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Abstract. We consider a partial differential equation of Schrödinger type, known as
the ‘parabolic’ approximation to the Helmholtz equation in the theory of sound prop-
agation in an underwater, range- and depth-dependent environment with a variable
bottom. We solve an associated initial- and boundary-value problem by a finite dif-
ference scheme of Crank-Nicolson type on a variable mesh. We prove that the method
is stable in ℓ2, establish optimal, second-order error estimates and show results of rel-
evant numerical experiments.

1. Introduction
The partial differential equation of Schrödinger type

(1.0) ur = iαuzz + iβ(z, r)u
derived as a ‘parabolic’ approximation to the Helmholtz equation with cylindrical
symmetry, is widely used as a model in numerical computations of long-range, low-
frequency sound propagation in underwater acoustics, [7], [5]. Here u = u(z, r) is
a complex-valued function of two real variables, the depth z and the range r, α is a
real constant and β a real-valued function of z and r, reflecting the fact that the speed
of sound in the sea is supposed to be both depth- and range-dependent. In this paper
we shall consider a finite-difference scheme for approximating the solution of (1.0)
posed in a variable, range-dependent domain like the one shown in Figure 1.
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Figure 1. The range-dependent domain of integration
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Specifically, given R > 0, let s = s(r), r ∈ [0, R], be the (rigid) bottom of the sea,
assumed to be a known, real-valued, continuous and piecewise C1 function, strictly
positive on [0, R], such that s(0) = 1. Supplementing (1.0) with appropriate auxiliary
conditions at the boundary of the domain shown in Figure 1, we consider the initial-
and boundary-value problem of finding u = u(z, r), 0 ≤ z ≤ s(r), 0 ≤ r ≤ R,
satisfying

(1.1)


ur = iαuzz + iβ(z, r)u, 0 ≤ r ≤ R , 0 ≤ z ≤ s(r),

u(0, r) = u(s(r), r) = 0, 0 ≤ r ≤ R,

u(z, 0) = u0(z), 0 ≤ z ≤ s(0) = 1.

We shall suppose that (1.1) possesses a unique solution which is smooth enough for
the purposes of its numerical approximation. The boundary condition u(0, r) = 0

corresponds to a pressure-release condition on the surface z = 0, while setting u = 0

at the bottom z = s(r) is not so realistic for applications in underwater acoustics.
An appropriate local boundary condition at the bottom would be a mixed-type condi-
tion with complex coefficients, cf. e.g. equation (29) in [6]. Recently however, some
questions have been raised, cf. [1], regarding the well-posedness of the problem under
such bottom conditions. We will treat u(s(r), r) = 0 here as a first step in the analysis
of finite difference methods for initial- and boundary-value problems for (1.0) noting
that (1.1) is certainly well-posed.

We solve (1.1) numerically on a grid which has a uniform step k in range. For N
a positive integer, let k = R/N and define rn = nk, rn+1/2 = rn + k

2
, n = 0, 1, 2, . . . .

At each range level rn we shall partition the depth interval [0, s(rn)] into J + 1 equal
subintervals (J will be a fixed positive integer) of length hn = s(rn)/(J + 1) and let
znj = jhn, zn+1/2

j = (znj + zn+1
j )/2, 0 ≤ j ≤ J + 1. In addition let CJ+2

0 denote the
complex J + 2-vectors g = (g0, . . . , gJ+1)

T with g0 = gJ+1 = 0. For 0 ≤ n ≤ N our
scheme will yield approximations Un = (Un

0 , . . . , U
n
J+1)

T ∈ CJ+2
0 to the values un =

(un
0 , . . . , u

n
J+1)

T of the solution u of (1.1), where un
j = u(znj , r

n). The approximations
will be defined for n = 0 by U0 = u0, where u0

j = u0(z
0
j ), and, for 0 ≤ n ≤ N − 1, by

the scheme

(1.2)

Ln
h(U

n
j ) :=

(
hn+1 U

n+1
j − hn U

n
j

)
− 1

4
(hn+1 − hn)

[
(j + 1)

(
Un+1
j+1 + Un

j+1

)
− (j − 1)

(
Un+1
j−1 + Un

j−1

)]
− iαk

2

( 1

hn+1

δ2h U
n+1
j +

1

hn

δ2hU
n
j

)
− ik

2
β
n+1/2
j

(
hn+1U

n+1
j + hnU

n
j

)
= 0 , 1 ≤ j ≤ J,

where we denote δ2h U
n
j = Un

j+1 − 2Un
j + Un

j−1, βn+1/2
j = β

(
z
n+1/2
j , rn+1/2

). This is an
implicit, single-step method that requires solving a J × J tridiagonal linear system of
equations at each range step. The scheme was derived in [3] and analyzed by Jamet in
[4] in the case of the heat equation in a variable domain. (It may actually be derived
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by lumping a space-time finite element scheme, cf. [3].) It can be easily seen that
when hn = hn+1 —flat bottom— (1.2) reduces to the conservative Crank-Nicolson
scheme, [2], for the Schrödinger equation.

First we make some observations and assumptions regarding the variable mesh.
Since hn = s(rn)/(J + 1) and J is constant, we see that the ratio hn/hm is uniformly
bounded above and below by positive constants. Specifically,
(1.3) σ−1 ≤ hn/hm ≤ σ, 0 ≤ n,m ≤ N,

where σ = max0≤r≤R s(r)/min0≤r≤R s(r). In particular, each hn is in this sense com-
parable to h := maxn hn and h := minn hn. Since now hn+1 − hn =

(
s(rn+1) −

s(rn)
)
/(J + 1), observing that s(r) is Lipschitz continuous on [0, R] and denoting by

L its Lipschitz constant, we obtain that |hn+1−hn| ≤ Lk/(J +1). As a consequence,
we have
(1.4) |hn+1 − hn| ≤ C0 k h, 0 ≤ n ≤ N − 1,

where C0 = L/s, s := min0≤r≤R s(r). In the sequel it will be convenient to assume a
weak mesh condition, namely that there exists a positive constant a such that
(1.5) k ≤ ah.

An immediate consequence of (1.3) and (1.4) is that for 0 ≤ n ≤ N ,
(1.6) (J + 1)|hn+1 − hn| ≤ C1kh,

where C1 = σaL.
Using (1.6) we prove in section 2 that the scheme (1.2) is stable in the ℓ2 sense.

Specifically, we show in Proposition 2.1 that, for k sufficiently small, there exists a
positive constant c, independent of hn and k, such that ∥Un∥h ≤ c∥U0∥h, 1 ≤ n ≤ N ,
where Un is any solution of (1.2) and ∥U∥h :=

[
(J+1)−1

∑J
j=1 |Uj|2

]1/2 for U ∈ CJ+2
0 .

As a consequence, for each n, the matrix of the tridiagonal linear system represented
by (1.2) is invertible and the solution Un exists uniquely. In section 3 we study the
consistency of the scheme and derive an optimal-order bound for the local truncation
error. We then go on to prove in Theorem 3.1 that the optimal-order error estimate

max
n

∥Un − un∥h ≤ c(k2 + h2)

holds, where here, and in the sequel, we denote by c generic positive constants inde-
pendent of hn and k. We close the paper with a section of numerical experiments that
verify the order of convergence for various bottom topographies s(r).

Acknowledgement. The authors record their thanks to their student Ms. Anne Kallerghi
for programming the method and performing the numerical experiments reported
herein. This work was supported by the Underwater Acoustics Program of the In-
stitute of Applied and Computational Mathematics of F.O.R.T.H..
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2. Stability
First, let us observe that it may be easily established that (1.1) is conservative in

L2, in the sense that the integral ∫ s(r)

0
|u(z, r)|2 dz remains constant on [0, R]. Indeed

(denoting by z̄ the complex conjugate of z ∈ C), multiply (1.0) by ū and integrate
with respect to z on [0, s(r)] to obtain for r ≥ 0∫ s(r)

0

ur ū dz = iα
∫ s(r)

0

uzz ū dz + i
∫ s(r)

0

β |u|2 dz.

Integrating by parts using the boundary conditions in (1.2) we then see that ∫ s(r)

0
uzz ū dz

= −
∫ s(r)

0
|uz|2 dz. Hence, taking real parts in the equation above yields

(2.1) Re
∫ s(r)

0

ur ū dz = 0.

On the other hand, by Leibniz’s rule
d

dr

∫ s(r)

0

|u|2 dz =

∫ s(r)

0

(ur ū+ u ūr) dz + s′(r−) |u(s(r), r)|2

=2Re
∫ s(r)

0

urū dz,

where use has been made of the boundary condition u = 0 at the bottom. Hence, for
r ≥ 0, (2.1) yields

(2.2)
∫ s(r)

0

|u(z, r)|2 dz =

∫ s(0)

0

|u(z, 0)|2 dz =

∫ 1

0

|u0(z)|2 dz.

To establish the ℓ2-stability of the finite difference scheme (1.2) we shall roughly
follow in the discrete mode the steps that led to (2.2). To this end, fix n and let
Γj := hnU

n+1
j + hn+1U

n
j . Then, summation by parts easily yields

(2.3)
J∑

j=1

(
δ2hΓj

)
Γ̄j =

J∑
j=1

(
Γj−1Γ̄j + Γ̄j−1Γj − 2|Γj|2

)
∈ R.

In addition, note that

(2.4)

J∑
j=1

(
hn+1U

n+1
j − hnU

n
j

)
Γ̄j

=
J∑

j=1

[
hn+1hn

(
|Un+1

j |2 − |Un
j |2

)
+ (h2

n+1 − h2
n)U

n
j Ūn+1

j

]

+ h2
n+1

J∑
j=1

(
Un+1
j Ūn

j − Un
j Ūn+1

j

)
,
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and that the last sum of the right-hand side is purely imaginary. Denote now Aj :=

Un+1
j + Un

j and obtain, after long but straightforward computations, the identity

(2.5)
Re

J∑
j=1

[
(j + 1)Aj+1 − (j − 1)Aj−1

]
Γ̄j = Re

J∑
j=1

Aj+1Γ̄j

− 1

2
(hn+1 − hn)

J∑
j=1

j
[
(Un

j+1Ū
n+1
j + Ūn

j+1U
n+1
j )− (Un+1

j+1 Ū
n
j + Ūn+1

j+1 U
n
j )
]
.

Finally, note that

(2.6)

J∑
j=1

β
n+1/2
j (hn+1U

n+1
j + hnU

n
j )Γ̄j = −(h2

n+1 − h2
n)

J∑
j=1

β
n+1/2
j Un

j Ū
n+1
j

+
J∑

j=1

β
n+1/2
j

[
hn+1hn

(
|Un+1

j |2 + |Un
j |2

)
+ h2

n+1

(
Un+1
j Ūn

j + Ūn+1
j Un

j

)]
,

with the last sum of the right-hand side being of course real.
Multiply now both sides of (1.2) by Γ̄j , sum from j = 1 to J using the identities

(2.3)–(2.6) and obtain, taking real parts in the end:

(2.7)

hnhn+1

J∑
j=1

(
|Un+1

j |2 − |Un
j |2

)
= −(h2

n+1 − h2
n)Re

J∑
j=1

Un
j Ū

n+1
j

+
1

4
(hn+1 − hn)Re

J∑
j=1

Aj+1Γ̄j

− 1

8
(hn+1 − hn)

2

J∑
j=1

j
[
(Un

j+1Ū
n+1
j + Ūn

j+1U
n+1
j )− (Un+1

j+1 Ū
n
j + Ūn+1

j+1 U
n
j )
]

+
1

2
(h2

n+1 − h2
n) Im

J∑
j=1

β
n+1/2
j Un

j Ū
n+1
j .

Applying the Cauchy–Schwarz and the arithmetic–geometric mean inequalities in the
right-hand side of (2.7), and using the mesh relations (1.3)–(1.6) we obtain for k suf-
ficiently small:

(2.8)
J∑

j=1

|Un+1
j |2 ≤ 1 + ck

1− ck

J∑
j=1

|Un
j |2.

Finally, use of (2.8) and the discrete Gronwall inequality gives the result of
Proposition 2.1 (Stability). Let (1.5) hold. Then if Un is any solution of (1.2), it
satisfies
(2.9) max

n
∥Un∥h ≤ c∥U0∥h. □
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3. Consistency and convergence
We first estimate the local truncation error of the difference scheme (1.2):

Proposition 3.1 (Consistency). Let (1.5) hold, assume that u, the solution of (1.1),
is sufficiently smooth and recall the notation Ln

h for the difference operator in (1.2).
Then
(3.1) |Ln

h(u
n
j )| ≤ ckh(k2 + h2), 1 ≤ j ≤ J, 0 ≤ n ≤ N − 1.

Proof. Long but straightforward Taylor expansions yield (in view of the mesh rela-
tions), for 1 ≤ j ≤ J , 0 ≤ n ≤ N − 1, the estimates

(3.2)
hn+1u

n+1
j − hnu

n
j −

1

4
(hn+1−hn)

[
(j + 1)(un+1

j+1 + un
j+1)−(j−1)(un+1

j−1 + un
j−1)

]
=

1

2
k(hn+1 + hn)ur(P

n+1/2
j ) +O(kh3 + k3h),

(3.3) −iαk
2

[ 1

hn+1

δ2h u
n+1
j +

1

hn

δ2hu
n
j

]
= −iαk

2

(
hn+1+hn

)
uzz(P

n+1/2
j )+O(kh3+k3h),

(3.4) − ik
2
β
n+1/2
j (hn+1u

n+1
j + hnu

n
j ) = − ik

2
(hn+1 + hn)β

n+1/2
j u(P

n+1/2
j ) +O(k3h),

where the point P n+1/2
j :=

(
z
n+1/2
j , rn+1/2

) can always be made to lie in the domain
0 ≤ z ≤ s(r), 0 ≤ r ≤ R, by assuming that k or h is sufficiently small. (3.1) then
follows from (3.2)–(3.4) and (1.0). □

Finally, putting together (3.1) and the energy method of the stability proof we may
prove the following optimal-order ℓ2 error estimate for our problem:
Theorem 3.1. Assume that (1.5) holds and u, the solution of (1.1), is sufficiently
smooth. If Un is the solution of the finite difference scheme (1.2), we have
(3.5) max

0≤n≤N
∥Un − un∥h ≤ c(k2 + h2).

Proof. Let en = Un − un and define ρnj = Ln
h(e

n
j ), 1 ≤ j ≤ J, 0 ≤ n ≤ N − 1. Use of

the linearity of Ln
h, (1.2) and (3.1) yields

(3.6) max
n,j

|ρnj | ≤ ckh (k2 + h2) .

Now fix n and let γj := hne
n+1
j + hn+1e

n
j , aj := en+1

j + enj . Then, we may rewrite the
equation Ln

h(e
n
j ) = ρnj for 1 ≤ j ≤ J , 0 ≤ n ≤ N − 1, as

(3.7)
hn+1e

n+1
j − hne

n
j =

1

4
(hn+1 − hn)

[
(j + 1)aj+1 − (j − 1)aj−1

]
− iαk

2hnhn+1

δ2hγj +
ik
2
β
n+1/2
j (hn+1e

n+1
j + hne

n
j ) + ρnj .
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In analogy with similar computations made in the course of the energy proof of the
stability of our scheme in section 2 we obtain now

(3.8)
J∑

j=1

(δ2h γj) γ̄j =
J∑

j=1

(
γj−1 γ̄j + γ̄j−1γj − 2|γj|2

)
∈ R,

(3.9)

J∑
j=1

(hn+1e
n+1
j −hne

n
j )γ̄j = hnhn+1(J + 1)

(
∥en+1∥2h − ∥en∥2h

)
+ (h2

n+1 − h2
n)

J∑
j=1

enj ē
n+1
j + h2

n+1

J∑
j=1

(en+1
j ēnj − enj ē

n+1
j ),

(with the last term being of course purely imaginary),

(3.10)
Re

J∑
j=1

[
(j + 1)aj+1 − (j − 1)aj−1

]
γ̄j = Re

J∑
j=1

aj+1 γ̄j

− 1

2
(hn+1 − hn)

J∑
j=1

j
[(
enj+1ē

n+1
j + ēnj+1e

n+1
j

)
−
(
en+1
j+1 ē

n
j + ēn+1

j+1 e
n
j

)]
,

and

(3.11)

J∑
j=1

β
n+1/2
j (hn+1e

n+1
j + hne

n
j )γ̄j = −(h2

n+1 − h2
n)

J∑
j=1

β
n+1/2
j enj ē

n+1
j

+
J∑

j=1

β
n+1/2
j

[
hn+1hn

(
|en+1

j |2 + |enj |2
)
+ h2

n+1

(
en+1
j ēnj + ēn+1

j enj
)]

(the last term of the right-hand side being of course real).
Hence, multiplying both sides of (3.7) by γ̄j , summing from j = 1 to J and taking
real parts we conclude, using (3.8)–(3.11), much as in (2.7):

hn+1hn(J + 1)
(
∥en+1∥2h − ∥en∥2h

)
= −(h2

n+1 − h2
n)Re

J∑
j=1

enj ē
n+1
j

+
1

4
(hn+1 − hn)Re

J∑
j=1

aj+1γ̄j

− 1

8
(hn+1 − hn)

2

J∑
j=1

j
[(
enj+1ē

n+1
j + ēnj+1e

n+1
j

)
−
(
en+1
j+1 ē

n
j + ēn+1

j+1 e
n
j

)]

+
k

2
(h2

n+1 − h2
n) Im

J∑
j=1

β
n+1/2
j enj ē

n+1
j + Re

J∑
j=1

ρnj γ̄j.
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Hence, using our mesh estimates (1.3)–(1.6) we see that the above implies

∥en+1∥2h − ∥en∥2h ≤ckh
∣∣∣Re

J∑
j=1

enj ē
n+1
j

∣∣∣+ ck
∣∣∣Re

J∑
j=1

aj+1 γ̄j

∣∣∣
+ ckh

∣∣∣ J∑
j=1

[(
enj+1 ē

n+1
j + ēnj+1 e

n+1
j

)
−

(
en+1
j+1 ē

n
j + ēn+1

j+1 e
n
j

)]∣∣∣
+ ck2h

∣∣∣ Im
J∑

j=1

β
n+1/2
j enj ē

n+1
j

∣∣∣+ c(J + 1)
∣∣∣Re

J∑
j=1

ρnj γ̄j

∣∣∣.
Using now the Cauchy–Schwarz and the arithmetic–geometric mean inequalities in
the right-hand side of the above, as well as the bound (3.6), we obtain

∥en+1∥2h ≤ 1 + ck

1− ck
∥en∥2h + ck(k2 + h2)2,

for k sufficiently small; (3.5) follows in view of Gronwall’s discrete inequality. □

4. Numerical experiments
In this section we present the results of some simple numerical experiments that

were run (using double precision in Fortran on a VAX 8600 at the University of Crete)
with various bottom boundaries s(r) to verify the orders of convergence proved in
section 3. We considered the non-homogeneous equation
(4.1) ur = iuzz + iβ(z, r)u+ f(z, r)

for 0 ≤ r ≤ 1, 0 ≤ z ≤ s(r), with boundary and initial conditions as in (1.1). (It
is straightforward to extend the error estimate (3.5) to the case of a nonhomogeneous
equation such as (4.1), provided we add to the difference scheme (1.2) the forcing term
−kf(z

n+1/2
j , rn+1/2).) We experimented with six choices of the function s(r), 0 ≤ r ≤

1, namely:
s(r) = 1,(4.2)
s(r) = 1 + r,(4.3)
s(r) = 1 + r2,(4.4)
s(r) = 1 + 0.3 sin 2πr,(4.5)
s(r) = 1− 1

2
r (converging duct),(4.6)

s(r) =

{
1 if 0 ≤ r ≤ 1

2

1
2
+ r if 1

2
≤ r ≤ 1

(piecewise linear).(4.7)

In all cases the exact solution of (4.1) was taken to be
u(z, r) = (z − s(r)) sin πz sin r + iz(z − s(r)) cos r,

while the coefficient β(z, r)was equal to sin(rz). The nonhomogeneous term f and the
initial condition u0 were computed by (4.1) and the exact solution. We computed with
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k = h0 = (J+1)−1, where J+1 = 10, 20, . . . , 100, with the difference scheme (solving
the tridiagonal linear system at each range step by the LINPACK subroutine ZGTSL)
and recorded the error EN := ∥UN − uN∥h at the final range level rN = 1. In table 1
we show the errors EN for all six s(r)’s and the resulting convergence rates between
successive runs. The predicted second-order rate of convergence emerges clearly from
these experiments. (Note that since the number of range steps was always even, a node
was always placed at the point r = 1/2, where the derivative s′ is discontinuous in
example (4.7).)

(4.2) (4.3) (4.4)
J + 1 EN rate EN rate EN rate

10 .32856-2 .29844-1 .30134-1
20 .88455-3 1.893 .74279-2 2.006 .74421-2 2.018
30 .39726-3 1.974 .33186-2 1.987 .32997-2 2.006
40 .22573-3 1.965 .18650-2 2.003 .18547-2 2.003
50 .14419-3 2.009 .11906-2 2.011 .11862-2 2.003
60 .99898-4 2.013 .82589-3 2.006 .82359-3 2.001
70 .73296-4 2.009 .60642-3 2.004 .60507-3 2.000
80 .56077-4 2.005 .46416-3 2.002 .46323-3 2.000
90 .44291-4 2.003 .36667-3 2.001 .36598-3 2.000

100 .35869-4 2.002 .29696-3 2.001 .29642-3 2.001

(4.5) (4.6) (4.7)
J + 1 EN rate EN rate EN rate

10 .90194-2 .22914-2 .96149-2
20 .18574-2 2.280 .56627-3 2.017 .28714-2 1.744
30 .86354-3 1.889 .25335-3 1.984 .12746-2 2.003
40 .48501-3 2.005 .14540-3 1.930 .70387-3 2.064
50 .31024-3 2.002 .93999-4 1.955 .44357-3 2.069
60 .21582-3 1.991 .65782-4 1.958 .30556-3 2.044
70 .15893-3 1.985 .48407-4 1.990 .22338-3 2.032
80 .12211-3 1.973 .37028-4 2.006 .17051-3 2.022
90 .96769-4 1.975 .29341-4 1.975 .13448-3 2.015

100 .78441-4 1.993 .23782-4 1.994 .10882-3 2.010

Table 1. Errors EN and convergence rates for the examples (4.2)–(4.7)
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