3.22), since

λ ≤ 2q, we have bTA−1γm,λ = (λ − 1)!bTAλ−1
e/(m − 1)! = (λ(m − 1)!)−1. Hence, to

show (3.45) it suffices to establish

(3.46) bTT λ−mAm−1
e = (λ(m− 1)!)−1, q + 2 ≤ λ ≤ 2q, 1 ≤ m ≤ λ− 1.

Obviously for each λ, q+ 2 ≤ λ ≤ 2q, (3.46) holds for 1 ≤ m ≤ q+ 1; this follows from

(3.1.2′′) and (3.1.1′) that yield

bTT λ−mAm−1
e = bTT λ−1

e/(m− 1)! = (λ(m− 1)!)−1.

Hence we focus on the case q + 2 ≤ λ ≤ 2q, q + 2 ≤ m ≤ λ − 1. Using (3.1.2′′) again

gives, since m− 1 ≥ q + 1,

(3.47) bTT λ−mAm−1
e = bTT λ−mAm−1−qT q

e/q!.

For integers k ≥ 1, 1 ≤ ℓ ≤ q define

(3.48) F (ℓ, k) = bTT ℓ−1AkT q
e
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and note that by (3.1.3)

F (ℓ, k) = bTT ℓ−1A(Ak−1T q
e) =

q
∑

i=1

biτ
ℓ−1
i

q
∑

j=1

aij(A
k−1T q

e)j

= ℓ−1

q
∑

j=1

bj(1− τ ℓj )(A
k−1T q

e)j

= ℓ−1
(

bTAk−1T q
e− bTT ℓAk−1T q

e

)

= ℓ−1
[

F (1, k − 1)− F (ℓ+ 1, k − 1)
]

, k ≥ 1, 1 ≤ ℓ ≤ q.

(3.49)

We can now calculate directly using (3.1.1), (3.1.3) for integer s, such that 1 ≤ s ≤ q−1,

that

F (s, 1) =

q
∑

i=1

biτ
s−1
i

q
∑

j=1

aijτ
q
j = s−1

q
∑

j=1

bj(1− τ sj )τ
q
j

= s−1
[

q
∑

j=1

bjτ
q
j −

q
∑

j=1

bjτ
s+q
j

]

=
[

(q + 1)(s+ q + 1)
]−1

.

(3.50)

We claim now that

(3.51) F (ℓ, k) =
[

(q + 1) · · · (q + k)(q + ℓ+ k)
]−1

for k ≥ 1, ℓ ≥ 1, ℓ+ k ≤ q.

Indeed (3.50) shows that (3.51) holds for k = 1. For the inductive step assume that

(3.51) holds for all k ≤ k′ and 1 ≤ ℓ ≤ q−k. Then, for ℓ ≤ q−k′−1 we have by (3.49)

and the inductive hypothesis that

F (ℓ, k′ + 1) = ℓ−1
[

F (1, k′)− F (ℓ+ 1, k′)
]

=
{[

(q + 1) · · · (q + k′)(q + k′ + 1)
]−1 −

[

(q + 1) · · · (q + k′)(q + k′ + ℓ+ 1)
]−1}

/ℓ

=
[

(q + 1) · · · (q + k′)(q + k′ + 1)(q + ℓ+ k′ + 1)
]−1

.

This completes the inductive step and shows the validity of (3.51). Using now (3.48),

(3.51) and (3.47) we obtain with k := m − 1 − q ≥ 1, ℓ := λ − m + 1 ≥ 1, since

k+ ℓ = λ− q ≤ q in the region of interest, that for q + 2 ≤ λ ≤ 2q, q+ 2 ≤ m ≤ λ− 1,

bTT λ−mAm−1
e =

[

q!(q + 1) · · · (m− 1)λ
]−1

=
[

λ(m− 1)!
]−1

.

This identity completes the proof of the validity of (3.46). �

As a consequence of (3.45) and (3.39), (3.44) holds and the proof of Theorem 3.1 is

now complete. �

4. Practical implementation of the two-stage scheme

In this section we shall study questions related to the efficient implementation of

the fully discrete scheme generated by the two-stage Gauss–Legendre method which is
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given of course by the tableau, [9], [6]:

(4.1)
A τ

bT
=

1
4

1
4
− 1

2
√
3

1
2
− 1

2
√
3

1
4
+ 1

2
√
3

1
4

1
2
+ 1

2
√
3

1
2

1
2

.

With these values of aij , bi, τi the method is

(a) U0 = u0h,

for n = 0, 1, . . . ,M − 1 :

(b) Un,m = Un + ik

2
∑

j=1

amjL
n,j
h Un,j , m = 1, 2,

(c) Un+1 = Un + ik
2
∑

j=1

bjL
n,j
h Un,j .

(4.2)

Note that eliminating the Ln,j
h Un,j from (4.2b and c) and using the particular values

of the constants aij and bi from (4.1), we may write (4.2c) simply as

(4.2c′) Un+1 = Un +
√
3(Un,2 − Un,1).

In sections 2 and 3 we proved that for each 0 ≤ n ≤ M (4.2) has a unique solution,

that the resulting scheme is L2−conservative and that it satisfies the optimal in space

and time estimate

(4.3) max
0≤n≤M

‖Un − un‖ ≤ c
(

k4 + hr
)

.

Let d = dimSh. To determine Un,1, Un,2 from (4.2b) one should solve, after choosing

a basis for Sh, the 2d× 2d linear system

(4.4) J
n
U

n = F
n,

where

J
n = J

n(tn,1, tn,2) =

(

I − ika11L
n,1
h −ika12L

n,2
h

−ika21L
n,1
h I − ika22L

n,2
h

)

,

U
n = (Un,1, Un,2)T , F

n = (Un, Un)T .

(4.5)

With the aim of solving only (sparse) d × d systems of linear equations at each time

step, we shall uncouple the two equations in (4.4) borrowing an idea from [3]. We first

write (4.4) equivalently as

(4.6) J
∗n
U

n = (J∗n − J
n)Un + F

n,

where

(4.7) J
∗n = J

n(t∗n, t∗n), t∗n = (tn,1 + tn,2)/2 = tn + k/2,



18 GEORGIOS D. AKRIVIS AND VASSILIOS A. DOUGALIS

the advantage being now that the operators Lh in the entries of J∗n are evaluated at

the same point t∗n and that, in particular, they commute. This enables us to compute

the solution Y = (Y1, Y2)
T ∈ (Sh)

2 of systems of the form

(4.8) J
∗n
Y = Z,

given Z = (Z1, Z2)
T ∈ (Sh)

2, “explicitly” as

∆∗nY1 = Z1 + ikL∗n(a12Z2 − a22Z1),

∆∗nY2 = Z2 + ikL∗n(a21Z1 − a11Z2),
(4.9)

where ∆∗n = I − k(iL∗n)/2 + k2(iL∗n)2/12, L∗n = Lh(t
∗n). It is easily seen that ∆∗n is

invertible since iL∗n is normal with purely imaginary eigenvalues and the polynomial

1 − z/2 + z2/12 has no roots on the imaginary axis. Systems with operator ∆∗n like

the ones in (4.9) can then in turn be solved by the complex analog of the procedure

proposed for Padé diagonal methods in [2]. Consider e.g. the first equation of (4.9)

and, putting W1 = a12Z2− a22Z1, R1 = W1+Z1/2− ikL∗nZ1/12, Φ1 = Y1−Z1, rewrite

it as

(4.10) ∆∗nΦ1 = ikL∗nR1.

Since ∆∗n = (I− iµkL∗n)(I− iµ̄kL∗n), where µ = 1/4− i
√
3/12, we may rewrite (4.10),

letting Hn = I− iµkL∗n, Kn = I− iµ̄kL∗n, as HnKnΦ1 = i(Hn−Kn)R1/(2 Imµ), from

which

(4.11) Φ1 = i[(Kn)−1 − (Hn)−1]R1/(2 Imµ).

To determine therefore Φ1 (and hence Y1) one must form R1 in the right-hand side of

(4.11) and solve two complex linear systems of size d × d with operators Kn and Hn

noting that at the level of matrix-vector operations the corresponding matrices will be

sparse if a finite element basis consisting of functions of small support is chosen for Sh.

Similarly for Φ2 with obvious parallelicity duly noted.

In order to take advantage of the fact that systems of the form (4.8) can be “easily”

solved in the manner outlined above, we shall solve the original system (4.6) by the

simplest iterative method that its form immediately suggests. Let jn, n = 0, 1, . . . ,M,

be given positive integers — in practice jn = 1 or jn = 2 — representing the number

of iterations that will be performed at step n to solve (4.6). For jn, n = 0, 1, . . . ,M we

shall compute Un
j approximating Un as follows:

Let U0
j0
= U0 = u0h (e.g. take j0 = 0).

For n = 0, 1, . . . ,M :

Compute suitable starting values Un,1
0 , Un,2

0 .

Compute Un,m
jn+1

, m = 1, 2 by the iterative scheme:

For j = 0, 1, . . . , jn+1 − 1 solve

(4.12) J
∗n

(

Un,1
j+1

Un,2
j+1

)

= (J∗n − J
n)

(

Un,1
j

Un,2
j

)

+

(

Un
jn

Un,2
jn

)

.
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Define Un+1
jn+1

= Un
jn +

√
3(Un,2

jn+1
−Un,1

jn+1
). Note that when j = jn+1− 1 in the inner

(j) loop in (4.12) there are important savings in the number of operations: since only

the difference Un,2
jn+1

−Un,1
jn+1

is finally needed, we must solve directly only one system of

the form ∆∗n(Φ2 − Φ1) = ikL∗n(R2 − R1). Hence it is important to try to get by with

only jn = 1 iteration at each time step.

We shall analyze the convergence of the iterative scheme in (4.12) and at the same

time demonstrate the attendant stability of the resulting new fully discrete method.

To this end assume for the time being that we have available approximations Un
jn ∈ Sh

to Un for n = 0, 1, 2, 3, 4 such that

(4.13) ‖Un − Un
jn‖ ≤ cn

(

k4 + hr
)

, n = 0, 1, 2, 3, 4.

For n ≥ 3, given Un
jn approximating Un, we shall compute the required starting values

Un,m
0 , m = 1, 2, for the inner (j) loop in (4.12) using extrapolation from previous values,

i.e. as

(4.14) Un,m
0 =

3
∑

λ=0

µmλU
n−λ
jn−λ

, m = 1, 2, 3 ≤ n ≤M − 1,

where the constants µmλ, m = 1, 2, λ = 0, 1, 2, 3, will be computed by letting p(t) be

the cubic polynomial interpolating to the values yn−λ = y(tn−λ) of a smooth function

y(t) at the points tn−λ, λ = 0, 1, 2, 3, and setting

p(tn + τmk) =
3
∑

λ=0

µmλy
n−λ. m = 1, 2.

Proposition 4.1. Let u be sufficiently smooth, Un, 0 ≤ n ≤ M, be the solution of

(4.2) and suppose that there exist Un
jn ∈ Sh, 0 ≤ n ≤ 4, such that (4.13) holds. For

4 ≤ n ≤M−1 define Un+1
jn+1

by the scheme (4.12) with starting values Un,m
0 as in (4.14).

Then if jn+1 = 2 for all n, there exists k0 > 0 such that for k ≤ k0

(4.15) max
0≤n≤M

‖Un − Un
jn‖ ≤ c

(

k4 + hr
)

.

If jn+1 = 1 for all n, then, given 0 < ε ≤ 1, there exists kε > 0 such that for k ≤ kε
there holds

(4.16) max
0≤n≤M

‖Un − Un
jn‖ ≤ c

(

k4−ε + hr
)

.

In (4.15) and (4.16) c is a constant independent of k, h and ε.

Proof. Given Un
jn , let Ũ

n,m, m = 1, 2, denote the exact solution of the system

(4.17) Ũn,m = Un
jn + ik

2
∑

j=1

amjL
n,j
h Ũn,j , m = 1, 2,

which we can write using (4.5) as

(4.18) J
n

(

Ũn,1

Ũn,2

)

=

(

Un
jn

Un
jn

)

.
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First we prove a preliminary estimate that implies the convergence of the sequence

Un,m
j , j = 0, 1, 2, . . . to Ũn,m. From (4.12) and (4.18) suppressing n we let Yj,m =

Un,m
j − Ũn,m,Yj = (Yj,1, Yj,2)

T and obtain J∗nYj+1 = (J∗n−Jn)Yj =: Zj = (Zj,1, Zj,2)
T ,

i.e.

(4.19) Yj+1 = ikAL∗n
Yj+1 + Zj ,

where L∗n = diag (L∗n, L∗n) on (Sh)
2. There follows by Lemma 2.1 that |||Yj+1||| ≤

c|||Zj |||. On the other hand, using e.g. (3.6), we obtain ‖Zj,m‖ ≤ ck2
(

‖Yj,1‖+‖Yj,2‖), m =

1, 2 and conclude therefore that

(4.20) max
m=1,2

‖Un,m
j+1 − Ũn,m‖ ≤ γk2 max

m=1,2
‖Un,m

j − Ũn,m‖, j = 0, 1, . . . , jn+1 − 1,

where γ is a constant independent of h, k and the choice of jn.

We next estimate the difference ‖Un,m
0 −Ũn,m‖. (In what follows we let n ≥ 4). Using

(4.14) we have for m = 1, 2

Ũn,m − Un,m
0 = (Ũn,m − Un,m) + (Un,m − un,m) +

(

un,m −
3
∑

λ=0

µmλu
n−λ
)

+
[

3
∑

λ=0

µmλ

(

un−λ − Un−λ
)

]

+
[

3
∑

λ=0

µmλ

(

Un−λ − Un−λ
jn−λ

)

]

.

(4.21)

First, since Ũn,m satisfies (4.17) and Un,m (4.2b) we obtain, again by stability (Lemma

2.1), that

(4.22) max
m=1,2

‖Ũn,m − Un,m‖ ≤ c‖Un − Un
jn‖.

Next, recalling the definition of V n,m from (3.14), write, with W n,m = W (tn,m),

(4.23) Un,m − un,m = (Un,m − V n,m) + (V n,m −W n,m) + (W n,m − un,m)

and observe that by (3.14b), (4.2b), Lemma 2.1 and (4.3)

(4.24) max
m=1,2

‖Un,m − V n,m‖ ≤ c‖Un −W n‖ ≤ c(k4 + hr).

Now from (3.19), (3.20) V n,m −W n,m = en,m + (ΛmW
n −W n,m). By (3.38) and (3.36)

we have ‖en,m‖ ≤ c(k4 + khr), m = 1, 2, whereas (3.18) and Taylor’s theorem yield for

m = 1, 2

‖ΛmW
n −W n,m‖ =

∥

∥

4
∑

j=0

τmjk
jW (j)n −W n,m

∥

∥ ≤ ck3.

We conclude that

(4.25) ‖V n,m −W n,m‖ ≤ c(k3 + khr), m = 1, 2,

and, therefore, by (4.23)–(4.25) that for k ≤ 1,

(4.26) ‖Un,m − un,m‖ ≤ c(k3 + hr), m = 1, 2.
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Finally, the definition of the extrapolation procedure yields

(4.27)
∥

∥un,m −
3
∑

λ=0

µmλu
n−λ
∥

∥ ≤ ck4.

We conclude, by (4.21), (4.22), (4.26) and (4.27) that there exist positive constants η

and θ, independent of k, h and the choice of jn such that

(4.28) max
m=1,2

‖Ũn,m − Un,m
0 ‖ ≤ θ(k3 + hr) + η‖Un − Un

jn‖+
3
∑

λ=0

µλ‖Un−λ − Un−λ
jn−λ

‖,

where µλ = maxm=1,2 |µmλ|, 0 ≤ λ ≤ 3.

We come now to the main part of the proof which is an induction step on n. First

we treat the case jn = 2 for all n ≥ 4. We let k ≤ k0 =
(

2
√
3 γ2

)−1
where γ is as in

(4.20). Assume that for 4 ≤ m ≤ n,

(H1) ‖Um − Um
jm‖ ≤ cm(k

4 + hr),

where cm are positive constants satisfying

(H2) cm = [1 + k3(η + µ0)]cm−1 + k3(µ1cm−2 + µ2cm−3 + µ3cm−4) + θk2.

Clearly, it may be arranged, by taking c3 or c4 large enough in (4.13), that (H1)–(H2)

hold for n = 4. Define Ũn+1 ∈ Sh, conformal to the notation in (4.17) as

(4.29) Ũn+1 = Un
jn +

√
3(Ũn,2 − Ũn,1)

and split

(4.30) Un+1 − Un+1
jn+1

= (Un+1 − Ũn+1) + (Ũn+1 − Un+1
jn+1

).

Since the time stepping procedure is conservative in the L2 sense, subtracting (4.17)

from (4.2b) and (4.29) from (4.2c′) we obtain

(4.31) ‖Un+1 − Ũn+1‖ = ‖Un − Un
jn‖.

On the other hand, using (4.29) and (4.12) we have

‖Ũn+1 − Un+1
jn+1

‖ = ‖
√
3(Ũn,2 − Un,2

jn+1
)− (Ũn,1 − Un,1

jn+1
)‖

≤ 2
√
3 max

m=1,2
‖Ũn,m − Un,m

jn+1
‖

≤ 2
√
3 γ2k4 max

m=1,2
‖Ũn,m − Un,m

0 ‖
(4.32)

where in the last inequality we used the fact that jn+1 = 2 and (4.20). We conclude

therefore by (4.30)–(4.32) that

(4.33) ‖Un+1 − Un+1
jn+1

‖ ≤ ‖Un − Un
jn‖+ 2

√
3 γ2k4 max

m=1,2
‖Ũn,m − Un,m

0 ‖.

Hence, (4.33) and (4.28) yield, if k ≤ k0 =
(

2
√
3 γ2

)−1

‖Un+1 − Un+1
jn+1

‖ ≤ (1 + ηk3)‖Un − Un
jn‖+ k3

3
∑

λ=0

µλ‖Un−λ − Un−λ
jn−λ

‖+ θk2(k4 + khr).
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Therefore, using the induction hypothesis (H1) we obtain

‖Un+1 − Un+1
jn+1

‖
≤
[(

1 + k3(η + µ0)
)

cn + k3(µ1cn−1 + µ2cn−2 + µ3cn−3) + θk2
]

(k4 + khr).

Hence, (H1)–(H2) hold form = n+1 as well and the inductive step is complete. Clearly

the constants cn are uniformly bounded for 0 ≤ n ≤ M by a constant independent of

k and h; (4.15) follows.

We examine now the consequences of taking jn = 1 for all n ≥ 4. Given 0 < ε ≤ 1 we

shall assume that k ≤ kε =
(

2
√
3 γ
)−1/ε

for reasons that will become apparent below.

Our induction hypotheses that replace (H1), (H2) are now that for 4 ≤ m ≤ n,

(H1′) ‖Um − Um
jm‖ ≤ cm(k

4−ε + hr),

where cm are positive constants given by

(H2′) cm = [1 + k2−ε(η + µ0)]cm−1 + k2−ε(µ1cm−2 + µ2cm−3 + µ3cm−4) + θk.

The verification of the inductive step follows the lines of the previous proof: (4.29)

to (4.31) still hold of course but since jn+1 = 1, (4.32) becomes ‖Ũn+1 − Un+1
jn+1

‖ ≤
2
√
3 γk2maxm=1,2 ‖Ũn,m − Un,m

0 ‖. Consequently we have ‖Un+1 − Un+1
jn+1

‖ ≤ ‖Un −
Un
jn‖ + 2

√
3 γk2maxm=1,2 ‖Ũn,m − Un,m

0 ‖, and therefore for k ≤ kε =
(

2
√
3 γ
)−1/ε

we

obtain by (H1′)

‖Un+1 − Un+1
jn+1

‖ ≤ ‖Un − Un
jn‖+ 2

√
3 γk2

[

θ(k3 + hr) + η‖Un − Un
jn‖

+

3
∑

λ=0

µλ‖Un−λ − Un−λ
jn−λ

‖
]

≤
[(

1 + (η + µ0)k
2−ε
)

cn + k2−ε(µ1cn−1 + µ2cn−2 + µ3cn−3)
]

(k4−ε + hr)

+ θk(k4−ε + hr),

verifying that (H1′), (H2′) hold for m = n+ 1 as well. Obviously the constants cn can

be made uniformly bounded in n by a constant independent of ε, albeit larger than

the corresponding constant in the jn = 2 case; we conclude that (4.16) holds. �

It is easy to construct Un
jn , 0 ≤ n ≤ 4, such that (4.13) is valid. For n = 0 we already

have stipulated that U0
j0
= U0. For n = 1 only the previous value U0 is available. We

set U0,1
0 = U0,2

0 = U0 in (4.12) and generate the sequence U0,m
j taking j1 = 2. This will

suffice since the analog of (4.27) is an O(k) bound implying that in the analog of (4.28)

maxm=1,2 ‖Ũ0,m − U0,m
0 ‖ = O(k + hr). Similarly for n = 2, 3, 4 it suffices to generate

Un
jn from (4.12) with jn = 1, computing for each n, Un−1,m

0 as the appropriate linear

combination of the previous values U0
j0
, U1

j1
, . . . , Un−1

jn−1
using the Lagrange interpolating

polynomial of degree n− 1.

In practice we noticed that taking cubic polynomial extrapolation to generate the

starting values for n ≥ 4 and just jn = 1 was generally sufficient to preserve the overall

order of accuracy and stability of the scheme. We report in [1] these and other relevant

numerical experiments that we performed with the method, including experiments in
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which the operator J∗n is not evaluated at every time step but rather every m∗ > 1

time steps. Our experiments indicate that it is possible to take in many interesting

examples m∗ equal to, say, 20 and jn = 2 (the m∗ “large”, jn = 1 combination was

unstable for some hard to integrate problems) and still preserve the overall order of

accuracy and stability of the scheme.

Note added in proof : For more recent work related to error estimates for the Non-

linear Schrödinger Equation we refer the reader to [24], [25].
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