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Abstract. In combination with the Grenander–Szegő theorem, we observe that a relaxed positivity condition on
multipliers, milder than the basic requirement of the Nevanlinna–Odeh multipliers that the sum of
the absolute values of their components is strictly less than 1, makes the energy technique applicable
to the stability analysis of BDF methods for parabolic equations with selfadjoint elliptic part. This
is particularly useful for the six-step BDF method for which we show that no Nevanlinna–Odeh
multipliers exist. We introduce multipliers satisfying the positivity property for the six-step BDF
method and establish stability of the method for parabolic equations.
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1. Introduction. Let T > 0, u0 ∈ H, and consider the initial value problem of seeking
u ∈ C((0, T ];D(A)) ∩ C([0, T ];H) satisfying

(1.1)

{
u′(t) +Au(t) = f(t), 0 < t < T,

u(0) = u0,

with A a positive definite, selfadjoint, linear operator on a Hilbert space (H, (·, ·)) with domain
D(A) dense in H and f : [0, T ] → H a given forcing term.

We consider the q-step backward difference formula (BDF) method, generated by the
polynomials α and β,

(1.2) α(ζ) =

q∑

j=1

1

j
ζq−j(ζ − 1)j =

q∑

j=0

αjζ
j, β(ζ) = ζq.

The BDF methods are A(ϑq)-stable with ϑ1 = ϑ2 = 90◦, ϑ3 ≈ 86.03◦, ϑ4 ≈ 73.35◦, ϑ5 ≈ 51.84◦

and ϑ6 ≈ 17.84◦; see [13, Section V.2]. Nørsett established a criterion for A(ϑ)-stability in [22]
and numerically computed the approximations ϑN

3 ≈ 88.45◦, ϑN
4 ≈ 73.23333◦ , ϑN

5 ≈ 51.83333◦

and ϑN
6 ≈ 18.78333◦ . Exact values of ϑq, q = 3, 4, 5, 6, are given in [5]; see also [19], [12]. The

order of the q-step method is q.
Let N ∈ N, τ := T/N be the time step, and tn := nτ, n = 0, . . . , N, be a uniform partition

of the interval [0, T ]. We recursively define a sequence of approximations um to the nodal
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values u(tm) of the exact solution by the q-step BDF method,

(1.3)

q∑

i=0

αiu
n+i + τAun+q = τfn+q, n = 0, . . . , N − q,

with fm := f(tm), assuming that starting approximations u0, . . . , uq−1 are given.
Let | · | denote the norm on H induced by the inner product (·, ·), and introduce on

V, V := D(A1/2), the norm ‖ · ‖ by ‖v‖ := |A1/2v|. We identify H with its dual, and denote
by V ′ the dual of V , and by ‖ · ‖⋆ the dual norm on V ′, ‖v‖⋆ = |A−1/2v|. We shall use the
notation (·, ·) also for the antiduality pairing between V ′ and V.

In view of the positivity of the coefficient αq, the Lax–Milgram lemma ensures existence
and uniqueness of the BDF approximations.

Stability of the A-stable one- and two-step BDF methods (1.3) can be easily established by
the energy technique. The powerful Nevanlinna–Odeh multiplier approach extends the appli-
cability of the energy method to the non A-stable three-, four- and five-step BDF methods. In
contrast, as we shall see, no Nevanlinna–Odeh multipliers exist for the six-step BDF method.
Here, we show that, in combination with the Grenander–Szegő theorem, see Lemma 3.2,
the energy technique is applicable even with multipliers satisfying milder requirements than
Nevanlinna–Odeh multipliers. We introduce such multipliers for the six-step BDF method
and establish stability estimates by the energy technique.

Several stability techniques have been developed for BDF methods, each one with its own
merits. The main characteristics that make the energy technique so powerful are its simplicity
and flexibility. In particular, the energy technique can be easily combined with other stability
techniques such as the discrete maximal parabolic Lp-regularity, and, depending on the choice
of the test functions, it leads to several stability estimates. We refer to [16] for the maximal
parabolic regularity property of the BDF methods and to [6] for an efficient combination
of the discrete maximal parabolic regularity and the energy technique for BDF methods of
order up to 5 in the case of the discretization of quasilinear parabolic equations. The energy
technique has proven particularly useful in recent years in the analyses of various variants of
BDF methods of order up to 5, such as fully implicit, linearly implicit or implicit–explicit, for
a series of nonlinear equations of parabolic type; cf., e.g., [20, 7, 1, 4, 6, 17, 3].

Stability conditions involving multipliers are familiar for feedback systems from control
theory; see, e.g., [25] and references therein.

An outline of the paper is as follows: In Section 2, we relax the requirements on the multi-
pliers for BDF methods and present multipliers for the six-step BDF method. In Section 3, we
use a new multiplier in combination with the Grenander–Szegő theorem and prove stability
of the six-step BDF method for the initial value problem (1.1) as well as for nonautonomous
parabolic equations. In Section 4, we present some numerical results and compare the six-step
BDF method with two Runge–Kutta methods of similar order, namely the three-stage Radau
IIA and Gauss methods.

2. Multipliers for the six-step BDF method. Multipliers for the three-, four- and five-
step BDF methods were introduced by Nevanlinna and Odeh already in 1981, see [21], to
make the energy technique applicable to the stability analysis of these methods for parabolic
equations; no multipliers are required for the A-stable one- and two-step BDF methods. The
multiplier technique became widely known and popular after its first actual application to the
stability analysis for parabolic equations by Lubich, Mansour, and Venkataraman in 2013; see
[20].
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The multiplier technique hinges on the celebrated equivalence of A- and G-stability for
multistep methods by Dahlquist; see [11].

Lemma 2.1 ([11]; see also [8] and [13, Section V.6]). Let α(ζ) = αqζ
q + · · · + α0 and

κ(ζ) = κqζ
q + · · ·+ κ0 be polynomials, with real coefficients, of degree at most q (and at least

one of them of degree q) that have no common divisor. Let (·, ·) be a real inner product with

associated norm | · |. If

(A) Re
α(ζ)

κ(ζ)
> 0 for |ζ| > 1,

then there exists a positive definite symmetric matrix G = (gij) ∈ R
q,q and real δ0, . . . , δq such

that for v0, . . . , vq in the inner product space,

(G)
( q∑

i=0

αiv
i,

q∑

j=0

κjv
j
)
=

q∑

i,j=1

gij(v
i, vj)−

q∑

i,j=1

gij(v
i−1, vj−1) +

∣∣∣
q∑

i=0

δiv
i
∣∣∣
2
.

Notice that we here consider real spaces for simplicity of notation; in the case of a complex
inner product, (G) is still valid with the term on its left-hand side replaced by its real part.

Definition 2.2 (Multipliers and Nevanlinna–Odeh multipliers). Let α be the generating poly-
nomial of the q-step BDF method defined in (1.2). Consider a q-tuple (µ1, . . . , µq) of real num-
bers such that with the given α and, abusing notation a little bit, µ(ζ) := ζq−µ1ζ

q−1−· · ·−µq,
the pair (α, µ) satisfies the A-stability condition (A), with κ(ζ) replaced by µ(ζ), and, in addi-
tion, the polynomials α and µ have no common divisor. Then, we call (µ1, . . . , µq) Nevanlinna–
Odeh multiplier for the q-step BDF method if

(P1) 1− |µ1| − · · · − |µq| > 0,

and simply multiplier if it satisfies the positivity property

(P2) 1− µ1 cos x− · · · − µq cos(qx) > 0 ∀x ∈ R.

Notice that, with the notation of this definition, (A) and (G), respectively, mean that the
q-step scheme described by the parameters αq, . . . , α0, 1,−µ1, . . . ,−µq and the corresponding
one-leg method are A- and G-stable, respectively. Of course, these are necessarily low order
methods but this is irrelevant here; we do not compute with them; we only use them to
establish stability of the q-step BDF method.

Optimal Nevanlinna–Odeh multipliers, i.e., the ones with minimal |µ1|+ · · ·+ |µq|, for the
three-, four- and five-step BDF methods, were given in [4].

Some comments on the requirements in Definition 2.2 and their role in the stability
analysis are in order. The essence of the positivity property (P2) is that, in combina-
tion with the Grenander–Szegő theorem, it ensures that symmetric band Toeplitz matrices
T = (tij)i,j=1,...,m, of bandwidth 2q + 1 and dimension m > 2q + 1, with entries tij = ti−j,

(2.1) t0 = 1− ε, ti = µi/2, i = 1, . . . , q, ti = 0, i = q + 1, . . . ,m− 1,

are, for sufficiently small ε, positive definite; see Section 3 for the application of this property,
with a concrete multiplier, for the case of the six-step BDF method. To prove stability of the
method by the energy technique, we test (1.3) by un+q − µ1u

n+q−1 − · · · − µqu
n and obtain

(2.2)
( q∑

i=0

αiu
n+i, un+q −

q∑

j=1

µju
n+q−j

)
+ τAn+q = τFn+q,
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n = 0, . . . , N − q, with

(2.3) An+q :=
(
Aun+q, un+q −

q∑

j=1

µju
n+q−j

)
and Fn+q :=

(
fn+q, un+q −

q∑

j=1

µju
n+q−j

)
.

The term Fn+q in (2.2) can be easily estimated from above via elementary inequalities. The
first term on the left-hand side of (2.2) can be estimated from below using (G); this is the
motivation for the requirement (A). Which one of the two positivity conditions, (P1) or (P2),
enters into the stability analysis, depends on the way we handle the second term on the left-
hand side of (2.2), i.e., An+q. In the standard approach, we estimate An+q from below at
every time level and subsequently sum over n; then, requirement (P1) is crucial; cf., e.g., [7],
[1], [4]. Instead, in the proposed here approach, we sum over n and subsequently estimate the
sum Aq + · · · + Am,m 6 N, from below; in this way, it turns out that the relaxed positivity
condition (P2) suffices. In the latter approach, the positive definiteness of symmetric band
Toeplitz matrices T , of any dimension m > 2q+1, with entries given in (2.1), plays a key role.

It is well known that the A-stability property (A) for a multiplier for the q-step BDF
method implies

|µ1|+ · · ·+ |µq| > cos ϑq;

see [21]. In particular, for the six-step BDF method this means that |µ1| + · · · + |µ6| >

0.9516169. Actually, as we shall see, no Nevanlinna–Odeh multiplier exists for the six-step
BDF method; see Remark 2.6. This was the motivation for our relaxation on the requirements
for multipliers. Fortunately, the relaxed positivity condition (P2) leads to a positive result.

Proposition 2.3 (A multiplier for the six-step BDF method). The set of numbers

(2.4) µ1 =
13

9
, µ2 = −25

36
, µ3 =

1

9
, µ4 = µ5 = µ6 = 0,

is a multiplier for the six-step BDF method.

Proof. The proof consists of two parts; we first prove the A-stability property (A) and
subsequently the positivity property (P2).

A-stability property (A). The corresponding polynomial µ is

(2.5)
µ(ζ) = ζ3

(
ζ − 1

2

)2(
ζ − 4

9

)
= ζ6 − 13

9
ζ5 +

25

36
ζ4 − 1

9
ζ3

=
1

36
ζ3(36ζ3 − 52ζ2 + 25ζ − 4).

We recall the generating polynomial α of the six-step BDF method,

60α(ζ) = 147ζ6 − 360ζ5 + 450ζ4 − 400ζ3 + 225ζ2 − 72ζ + 10.

First, α(0) = 1/6, α(1/2) = −37/3840 and α(4/9) = −0.003730423508913, whence the poly-
nomials α and µ have no common divisor.

Now, α(z)/µ(z) is holomorphic outside the unit disk in the complex plane, and

lim
|z|→∞

α(z)

µ(z)
= α6 =

147

60
> 0.



SIX-STEP BDF METHOD 5

Therefore, according to the maximum principle for harmonic functions, the A-stability prop-
erty (A) is equivalent to

Re
α(ζ)

µ(ζ)
> 0 ∀ζ ∈ K ,

with K the unit circle in the complex plane, K := {ζ ∈ C : |ζ| = 1}, i.e., equivalent to

(2.6) Re
[
α(eiϕ)µ(e−iϕ)

]
> 0 ∀ϕ ∈ R.

In view of (2.5), the desired property (2.6) takes the form

(2.7) Re
[
60α(eiϕ)e−i3ϕ

(
36e−i3ϕ − 52e−i2ϕ + 25e−iϕ − 4

)]
> 0 ∀ϕ ∈ R.

Now, it is easily seen that

60α(eiϕ)e−i3ϕ =
[
157 cos(3ϕ) − 432 cos(2ϕ) + 675 cosϕ− 400

]

+ i
[
137 sin(3ϕ) − 288 sin(2ϕ) + 225 sinϕ

]
.

With x := cosϕ, recalling the elementary trigonometric identities

cos(2ϕ) = 2x2 − 1, cos(3ϕ) = 4x3 − 3x, sin(2ϕ) = 2x sinϕ, sin(3ϕ) = (4x2 − 1) sinϕ,

we easily see that

(2.8) 60α(eiϕ)e−i3ϕ = 4(1 − x)(8 + 59x− 157x2) + i4(137x2 − 144x + 22) sinϕ.

Notice that the factor 1 − x in the real part of α(eiϕ)e−i3ϕ is due to the fact that α(1) = 0.
Similarly,

36e−i3ϕ − 52e−i2ϕ + 25e−iϕ − 4 =
[
36 cos(3ϕ) − 52 cos(2ϕ) + 25 cosϕ− 4

]

− i
[
36 sin(3ϕ) − 52 sin(2ϕ) + 25 sinϕ

]

and

(2.9)
36e−i3ϕ − 52e−i2ϕ + 25e−iϕ − 4 = (144x3 − 104x2 − 83x+ 48)

− i(144x2 − 104x − 11) sinϕ.

In view of (2.8) and (2.9), the desired property (2.7) can be written in the form

(2.10) 4(1 − x)P (x) > 0 ∀x ∈ [−1, 1]

with
P (x) := (8 + 59x− 157x2)(144x3 − 104x2 − 83x+ 48)

+ (1 + x)(137x2 − 144x + 22)(144x2 − 104x − 11),

i.e.,

(2.11) P (x) = 2(71 + 611x + 1334x2 − 5150x3 + 4784x4 − 1440x5).

It is now easy to see that P is positive in the interval [−1, 1], and thus that (2.7) is valid.
First, the quadratic polynomial 71 + 611x + 1334x2 is positive for all real x, since it does
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not have real roots. All other terms are positive for negative x, whence P (x) is positive for
negative x. Furthermore, for 0 6 x 6 1, we obviously have 71 + 611x > 682x2, and can
estimate P (x) from below as follows

P (x) > 2x2(2016 − 5150x + 4784x2 − 1440x3)

= 2x2
[
(2016 − 5150x + 3344x2) + 1440x2(1− x)

]
.

Again, the quadratic polynomial 2016 − 5150x + 3344x2 is positive for all real x, and the
positivity of P (x) follows. See also Figure 2.1.

x
1

P/142

y

1−1

2

3

4

O

Figure 2.1. The graph of polynomial P/142 of (2.11) in the interval [−0.37, 1].

Positivity property (P2). Here, we prove the desired positivity property (P2) for the
multiplier (2.4). Actually, since in the stability analysis we will use the value ε = 1/32 in
(2.1), to avoid repetitions, we shall directly prove that the function in (P2) for the multiplier
(2.4) is bounded from below by 1/32. To this end, we subtract 1/32 from the corresponding
expression, and shall show that the function g,

(2.12) g(s) :=
31

32
− 13

9
cos s+

25

36
cos(2s)− 1

9
cos(3s), s ∈ R,

is positive. Now, elementary trigonometric identities lead to the following form of g

g(s) = −4

9
cos3 s+

25

18
cos2 s− 10

9
cos s+

79

288
.

Hence, we consider the polynomial p,

(2.13) p(x) := −4

9
x3 +

25

18
x2 − 10

9
x+

79

288
, x ∈ [−1, 1].

It is easily seen that p attains its minimum in [−1, 1] at x⋆ = (25 −
√
145)/24 and

p(x⋆) = 0.009321552602567 > 0.

Therefore, g is indeed positive; in particular, the desired positivity property (P2) is satisfied.
See also Figure 2.2.

2.1. On the conditions (P2) and (P1). We briefly comment on the discrepancy between
the positivity conditions (P2) and (P1). Obviously, (P1) implies (P2).

Let Sq ⊂ R
q denote the region of the points (µ1, . . . , µq) satisfying the positivity condition

(P2). Since (P1) and (P2) are obviously equivalent for q-tuples (µ1, . . . , µq) with only one
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s

y

g

π−π

1

2

3

O
x

p

y

1−1

1

2

3

O

Figure 2.2. The graphs of the function g and the polynomial p of (2.12) and (2.13).

nonvanishing component, the intersection of Sq with each coordinate axis is an interval of the
form (−1, 1).

Let us next focus on the instrumental case of S2, that is, of the intersection of Sq with the
µ1µ2 plane, i.e., consider the set of points (µ1, . . . , µq) ∈ Sq with µ3 = · · · = µq = 0. Then,
the positivity condition reads

(2.14) p(x) := 1− µ1x− µ2(2x
2 − 1) > 0, x ∈ [−1, 1].

For µ2 = 0, this condition is satisfied if and only if |µ1| < 1. For nonvanishing µ2, the derivative
of p vanishes at x⋆ = −µ1/(4µ2) and

(2.15) p(x⋆) = 1 + µ2 +
1

8

µ2
1

µ2
.

For positive µ2, this is a positive global maximum of p. Therefore, in this case (2.14) is satisfied
if and only if p(−1) and p(1) are positive, whence

(2.16) µ2 < 1− |µ1|.

For negative µ2, the expression in (2.15) is a global minimum of p. Now, we distinguish two
subcases. It |µ2| 6 |µ1|/4, then the minimum is attained at a point |x⋆| > 1, whence (2.16)
suffices for (2.14). If, on the other hand, |x⋆| < 1, then (2.14) is satisfied if and only if the
expression on the right-hand side of (2.15) is positive, i.e.,

4
(
µ2 +

1

2

)2
+

1

2
µ2
1 < 1;

that is, (µ1, µ2) lies in the interior of an ellipse. Summarizing, (2.14) is satisfied if and only if
(µ1, µ2) lie in the region

S2 =
{
(µ1, µ2) : −

|µ1|
4

6 µ2 < 1− |µ1|
}

∪
{
(µ1, µ2) : 4

(
µ2 +

1

2

)2
+

1

2
µ2
1 < 1 and |µ2| >

|µ1|
4

}
.

Notice that the lines µ2 = ±(1− µ1) are tangent to the ellipse at their intersection points
with the lines µ2 = ∓µ1/4, respectively, i.e., at the points (±4/3,−1/3). This is, of course, due
to the fact that for these values the global minimum in (2.15) is attained at the points x⋆ = ±1.
Therefore, the intersection S2 of Sq with the µ1µ2 plane is the union of two overlapping simple
sets, a triangle and an ellipse,

(2.17) S2 =
{
(µ1, µ2) : −

1

3
6 µ2 < 1− |µ1|

}
∪
{
(µ1, µ2) : 4

(
µ2 +

1

2

)2
+

1

2
µ2
1 < 1

}
;
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see Figure 2.3, right. Notice, in particular, that

(2.18) |µ1| <
√
2 and |µ2| < 1.

Replacing x by x/2 and by x/3, respectively, in the positivity condition (P2), it is obvious
that the intersection of Sq with the µ2µ4 plane, for q > 4, and with the µ3µ6 plane, for
q = 6, respectively, is of the form (2.17) with (µ1, µ2) replaced by (µ2, µ4) and by (µ3, µ6),
respectively.

µ1

µ2

1

−1

1−1 µ1

µ2

1

−1

1−1

S2

Figure 2.3. Illustration of the conditions (P1) and (P2), left and right, respectively, for µ3 = · · · = µ6 = 0;
cf. (2.17).

2.2. On the construction of multipliers. In this part, we describe some necessary con-
ditions of multipliers for the six-step BDF method satisfying the A-stability condition (A)
and the relaxed positivity condition (P2). To begin with, we show that no multiplier with
µ3 = · · · = µ6 = 0 exists.

Proposition 2.4. There is no multiplier for the six-step BDF method with µ3 = · · · = µ6 =
0, satisfying (A) and (P2).

Proof. The positivity condition (P2) is satisfied if and only if

1− µ1x− µ2(2x
2 − 1) > 0 ∀x ∈ [−1, 1];

see (2.14). The A-stability condition (A) is in this case equivalent to (2.10) with

(2.19)
P (x) = (8 + 59x− 157x2)

(
4x3 − µ1(2x

2 − 1)− 3x− µ2x
)

+ (1 + x)(137x2 − 144x + 22)(4x2 − 2µ1x− µ2 − 1).

First, the estimate |µ1| <
√
2 in (2.18) and the nonnegativity of

P (−4/25) = −41.65312µ2 + 7.86979µ1 − 39.13478

lead to the estimate

(2.20) µ2 <
7.86979

√
2− 39.13478

41.65312
< −0.672343782385853.
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On the other hand, for µ2 < −0.672343782385853, we have |µ2| > |µ1|/4, and thus (µ1, µ2)
must lie in the interior of the ellipse in (2.17). Now, P (0.99) = aµ2 + bµ1 + c with

a =
2086460708677967

35184372088832
, b =

1053766469372221

35184372088832
, c =

9685378027

109951162777600
,

and the intersection points of the line P (0.99) = 0 and the ellipse 4(µ2 +1/2)2 +µ2
1/2 = 1 are

(2.21)

{
A = (2.941186035762484 · 10−6,−1.08131109678632 · 10−12),

B = (1.328818676149621,−0.671118740185537).

It is easily seen that P (0.99) is nonnegative only in the part of the interior of the ellipse to
the right of the segment AB; cf. Figure 2.4. Therefore, P (0.99) > 0 implies

µ2 > −0.671118740185537.

This together with (2.20) leads to a contradiction; hence, no multiplier of the form (µ1, µ2, 0,
. . . , 0) exists for the six-step BDF method.

µ1
1−1

− 1

2

−1

B

O A

µ2

Figure 2.4. Out of the interior points (µ1, µ2) of the ellipse, P (0.99), see (2.19), is nonnegative only in

the blue region; in the blue region, µ2 > −0.671118740185535. The points A and B are given in (2.21). The

points A and O = (0, 0) are visually not distinguishable.

Our next attempt was to seek a multiplier for the six-step BDF method with µ4 = µ5 =
µ6 = 0. In this case, the A-stability condition (A) and the positivity condition (P2) lead,
respectively, to the conditions

(2.22)
P (x) = (8 + 59x− 157x2)

(
4x3 − µ1(2x

2 − 1)− 3x− µ2x− µ3

)

+ (1 + x)(137x2 − 144x+ 22)(4x2 − 2µ1x− µ2 − 1) > 0

for all x ∈ [−1, 1], and

(2.23) g(x) := 1− µ1 cos x− µ2 cos(2x)− µ3 cos(3x) > 0 ∀x ∈ R.

Necessary conditions for (2.22) and (2.23) could be derived by evaluating P and g at
certain points. For instance, we claim the following necessary condition, which helps us to
construct multipliers.

Proposition 2.5. If (µ1, µ2, µ3, 0, 0, 0) is a multiplier of the six-step BDF method, then there

holds

0.41990729 < µ1 <
√
3, −1 < µ2 < −0.58852878, 0 < µ3 < 1, |µ1|+ |µ2|+ |µ3| > 1.
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Proof. First, |µ2| < 1 follows immediately from the positivity of g(π/2) and of g(0) and
g(π). Furthermore,

2g(2π/3) + g(0) = 3(1− µ3) and 2g(π/3) + g(π) = 3(1 + µ3),

whence |µ3| < 1. In view of

g(π/6) =
1

2

(
−
√
3µ1 − µ2 + 2

)
and g(5π/6) =

1

2

(√
3µ1 − µ2 + 2

)
,

we have
√
3|µ1| < 2− µ2, and, in combination with µ2 > −1, infer that |µ1| <

√
3.

Up to this point, we did not use the nonnegativity of P . Now we check P (0) > 0, i.e.,

P (0) = 2
[
4(µ1 − µ3)− 11(1 + µ2)

]
> 0.

Since 1 + µ2 > 0, we infer that µ3 < µ1. Furthermore, since µ1 <
√
3 and |µ3| < 1,

11µ2 < 4
(√

3 + 1
)
− 11 < −0.07179, whence µ2 < −0.65263636 · 10−2.

Meanwhile, since 274/625 + 1154µ2/25 < 0, the nonnegativity of

P (0.8) =
274

625
+

1154

25
µ2 +

3572

125
µ1 +

1132

25
µ3

yields 3572µ1/125 + 1132µ3/25 > 0, which together with µ3 < µ1 leads to

3572

125
µ1 +

1132

25
µ1 >

3572

125
µ1 +

1132

25
µ3 > 0,

i.e., µ1 > 0. Therefore, we arrive at

0 < µ1 <
√
3, −1 < µ2 < −0.65263636 · 10−2 and 0 < |µ3| < 1.

Next, we prove µ3 > 0 by contradiction. If µ3 6 0, then the positivity of g(π/4) yields

g(π/4) = 1−
√
2

2
(µ1 − µ3) > 0 =⇒ µ1 <

√
2.

This and the nonnegativity of P (−4/25) imply µ2 < −0.672. Then, we can derive a lower
bound µ1 > 1.3426 by examining P (0.999) > 0. However, with µ1 > 1.3426, µ2 < −0.672 and
µ3 6 0, it is easy to observe that

2g(π/3) = −µ1 + µ2 + 2µ3 + 2 6 −1.3426 − 0.672 + 2 < −0.0146,

which violates the positivity condition (2.23). Therefore, we conclude that µ3 > 0.
Moreover, from µ1 <

√
3, µ3 > 0 and the nonnegativity of

P (−66/625) = 7.33518936µ1 − 34.64182239µ2 − 0.01883648µ3 − 33.09263039,

we infer that

µ2 <
7.33518936

√
3− 33.09263039

34.64182239
< −0.58852878.
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Then, the nonnegativity of P (27/125) yields µ1 > 0.41990729. Thus, we arrive at

0.41990729 < µ1 <
√
3, −1 < µ2 < −0.58852878 and 0 < µ3 < 1.

Finally, the property |µ1| + |µ2| + |µ3| > 1 is a special case of the more general result of
the next Remark.

Remark 2.6 (Nonexistence of Nevanlinna–Odeh multipliers for the six-step BDF method).
The multiplier (2.4) is not unique. In general, the A-stability condition (A) and the positivity
condition (P2) lead to the conditions

P (x) = (−80x5 + 208x4 − 122x3 − 82x2 + 98x− 22)

+ (40x4 − 104x3 + 71x2 + 15x+ 8)µ1

+ (20x3 − 52x2 + 114x − 22)µ2 − (8 + 59x− 157x2)µ3

+ (294x3 − 66x2 − 130x+ 22)µ4 + (588x4 − 132x3 − 417x2 + 103x + 8)µ5

+ (1176x5 − 264x4 − 1128x3 + 272x2 + 146x− 22)µ6 > 0

and

p(x) = 1− xµ1 − (2x2 − 1)µ2 − (4x3 − 3x)µ3 − (8x4 − 8x2 + 1)µ4

− (16x5 − 20x3 + 5x)µ5 − (32x6 − 48x4 + 18x2 − 1)µ6 > 0,

respectively, for all x ∈ [−1, 1]. In Table 2.1, we list several multipliers satisfying these
conditions.

Furthermore, evaluating P at x = 3/40, we have

P
( 3

40

)
< −15.1563 + 13.7341

6∑

i=1

|µi|.

Assuming |µ1|+ · · ·+ |µ6| 6 1, we observe that

P
( 3

40

)
< −1.4222 < 0,

and infer that no Nevanlinna–Odeh multiplier exists for the six-step BDF method.

Table 2.1

Multipliers for the six-step BDF method; see also (2.4).

µ1 µ2 µ3 µ4 µ5 µ6

1.6 −0.92 0.3 0 0 0

0.8235 −0.855 0.38 0 0 0

1.67 −1 0.4 −0.1 0 0

0.8 −0.7 0.2 0.1 0 0

1.118 −1 0.6 −0.2 0.2 0

0.6708 −0.2 −0.2 0.6 −0.2 0

0.735 −0.2 −0.4 0.8 −0.4 0.2
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3. Stability. In this section we establish two stability estimates for the six-step BDF
method (1.3) by the energy technique which are discrete analogues of the standard stability
estimates for the continuous problem (1.1) that are obtained by the energy technique when
testing by u and u′, respectively; namely

(3.1) |u(t)|2 +
∫ t

0
‖u(s)‖2 ds 6 |u0|2 +

∫ t

0
‖f(s)‖2⋆ ds, 0 < t 6 T,

and

(3.2) ‖u(t)‖2 +
∫ t

0
|u′(s)|2 ds 6 ‖u0‖2 +

∫ t

0
|f(s)|2 ds, 0 < t 6 T.

The second stability result for the six-step BDF method is new, while the first is well known;
the novelty in the first case lies in the simplicity of the proof. The analogue of the second
stability estimate played a key role in the analysis of fully discrete methods for mean curvature
flow of closed surfaces in [17] and for the Landau–Lifshitz–Gilbert equation in [3], where
linearly implicit variants of BDF methods up to order 5 are used for the discretization in
time. Proofs of the first stability estimate for the six-step BDF method by other stability
techniques are significantly more involved. For a proof by a spectral technique in the case
of selfadjoint operators, we refer to [24, chapter 10]; for a proof in the general case, under a
sharp condition on the nonselfadjointness of the operator as well as for nonlinear parabolic
equations, by a combination of spectral and Fourier techniques, see, e.g., [2] and references
therein. For a long-time estimate in the case of selfadjoint operators and an application to
the Stokes–Darcy problem, see [18]. We also extend the first stability estimate to the case of
nonautonomous equations.

For simplicity, we denote by 〈·, ·〉 the inner product on V, 〈v,w〉 := (A1/2v,A1/2w).
Before we proceed, for the reader’s convenience, we recall the notion of the generating

function of an n × n Toeplitz matrix Tn as well as an auxiliary result, the Grenander–Szegő
theorem, which plays a key role in our analysis.

Definition 3.1 ([10, p. 13]; the generating function of a Toeplitz matrix). Consider the n×n
Toeplitz matrix

Tn = (tij)i,j=1,...,n ∈ C
n,n

with diagonal entries t0, subdiagonal entries t1, superdiagonal entries t−1, and so on, and
(n, 1) and (1, n) entries tn−1 and t1−n, respectively, i.e., the entries tij = ti−j , i, j = 1, . . . , n,
are constant along the diagonals of Tn. Let t−n+1, . . . , tn−1 be the Fourier coefficients of the
trigonometric polynomial g of degree less than or equal to n− 1, i.e.,

tk =
1

2π

∫ π

−π
g(x)e−ikx dx, k = 1− n, . . . , n− 1.

Then, g(x) =
∑n−1

k=1−n tke
ikx is called generating function of Tn.

If the generating function g is real-valued, then the matrix Tn is Hermitian; if g is real-
valued and even, then Tn is symmetric.

Lemma 3.2 ([10, pp. 13–14]; the Grenander–Szegő theorem). Let Tn be a symmetric Toeplitz

matrix as in Definition 3.1 with generating function g. Then, the smallest and largest eigen-

values λmin(Tn) and λmax(Tn), respectively, of Tn are bounded as follows

gmin 6 λmin(Tn) 6 λmax(Tn) 6 gmax,
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with gmin and gmax the minimum and maximum of g, respectively. In particular, if gmin is

positive, then the symmetric matrix Tn is positive definite.1

Notice, in particular, that the generating function of a symmetric band Toeplitz matrix
Tn of bandwidth 2m+1, i.e., with tm+1 = · · · = tn−1 = 0, is a real-valued, even trigonometric
polynomial of degree m, g(x) = t0 + 2t1 cosx+ · · · + 2tm cos(mx), for all n > m+ 1.

In the proofs of the stability Theorems 3.3 and 3.6, we shall use the fact that the positive
function g of (2.12) is the generating function of seven-diagonal, m = 3, symmetric Toeplitz
matrices; according to the Grenander–Szegő theorem, these matrices are positive definite; this
is the point where the positivity property (P2) for the multiplier (2.4) of the six-step BDF
method will play a crucial role.

3.1. First stability estimate. Here we establish a discrete analogue of the stability esti-
mate (3.1) for the six-step BDF method by the energy technique.

Theorem 3.3 (Stability of the six-step BDF method). Let u0, u1, . . . , u5 ∈ V . The six-step

BDF method (1.3) is stable in the sense that

(3.3) |un|2 + τ
n∑

ℓ=6

‖uℓ‖2 6 C
5∑

j=0

(
|uj |2 + τ‖uj‖2

)
+ Cτ

n∑

ℓ=6

‖f ℓ‖2⋆, n = 6, . . . , N.

Here C denotes a generic constant depending only on the numerical method, i.e., independent

of T and the operator A as well as of f, τ and n.

Proof. Taking in (1.3) the inner product with un+6 − 13
9 u

n+5 + 25
36u

n+4 − 1
9u

n+3, cf. (2.2)
and (2.4), we have

(3.4)
( 6∑

i=0

αiu
n+i, un+6 −

3∑

j=1

µju
n+6−j

)
+ τAn+6 = τFn+6

with

An+6 :=
〈
un+6, un+6 −

3∑

j=1

µju
n+6−j

〉
and Fn+6 :=

(
fn+6, un+6 −

3∑

j=1

µju
n+6−j

)
;

cf. (2.3).
With the notation Un := (un−5, un−4, un−3, un−2, un−1, un)⊤ and the norm |Un|G given by

|Un|2G =

6∑

i,j=1

gij
(
un−6+i, un−6+j

)
,

using (G), we have

(3.5)
( 6∑

i=0

αiu
n+i, un+6 −

3∑

j=1

µju
n+6−j

)
> |Un+6|2G − |Un+5|2G.

1For real-valued g and z = (z0, . . . , zn−1)
⊤

∈ C
n, we have (Tnz, z) = 1

2π

∫ π

−π

g(x)
∣

∣

∣

n−1
∑

k=0

zke
ikx

∣

∣

∣

2

dx and

(z, z) = 1

2π

∫ π

−π

∣

∣

∣

n−1
∑

k=0

zke
ikx

∣

∣

∣

2

dx, and the result is evident.
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Thus, (3.4) yields

(3.6) |Un+6|2G − |Un+5|2G + τAn+6 6 τFn+6.

Summing in (3.6) from n = 0 to n = m− 6, we obtain

(3.7) |Um|2G − |U5|2G + τ

m∑

n=6

An 6 τ

m∑

n=6

Fn.

The sum on the right-hand side can be easily estimated by the generalized Cauchy–Schwarz
inequality and the arithmetic–geometric mean inequality with a suitable weight. We next
focus on the estimation of the sum A6 + · · ·+Am from below; we have

(3.8)

m∑

n=6

An =

m∑

n=6

〈
un, un −

3∑

j=1

µju
n−j

〉
.

First, motivated by the positivity of the function g of (2.12), to take advantage of the positivity
property (P2), we introduce the notation µ0 := −31/32, and rewrite (3.8) as

(3.9)

m∑

n=6

An =
1

32

m∑

n=6

‖un‖2 + Jm with Jm := −
3∑

j=0

µj

m−5∑

i=1

〈u5+i, u5+i−j〉.

Our next task is to rewrite Jm in a form that will enable us to estimate it from below
in a desired way. To this end, we introduce the lower triangular Toeplitz matrix L = (ℓij) ∈
R
m−5,m−5 with entries

ℓi,i−j = −µj, j = 0, 1, 2, 3, i = j + 1, . . . ,m− 5,

and all other entries equal zero. With this notation, we have

m−5∑

i,j=1

ℓij〈u5+i, u5+j〉 = −
3∑

j=0

µj

m−5∑

i=j+1

〈u5+i, u5+i−j〉,

i.e.,

(3.10)

m−5∑

i,j=1

ℓij〈u5+i, u5+j〉 = Jm + 〈u6, µ1u
5 + µ2u

4 + µ3u
3〉

+ 〈u7, µ2u
5+µ3u

4〉+ 〈u8, µ3u
5〉.

At this point we shall use the positivity property (P2) to show that the term on the left-
hand side of (3.10) is nonnegative and then obtain a suitable lower bound for Jm. Indeed, the
symmetric part

Ls := (L+ L⊤)/2

of the matrix L is a symmetric seven-diagonal Toeplitz matrix and its generating function g,
see (2.12), is positive. Hence, according to the Grenander–Szegő theorem, see Lemma 3.2, the
Toeplitz matrix Ls is positive definite. Consequently, since

(Lx, x) = (Lsx, x) ∀x ∈ R
m−5,
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the matrix L is also positive definite. Therefore, the expression on the left-hand side of (3.10)
is nonnegative; thus, (3.10) yields the desired estimate for Jm from below, i.e.,

(3.11) Jm > −〈u6, µ1u
5 + µ2u

4 + µ3u
3〉 − 〈u7, µ2u

5+µ3u
4〉 − 〈u8, µ3u

5〉.

From (3.7), (3.9) and (3.11), we obtain

(3.12)
|Um|2G +

1

32
τ

m∑

n=6

‖un‖2 6 |U5|2G + τ

m∑

n=6

Fn + τ〈u6, µ1u
5 + µ2u

4 + µ3u
3〉

+ τ〈u7, µ2u
5 + µ3u

4〉+ τ〈u8, µ3u
5〉.

Now, with c1 and c2 the smallest and largest eigenvalues of the matrix G, we have

(3.13) |Um|2G > c1|um|2 and |U5|2G 6 c2

5∑

j=0

|uj |2.

Furthermore, the terms involving the forcing term or the starting approximations can be
estimated by elementary inequalities in the form

(3.14) Fn 6
1

4ε1

(
1 +

3∑

j=1

|µj |
)
‖fn‖2⋆ + ε1

(
‖un‖2 +

3∑

j=1

|µj | ‖un−j‖2
)

and

(3.15) |〈ui, uj〉| 6 ε2‖ui‖2 +
1

4ε2
‖uj‖2, i = 6, 7, 8, j = 3, 4, 5,

with sufficiently small ε1 and ε2. Inserting (3.13), (3.14), and (3.15) into (3.12), we easily
obtain the desired stability estimate (3.3).

Remark 3.4. Let us also note that, due to the fact that µ4 = µ5 = µ6 = 0, the terms
‖u2‖2, ‖u1‖2 and ‖u0‖2 are actually not needed on the right-hand side of (3.3). In other
words, it suffices to assume that u0, u1, u2 ∈ H and u3, u4, u5 ∈ V.

Proposition 3.5 (Error estimate). Assume that the solution u of (1.1) is sufficiently smooth

and that the starting approximations u0, u1, . . . , u5 ∈ V to u(t0), . . . , u(t5) are such that

(3.16) max
06j65

(
|u(tj)− uj |+ τ1/2‖u(tj)− uj‖

)
6 Cτ6.

Then, we have the error estimate

(3.17) max
06n6N

|u(tn)− un| 6 Cτ6

with a constant C independent of τ.

Proof. Let dℓ denote the consistency error of the six-step BDF method (1.3) (with q = 6)
for the initial value problem (1.1), i.e., the amount by which the exact solution u of (1.1)
misses satisfying the numerical method,

(3.18) τdn+6 =

6∑

i=0

αiu(t
n+i) + τAu(tn+6)− τfn+6, n = 0, . . . , N − 6.
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In view of the differential equation in (1.1), we can write (3.18) in the form

τdn+6 =

6∑

i=0

αiu(t
n+i)− τu′(tn+6), n = 0, . . . , N − 6.

The order of the six-step method is 6, i.e.,

(3.19)

q∑

i=0

iℓαi = ℓ 6ℓ−1, ℓ = 0, 1, . . . , 6.

Now, by Taylor expanding about tn and using the order conditions (3.19), we obtain

τdn+6 =
1

6!

[
6∑

i=0

αi

∫ tn+i

tn
(tn+i − s)6u(7)(s) ds− 6τ

∫ tn+6

tn
(tn+6 − s)5u(7)(s) ds

]

n = 0, . . . , N − 6. Thus, under obvious regularity requirements, we obtain the desired optimal
order consistency estimate

(3.20) max
66ℓ6N

‖dℓ‖⋆ 6 Cτ6.

Subtracting the six-step BDF method (1.3) from (3.18), we obtain the error equation

(3.21)

6∑

i=0

αie
n+i + τAen+q = τdn+q, n = 0, . . . , N − 6,

for the error eℓ := u(tℓ)− uℓ, ℓ = 0, . . . , N.
The stability estimate (3.3) for the error equation (3.21) in combination with the consis-

tency estimate (3.20) and our assumption (3.16) on the starting approximations leads to the
claimed error estimate (3.17).

3.2. Second stability estimate. Here we establish a discrete analogue of the stability
estimate (3.2) for the six-step BDF method by the energy technique. Stability estimates
of this form for BDF methods of order up to 5 are derived in [17, 3] via Nevanlinna–Odeh
multipliers; these estimates played a key role in the analyses in [17, 3] .

For simplicity of notation, we indicate by a dot the application of the six-step backward
difference operator to a sequence v0, . . . , vN ,

(3.22) v̇n+6 :=
1

τ

6∑

i=0

αiv
n+i, n = 0, . . . , N − 6,

and write the six-step BDF method (1.3), with q = 6, in the form

(3.23) u̇n +Aun = fn, n = 6, . . . , N.

Theorem 3.6 (Stability of the six-step BDF method). Let u0, u1, . . . , u5 ∈ V . The six-step

BDF method (3.23) is stable in the sense that

(3.24) ‖un‖2 + τ
n∑

ℓ=6

|u̇ℓ|2 6 C
5∑

j=0

‖uj‖2 + Cτ
n∑

ℓ=6

|f ℓ|2, n = 6, . . . , N.

Here C denotes a generic constant depending only on the numerical method, i.e., independent

of T and the operator A as well as of f, τ and n.
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Proof. For n > 9, to take advantage of the properties of the multiplier (2.4), we consider
method (3.23) with n replaced by n−j, multiply it by µj , j = 1, 2, 3, and subtract the resulting
relations from (3.23), to obtain

(3.25) u̇n −
3∑

j=1

µj u̇
n−j +A

(
un −

3∑

j=1

µju
n−j

)
= fn −

3∑

j=1

µjf
n−j, n = 9, . . . , N.

Taking in (3.25) the inner product with u̇n, we obtain

(3.26) In +
〈
u̇n, un −

3∑

j=1

µju
n−j

〉
= F̃n, n = 9, . . . , N,

with

In :=
(
u̇n, u̇n −

3∑

j=1

µj u̇
n−j

)
and F̃n :=

(
fn −

3∑

j=1

µjf
n−j, u̇n

)
.

With the notation Un := (un−5, un−4, un−3, un−2, un−1, un)⊤ and the norm ‖Un‖G given
by

‖Un‖2G =

6∑

i,j=1

gij〈un−6+i, un−6+j〉,

using (G), in view of (3.22), we have

τ
〈
u̇n, un −

3∑

j=1

µju
n−j

〉
> ‖Un‖2G − ‖Un−1‖2G;

cf. (3.5).
Therefore, (3.26) yields

(3.27) ‖Un‖2G − ‖Un−1‖2G + τIn 6 τF̃n.

Summing up in (3.27) from n = 9 to n = m 6 N , we obtain

‖Um‖2G − ‖U8‖2G + τ

m∑

n=9

In 6 τ

m∑

n=9

F̃n.

Proceeding as in the proof of Theorem 3.3, we arrive at the estimate

(3.28)
‖Um‖2G +

1

32
τ

m∑

n=9

|u̇n|2 6 ‖U8‖2G + τ
m∑

n=9

F̃n + τ(u̇9, µ1u̇
8 + µ2u̇

7 + µ3u̇
6)

+ τ(u̇10, µ2u̇
8 + µ3u̇

7) + τ(u̇11, µ3u̇
8),

m = 9, . . . , N. Notice that the differences in the upper indices in the last three terms on the
right-hand sides of (3.12) and (3.28) are due to the fact that the summation in (3.12) and
(3.28) starts at n = 6 and n = 9, respectively.
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Now, with c1 and c2 the smallest and largest eigenvalues of the matrix G, we have

(3.29) ‖Um‖2G > c1‖um‖2 and ‖U8‖2G 6 c2

8∑

j=3

‖uj‖2.

Furthermore, the terms involving the forcing term or the starting approximations can be
estimated by elementary inequalities in the form

(3.30) F̃n 6
1

4ε1

(
|fn|2 +

3∑

j=1

|µj | |fn−j|2
)
+ ε1

(
1 +

3∑

j=1

|µj |
)
|u̇n|2

and

(3.31) |(u̇i, u̇j)| 6 ε2|u̇i|2 +
1

4ε2
|u̇j|2, i = 9, 10, 11, j = 6, 7, 8,

with sufficiently small ε1 and ε2. Inserting (3.29), (3.30), and (3.31) into (3.28), we easily
obtain

‖um‖2 + τ

m∑

ℓ=6

|u̇ℓ|2 6 C

8∑

j=3

‖uj‖2 + Cτ

8∑

j=6

|u̇j |2 + Cτ

m∑

ℓ=6

|f ℓ|2, m = 9, . . . , N.

To complete the proof of the desired stability estimate (3.24), it remains to show that

(3.32) ‖um‖2 + τ |u̇m|2 6 c
5∑

j=0

‖uj‖2 + cτ
m∑

ℓ=6

|f ℓ|2, m = 6, 7, 8.

This can be done via elementary inequalities; cf. [3, Appendix]. Testing (3.23) for n = 6 by
u̇6, we have

|u̇6|2 + α6

τ
‖u6‖2 = −1

τ

5∑

i=0

αi〈u6, ui〉+ (f6, u̇6).

Estimating the terms on the right-hand side in the form |〈u6, ui〉| 6 ε′‖u6‖2+‖ui‖2/(4ε′) with
sufficiently small ε′ and 2(f6, u̇6) 6 |f6|2 + |u̇6|2, we easily obtain (3.32) for m = 6. Then,
using (3.32) for m = 6, we similarly obtain the desired result for m = 7, and subsequently
also for m = 8.

Remark 3.7 (Error estimate). The stability estimate (3.24) applied to the error equation
(3.21), in combination with the analogue of the consistency estimate (3.20) in the H-norm
| · |, leads to the optimal order error estimate

max
66n6N

‖u(tn)− un‖ 6 Cτ6

with a constant C independent of τ, provided that the errors of the starting values u0, . . . , u5

also satisfy such an estimate; cf. Proposition 3.5.
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3.3. Nonautonomous equations. In this section we use the stability result of Theorem
3.3 to establish stability of the six-step BDF method for nonautonomous equations.

We consider the initial value problem, for simplicity for a homogeneous equation,

(3.33)

{
u′(t) +A(t)u(t) = 0, 0 < t < T,

u(0) = u0,

with positive definite selfadjoint operators A(t) : V → V ′, t ∈ [0, T ].
For concreteness, we define the norm on V in terms of A(0), i.e., ‖v‖ := |A(0)1/2v|. Our

structural assumptions are that all operators A(t), t ∈ [0, T ], share the same domain, produce
equivalent norms on V,

(3.34) |A(t)1/2v| 6 c|A(t̃)1/2v| ∀t, t̃ ∈ [0, T ] ∀v ∈ V,

and A(t) : V → V ′ is of bounded variation with respect to t,

(3.35) |A(s)−1/2
(
A(t)−A(t̃)

)
v| 6 [σ(t) − σ(t̃)]|A(s)1/2v|, 0 6 t̃ 6 t 6 T, ∀v ∈ V,

for every s ∈ [0, T ], with an increasing function σ : [0, T ] → R.
Clearly, c > 1 in (3.34), and the analogue of (3.34) holds true also for the dual norms

|A(t)−1/2 · | with the same constant c. Let us also note that (3.35) takes the form

‖
(
A(t)−A(t̃)

)
v‖⋆ 6 [σ(t)− σ(t̃)]‖v‖, 0 6 t̃ 6 t 6 T, ∀v ∈ V,

for s = 0. Furthermore, if (3.35) is valid for a fixed s ∈ [0, T ], then, in view of (3.34), it is
valid for any s ∈ [0, T ] with the right-hand side, that is with σ, multiplied by c2.

Now, the six-step BDF method for the initial value problem (3.33) is

(3.36)

6∑

i=0

αiu
n+i + τA(tn+6)un+6 = 0, n = 0, . . . , N − 6,

assuming that starting approximations u0, . . . , u5 ∈ V are given. The next theorem provides
a stability estimate of the scheme (3.36).

Theorem 3.8 (Stability of the six-step BDF method for nonautonomous equations). Let

u0, u1, . . . , u5 ∈ V . Assume that the time-dependent, positive definite selfadjoint operators

A(t) : V → V ′, t ∈ [0, T ], satisfy the conditions (3.34) and (3.35). Then, the six-step BDF

method (3.36) is stable in the sense that

(3.37) |un|2 + τ

n∑

ℓ=6

‖uℓ‖2 6 C̃

5∑

j=0

(
|uj |2 + τ‖uj‖2

)
, n = 6, . . . , N.

Here, C̃ is a constant independent of s,A(t), τ and n that depends exponentially on T .

Proof. Let us fix an 6 6 m 6 N. From (3.36), we obtain

6∑

i=0

αiu
n+i + τA(tm)un+6 = τ

[
A(tm)−A(tn+6)

]
un+6, n = 0, . . . ,m− 6.
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Since the time t is frozen at tm in the operator A(tm) on the left-hand side, we can apply the
already-established stability estimate (3.3), for the time-independent operator A := A(tm),
with perturbation terms f ℓ := [A(tm)−A(tℓ)]uℓ and obtain

(3.38) |um|2 + τ

m∑

ℓ=6

|A(tm)1/2uℓ|2 6 C

5∑

j=0

(
|uj |2 + τ |A(tm)1/2uj |2

)
+ CMm

with a constant C independent of τ and m, and

Mm := τ
m∑

ℓ=6

|A(tm)−1/2[A(tm)−A(tℓ)]uℓ|2.

Using (3.34) and its analogue for the dual norms, we infer from (3.38) that

(3.39) |um|2 + τ

m∑

ℓ=6

‖uℓ‖2 6 C1

5∑

j=0

(
|uj |2 + τ‖uj‖2

)
+ C1M

m

with the constant C1 := c4C. Now, with

Eℓ := τ

ℓ∑

j=6

‖uj‖2, ℓ = 6, . . . ,m, E5 := 0,

estimate (3.39) yields

(3.40) Em
6 C1

5∑

j=0

(
|uj |2 + τ‖uj‖2

)
+ C1M

m.

Furthermore, in view of the bounded variation condition (3.35),

Mm
6 τ

m−1∑

ℓ=6

[
σ(tm)− σ(tℓ)

]2‖uℓ‖2 =
m−1∑

ℓ=6

[
σ(tm)− σ(tℓ)

]2
(Eℓ − Eℓ−1),

whence, by summation by parts, we have

(3.41) Mm
6

m−1∑

ℓ=6

aℓE
ℓ,

with aℓ :=
[
σ(tm)− σ(tℓ)

]2 −
[
σ(tm)− σ(tℓ+1)

]2
> 0, and (3.40) yields

(3.42) Em
6 C1

5∑

j=0

(
|uj |2 + τ‖uj‖2

)
+ C1

m−1∑

ℓ=6

aℓE
ℓ.

Note that the sum
∑m−1

ℓ=6 aℓ is uniformly bounded by a constant independent of m and the
time step τ ,

m−1∑

ℓ=6

aℓ =
[
σ(tm)− σ(t6)

]2
6

[
σ(T )− σ(0)

]2
.
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Therefore, a discrete Gronwall-type argument applied to (3.42) leads to

(3.43) Em
6 C2

5∑

j=0

(
|uj|2 + τ‖uj‖2

)
.

Combining (3.39) with (3.41) and (3.43), we obtain the desired stability estimate (3.37) for
the case of nonautonomous equations.

4. Numerical results. We applied three time-stepping methods, the six-step BDF method
and two popular Runge–Kutta methods, namely the three-stage (fifth order) Radau IIA and
(sixth order) Gauss methods to initial and boundary value problems for the equation

(4.1) ut −∆u+ u = f in Ω × [0, T ],

with Ω = (−1, 1)2 and T = 1, subject to periodic and to Dirichlet boundary conditions,
respectively. In both cases, in space we discretized by the spectral collocation method with
the Chebyshev–Gauss–Lobatto points.

For the reader’s convenience, we present the Butcher tableaus of the three-stage Radau
IIA and Gauss methods, respectively,

(4.2)

88−7
√
6

360
296−169

√
6

1800
−2+3

√
6

225
4−

√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225
4+

√
6

10
16−

√
6

36
16+

√
6

36
1
9 1

16−
√
6

36
16+

√
6

36
1
9

=:
Oι c

b⊤

and

(4.3)

5
36

2
9−

√
15
15

5
36−

√
15
30

1
2−

√
15
10

5
36+

√
15
24

2
9

5
36−

√
15
24

1
2

5
36+

√
15
30

2
9+

√
15
15

5
36

1
2+

√
15
10

5
18

4
9

5
18

=:
Oι c

b⊤
.

Let us also briefly recall some well-known facts about Radau IIA and Gauss methods; for
details we refer to [13]. Both classes of methods are of collocation type, i.e., the stage order

of their q-stage members is q. The order p of the q-stage Radau IIA and Gauss methods is
p = 2q−1 and p = 2q, respectively, the weights b1, . . . , bq are positive, and the q×q symmetric
matrices M with entries mij := biaij + bjaji − bibj , i, j = 1, . . . , q, are positive semidefinite;
actually, in the case of the Gauss methods, M = 0. In particular, the methods are algebraically
stable, whence also A- and B-stable. The stability functions r,

r(z) := 1 + zb⊤(I − zOι)−1
1 with 1 := (1, . . . , 1)⊤ ∈ R

q,

vanish at infinity in the case of the Radau IIA methods, r(∞) = 1 − bTOι−1
1 = 0, whence

these methods are strongly A-stable, while in the case of the q-stage Gauss method, we have
r(∞) = (−1)q. The first members of the Radau IIA and Gauss families, respectively, for q = 1,
are the implicit Euler and the implicit midpoint (or Crank–Nicolson) methods. Note that the
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computational cost of implicit Runge–Kutta methods increases fast with the stage number;
we refer to [9, 15, 14] and the reference therein for efficient implementations.

We numerically verified the theoretical results including convergence orders in the discrete
L2-norm. We express the space discrete approximation unI in terms of its values at Chebyshev–
Gauss–Lobatto points,

unI (x, y) =

Nx∑

i=0

Ny∑

j=0

unijℓi(x)ℓj(y), ℓi(x) =

Nx∏

j=0
j 6=i

x− xj
xi − xj

,

where unij := unI (xi, yj) at the mesh points (xi, yj). Here, −1 = x0 < x1 < · · · < xNx = 1 and
−1 = y0 < y1 < · · · < yNy = 1 are nodes of Lobatto quadrature rules for the weight function

w(x) = 1/(1 − x2)1/2. In order to test the temporal error, we fix Nx = Ny = 20; the spatial
error is negligible since the spectral collocation method converges exponentially; see, e.g., [23,
Theorem 4.4, §4.5.2].

Example 4.1 (Periodic boundary conditions). Here, the initial value and the forcing term
were chosen such that the exact solution of equation (4.1) is

(4.4) u(x, y, t) = (t7 + 1) sin(πx) sin(πy), −1 6 x, y 6 1, 0 6 t 6 1.

For this case, we present in Table 4.1 the L2-norm of the errors as well as the corresponding
convergence orders (rates) for the six-step BDF (BDF6) scheme and for the three-stage Gauss
and Radau IIA methods.

Table 4.1

Example 4.1: The discrete L2-norm errors and numerical convergence orders with Nx = Ny = 20.

τ BDF6 Rate Gauss Rate Radau IIA Rate

1/30 5.8572e-08 7.8948e-09 1.5660e-07
1/60 9.1075e-10 6.0070 1.2465e-10 5.9849 5.0927e-09 4.9425
1/90 8.0012e-11 5.9983 1.0966e-11 5.9948 6.7881e-10 4.9702
1/120 1.4235e-11 6.0014 1.9549e-12 5.9945 1.6202e-10 4.9798

Example 4.2 (Dirichlet boundary conditions). Here, the initial value, the nonhomoge-
neous Dirichlet boundary conditions, and the forcing term were chosen such that the exact
solution of equation (4.1) is

(4.5) u(x, y, t) = (t7 + 1) sin(x) sin(πy), −1 6 x, y 6 1, 0 6 t 6 1.

Notice that u is not periodic in x.
For the solution u given in (4.5), we present in Table 4.2 the L2-norm of the errors as well

as the corresponding convergence orders for the six-step BDF scheme and for the three-stage
Gauss and Radau IIA methods. Notice the order reduction, due to the lack of restrictive
compatibility conditions, in the cases of the three-stage Gauss and Radau IIA methods; al-
though the solution is very smooth, the computational order is slightly higher than 4 (i.e.,
q + 1), rather than the classical orders 6 and 5, respectively, of these methods. See [24, chap-
ter 8] and references therein. In the case of periodic boundary conditions, smooth solutions
satisfy the required compatibility conditions and no order reduction occurs. In constrast to
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Table 4.2

Example 4.2: The discrete L2-norm errors and numerical convergence orders with Nx = Ny = 20.

τ BDF6 Rate Gauss Rate Radau IIA Rate

1/30 3.7026e-08 5.7181e-07 3.2137e-07
1/60 5.7732e-10 6.0030 3.1237e-08 4.1942 1.7868e-08 4.1688
1/90 5.0674e-11 6.0005 5.6615e-09 4.2123 3.3155e-09 4.1542
1/120 9.0168e-12 6.0008 1.6781e-09 4.2270 1.0053e-09 4.1479

Runge–Kutta methods, multistep methods do not suffer from order reduction because their
consistency errors can be expressed in terms of the solution u only; neither the elliptic opera-
tor nor the forcing terms enter into their consistency errors. Of course, implicit Runge–Kutta
methods are superior to multistep methods for certain classes of parabolic equations as they
can combine excellent stability properties, such as A- or B-stability, with arbitrarily high order
of accuracy.
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