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Abstract. We analyze semidiscrete and fully discrete finite element approximations

to the solution of an initial boundary value problem for a model ultraparabolic equa-

tion.

0. Introduction

In this paper we shall analyze semidiscrete as well as fully discrete finite element

approximations to the solution of the following initial boundary value problem for a

model ultraparabolic equation: Let S, T > 0, and Ω ⊂ R
d be a bounded domain

with smooth boundary ∂Ω, and let λ = λ(x, s, t) be a positive smooth function on

Ω̄ × [0, S]× [0, T ]. We seek a function u : Ω̄ × [0, S]× [0, T ] → R satisfying

(0.1)











ut + λus −∆u = 0, in Ω × [0, S]× [0, T ],

u = 0, on ∂Ω × [0, S]× [0, T ],

u(·, 0, ·) = v0, on Ω̄ × [0, T ], u(·, ·, 0) = w0, on Ω̄ × [0, S].

In the sequel we shall think of both variables s and t as “time” variables, and v0 and

w0 as initial data. We shall always assume below that the data of (0.1) are such that the

problem possesses a unique solution which is sufficiently smooth for the approximation

results that will be proved in the sequel. The operator −∆ is chosen for simplicity

only; it could be replaced in what follows by any elliptic second order operator, with

coefficients depending smoothly on x, s, and t.

Taking inner products of both sides of the differential equation in (0.1) by u, and

using Green’s formula, we obtain, with κ =
√
λ,

∂

∂t
‖u‖2 + ∂

∂s
‖κu‖2 + ‖∇u‖2 = (λsu, u) ≤ C‖u‖2, with ‖ · ‖ = ‖ · ‖L2(Ω),

whence
∂

∂t
(e−Ct‖u‖2) + ∂

∂s
(e−Ct‖κu‖2) ≤ 0.

Let Γ be a piecewise smooth curve contained in [0, S] × [0, T ] and connecting the

intervals [0, S] with [0, T ] on the s and t axes, and such that its normal has nonnegative

components. Integrating in s and t we obtain by Green’s formula, with C independent
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of Γ ,

|||u|||2Γ =

∫

Γ

‖u‖2 dσ ≤ C
(

∫ T

0

‖v0(t)‖2 dt+
∫ S

0

‖w0(s)‖2 ds
)

,

which thus shows the stability and uniqueness of the solution of (0.1) with respect to

initial data. (Here and often below we suppress the dependence on x in the notation.)

We remark that in the particular case that λ is independent of x, the differential

equation reduces to a family of standard parabolic equations along the characteristics

of the equation ut + λus = 0. In this case we have

( ∂

∂t
+ λ

∂

∂s

)

‖u‖2 + ‖∇u‖2 = 0.

In particular, ‖u‖ is nonincreasing along the characteristics, and the estimate

(0.2) sup
[0,S]×[0,T ]

‖u‖ ≤ max
(

sup
[0,T ]

‖v0‖, sup
[0,S]

‖w0‖
)

follows.

From the parabolic character of the equation along characteristics it follows in this

case that the solution is smooth in x and in the variable along characteristics for

s, t 6= 0, even without regularity assumptions on the initial data, but no regularity

could be expected in the transversal variable without such regularity assumptions.

The maximum-norm estimate

sup
Ω̄×[0,S]×[0,T ]

|u| ≤ max
(

sup
Ω̄×[0,T ]

|v0|, sup
Ω̄×[0,S]

|w0|
)

also holds, and can be shown in a similar way as in the proof of the maximum principle

for a standard parabolic equation, even in the case when λ depends on x, s, and t, but

it is not clear that an estimate such as (0.2) holds if λ depends on x.

Ultraparabolic equations have several applications, for instance in probability, in the

theory of Brownian motion, and in the theory of boundary layers, cf., e.g., Kolmogorov

[3], [4], Genčev [1] and references therein. For existence and uniqueness results, other

properties of ultraparabolic equations, and further references we refer the reader to

Genčev [1], Il’in [2], Vladimirov and Drožžinov [7], and Tersenov [5].

The plan of the paper is as follows: In Section 1 we treat discretization with respect

to the spatial variables only, using standard finite elements of order r. We show an

optimal order estimate with respect to the norm ||| · |||Γ introduced above, and remark

that a corresponding maximum-norm error estimate holds when λ is independent of

x. In Section 2 we consider a fully discrete implicit backward Euler method, using

backward difference quotients to approximate the derivatives with respect to both s

and t in (0.1), and show fully discrete analogues of the above error estimates in the

semidiscrete case. In Section 3, finally, we discuss a second order fully discrete scheme

based on a variant of the box scheme for the hyperbolic part of the equation and show

a corresponding optimal order error estimate.

The authors would like to thank Dr. A. S. Tersenov for stimulating discussions about

ultraparabolic equations.
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1. Semidiscretization in space

Let {Sh} represent a family of finite-dimensional subspaces of H1
0 (Ω). Such spaces

typically consist of piecewise polynomial functions of degree at most r − 1 defined on

suitable partitions of Ω, where r ≥ 2 is an integer. We assume that these spaces are

such that there is a constant C independent of h such that for each v ∈ Hq(Ω)∩H1
0 (Ω),

2 ≤ q ≤ r, there exists χ ∈ Sh with

(1.1) ‖v − χ‖+ h‖∇(v − χ)‖ ≤ Chq‖v‖Hq(Ω).

We define the spatially semidiscrete approximation uh = uh(·, s, t) ∈ Sh, (s, t) ∈
[0, S]× [0, T ], of the solution of (0.1) by

(1.2)
(uht, χ) + (λuhs, χ) + (∇uh,∇χ) = 0, ∀χ ∈ Sh, (s, t) ∈ [0, S]× [0, T ],

uh(·, 0, ·) = v0h, in Ω × [0, T ], uh(·, ·, 0) = w0
h, in Ω × [0, S],

where v0h, w
0
h are such that v0h(0) = w0

h(0) and

(1.3) ‖v0(t)− v0h(t)‖+ ‖w0(s)− w0
h(s)‖ ≤ Chr, for (s, t) ∈ [0, S]× [0, T ].

In terms of a basis for Sh the semidiscrete problem (1.2) can be formulated as an initial

boundary value problem for a first order symmetric hyperbolic system of Friedrichs’

type. Thus, in particular, the existence of the semidiscrete approximation uh follows

easily from standard theory for such systems.

For the purpose of error estimation we will use the elliptic (or Ritz) projection

Rh : H1
0 (Ω) → Sh, commonly used in the error analysis for parabolic equations, defined

by

(1.4) (∇Rhv,∇χ) = (∇v,∇χ) ∀v ∈ H1
0 (Ω) ∀χ ∈ Sh.

It is well known from the error analysis for elliptic problems that, under the assumption

(1.1), we have

(1.5) ‖Rhv − v‖+ h‖∇(Rhv − v)‖ ≤ Chr‖v‖Hr(Ω), ∀v ∈ Hr(Ω) ∩H1
0 (Ω),

with a constant C independent of v and h.

Theorem 1. Let uh and u be the solutions of (1.2) and (0.1), respectively, and assume

that (1.3) holds. Then, for any curve Γ as in Section 0,

|||uh − u|||Γ ≤ C(u)hr.

Proof. We set W = Rhu and write the error uh − u = ρ + θ, where ρ = W − u and

θ = uh −W . By the elliptic error estimate (1.5) we have at once

(1.6) ‖ρ(s, t)‖ ≤ Chr, for (s, t) ∈ [0, S]× [0, T ].

In order to estimate θ, we first note that for the initial-values

(1.7) ‖θ(0, t)‖+ ‖θ(s, 0)‖ = ‖v0h(t)−Rhv
0(t)‖+ ‖w0

h(s)− Rhw
0(s)‖ ≤ Chr.
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Further, by (1.4) and (0.1),

(θt, χ) + (λθs, χ) + (∇θ,∇χ) = (Wt, χ) + (λWs, χ) + (∇W,∇χ)

= (Wt, χ) + (λWs, χ)− (∆u, χ), ∀χ ∈ Sh,

i.e.,

(θt, χ) + (λθs, χ) + (∇θ,∇χ) = −(ρt, χ)− (λρs, χ), ∀χ ∈ Sh.

Since Rh commutes with differentiation with respect to s and to t the estimate (1.6)

holds also for ρs and ρt. Therefore, choosing χ = θ(·, s, t) and noting that 2(λθs, θ) =

(λθ, θ)s − (λsθ, θ), we obtain by obvious estimates, with κ =
√
λ,

∂

∂t
‖θ‖2 + ∂

∂s
‖κθ‖2 ≤ C‖θ‖2 + Ch2r.

Multiplying by e−Ct, integrating in s and t, and using Green’s formula, we obtain

|||θ|||2Γ =

∫

Γ

‖θ‖2 dσ ≤ Ch2r.

Since by (1.6), |||ρ|||Γ ≤ Chr, this completes the proof. �

We note that as in Section 0, in the case when λ is independent of x, (1.2) represents

a family of semidiscrete approximations of parabolic equations along the character-

istics. In this case we may conclude from known results, by integrating along the

characteristics, that

sup
[0,S]×[0,T ]

‖uh − u‖ ≤ C(u)hr.

2. The backward Euler method

We shall now turn to discretization also in time and analyze a fully discrete scheme

based on using the backward Euler method for the hyperbolic part of (0.1).

Letting k be a time step and sm = mk, tn = nk,m, n = 0, . . . , we shall denote

the values of our functions on the grid by V m,n = V (·, sm, tn). We shall also use the

backward difference quotients

∂̄1V
m,n = (V m,n − V m−1,n)/k, ∂̄2V

m,n = (V m,n − V m,n−1)/k.

We now define the fully discrete backward Euler method for (0.1) by

(2.1)
(∂̄2U

m,n, χ) + (λm,n∂̄1U
m,n, χ) + (∇Um,n,∇χ) = 0, ∀χ ∈ Sh, m, n ≥ 1,

U0,n = v0h(t
n), Um,0 = w0

h(s
m), m, n ≥ 0,

where the initial approximations are chosen as in Section 1. It is readily seen that the

approximations Um,n are well defined; indeed, (2.1) represents a N ×N linear system

for Um,n with symmetric and positive definite matrix, where N = dimSh.

In order to express our error estimate we shall need to define an analogue of the

norms ||| · |||Γ used in Section 0. For this purpose, let Σk ⊂ [0, S] × [0, T ] be a union

of mesh-rectangles, which we take to mean a set of meshpoints in a rectangle of the
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form (0, sm]× (0, tn]. Let Γk be the discrete forward boundary of Σk, consisting of the

meshpoints of Σk such that not all four neighboring meshpoints belong to Σk, and set

|||V |||Γk
=

(

k
∑

(sm,tn)∈Γk

(V m,n)2
)

1

2

.

We then have the following.

Theorem 2. Let Um,n and u be the solutions of (2.1) and (0.1), respectively, and

assume that the initial approximations satisfy (1.3). Then, for Γk as above,

|||U − u|||Γk
≤ C(u)(hr + k).

Proof. We write again the error U − u = (U −W )+ (W − u) = θ+ ρ where W = Rhu,

and recall the estimate (1.6) for ρ. In order to estimate θ, we first note that for the

initial-values, as in (1.7), we have

(2.2) ‖θ0,n‖+ ‖θm,0‖ ≤ Chr.

Further, arguing as in the proof of Theorem 1

(2.3) (∂̄2θ
m,n, χ) + (λm,n∂̄1θ

m,n, χ) + (∇θm,n,∇χ) = (ωm,n, χ),

where ωm,n = ωm,n
1 + ωm,n

2 + ωm,n
3 , with

ωm,n
1 = −(Rh − I)∂̄2u

m,n,

ωm,n
2 = −λm,n(Rh − I)∂̄1u

m,n,

ωm,n
3 = −(∂̄2u

m,n − ut(s
m, tn))− λm,n(∂̄1u

m,n − us(s
m, tn)).

Now since

ωm,n
1 = −1

k

∫ tn

tn−1

(Rh − I)ut(s
m, τ) dτ,

and similarly for ωm,n
2 , we easily see that

‖ωm,n
1 ‖+ ‖ωm,n

2 ‖ ≤ Chr.

Together with the obvious O(k) estimate for ωm,n
3 we conclude that

‖ωm,n‖ ≤ C(hr + k).

Choosing χ = θm,n in (2.3) and using

2(∂̄2θ
m,n, θm,n) = ∂̄2‖θm,n‖2 + k‖∂̄2θm,n‖2 ≥ ∂̄2‖θm,n‖2,

and for the second term the analogous estimate together with the differentiability of

λ, we obtain, again with κ =
√
λ and C independent of Γ ,

∂̄2‖θm,n‖2 + ∂̄1‖κm,nθm,n‖2 ≤ C‖θm−1,n‖2 + C(hr + k)2.

Using the fact that, with obvious one-dimensional notation,

(2.4) ∂̄(e−CtnV n) ≤ e−Ctn(∂̄V n − CV n−1), for V n ≥ 0,

we obtain

∂̄2(e
−Ctn‖θm,n‖2) + ∂̄1(e

−Ctn‖κm,nθm,n‖2) ≤ C(hr + k)2,
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from which the result now follows by summation over Σk. �

We remark that, as in the semidiscrete case, when λ does not depend on x, we can

improve the estimate of Theorem 2 to the discrete maximum-norm in time estimate

max
(sm,tn)∈[0,S]×[0,T ]

‖Um,n − um,n‖ ≤ C(u)(hr + k).

Here this is not accomplished using the characteristics, but by the following energy

argument: Choosing χ = θm,n in (2.3) and using the Cauchy-Schwarz inequality we get

easily

∂̄2‖θm,n‖+ λm,n∂̄1‖θm,n‖ ≤ ‖ωm,n‖ ≤ C(hr + k).

Hence

‖θm,n‖ ≤ max(‖θm−1,n‖, ‖θm,n−1‖) + Ck(hr + k),

and, by induction,

‖θm,n‖ ≤ max( max
sm∈[0,S]

‖θm,0‖, max
tn∈[0,T ]

‖θ0,n‖) + C(sm + tn)(hr + k).

Together with the usual estimates (1.6) for ρ and (1.7) for the initial-values of θ, this

completes the proof.

3. The box scheme

In this final section we shall consider a second order fully discrete scheme based on

the box scheme for the hyperbolic part of the equation (0.1).

In addition to our earlier notation we shall use

V m−
1

2
,n =

1

2
(V m,n + V m−1,n), V m,n− 1

2 =
1

2
(V m,n + V m,n−1),

V̂ m−
1

2
,n− 1

2 =
1

2
(V m,n + V m−1,n−1).

With λm−
1

2
,n− 1

2

= λ(·, sm−
1

2 , tn−
1

2 ) (with lower index to distinguish from the corre-

sponding average), we define Um,n by

(3.1)

(∂̄2U
m−

1

2
,n, χ) + (λm−

1

2
,n− 1

2

∂̄1U
m,n− 1

2 , χ) + (∇Ûm−
1

2
,n− 1

2 ,∇χ) = 0,

∀χ ∈ Sh, m, n ≥ 1,

U0,n = v0h(t
n), Um,0 = w0

h(s
m), m, n ≥ 0,

where the initial approximations are chosen as in Section 1.

We shall prove the following error estimate where ||| · |||Γk
is defined as in Section

2. Our analysis is based on [6]. We remark that a more standard way to define

the box scheme would have been to use instead of Ûm−
1

2
,n− 1

2 the four point average

Um−
1

2
,n− 1

2 = (Um,n + Um−1,n + Um,n−1 + Um−1,n−1)/4. The analysis could be pursued

also with this choice but would lead to error estimates at the midpoints of the edges

of the mesh-boxes. We shall not insist on the details.
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Theorem 3. Let Um,n and u be the solutions of (3.1) and (0.1), respectively, and

assume that the initial approximations satisfy (1.3). Then, for Γk as above,

|||U − u|||Γk
≤ C(u)(hr + k2).

Proof. Let as above ρ = W − u, θ = U −W. Then θ satisfies

(3.2) (∂̄2θ
m−

1

2
,n, χ) + (λm−

1

2
,n− 1

2

∂̄1θ
m,n− 1

2 , χ) + (∇θ̂m−
1

2
,n− 1

2 ,∇χ) = (ωm,n, χ),

where ωm,n =
∑4

j=1 ω
m,n
j , with

ωm,n
1 = −(Rh − I)∂̄2u

m−
1

2
,n,

ωm,n
2 = −λm−

1

2
,n− 1

2

(Rh − I)∂̄1u
m,n− 1

2 ,

ωm,n
3 = ut(s

m−
1

2 , tn−
1

2 )− ∂̄2u
m−

1

2
,n

+ λm−
1

2
,n− 1

2

(us(s
m−

1

2 , tn−
1

2 )− ∂̄1u
m,n− 1

2 ),

ωm,n
4 = ∆(ûm−

1

2
,n− 1

2 − u(sm−
1

2 , tn−
1

2 )).

In view of (1.5) we have

(3.3) ‖ωm,n‖ ≤ C(hr + k2).

Choosing χ = θ̂m−
1

2
,n− 1

2 in (3.2) and using (3.3) we easily obtain

(∂̄2θ
m−

1

2
,n, θ̂m−

1

2
,n− 1

2 ) + (λm−
1

2
,n− 1

2

∂̄1θ
m,n− 1

2 , θ̂m−
1

2
,n− 1

2 ) + ‖∇θ̂m−
1

2
,n− 1

2‖2

≤ ǫ‖θ̂m−
1

2
,n− 1

2‖2 + C(hr + k2)2 ≤ ‖∇θ̂m−
1

2
,n− 1

2‖2 + C(hr + k2)2,

for ǫ suitably chosen.

Using the identity

2(a+ b− c− d)(b+ c) = ((a+ b)2 − (c+ d)2) + ((b− d)2 − (a− c)2),

with a, b, c, d the values of θ at the four corners of the box [sm−1, sm] × [tn−1, tn], we

find,

8(∂̄2θ
m−

1

2
,n, θ̂m−

1

2
,n− 1

2 ) = 4∂̄2‖θm−
1

2
,n‖2 + k2∂̄1‖∂̄2θm,n‖2,

and

8(λm−
1

2
,n− 1

2

∂̄1θ
m,n− 1

2 , θ̂m−
1

2
,n− 1

2 )

=
4

k

(

‖κm−
1

2
,n− 1

2

θm,n− 1

2‖2 − ‖κm−
1

2
,n− 1

2

θm−1,n− 1

2‖2
)

+ k
(

‖κm−
1

2
,n− 1

2

∂̄1θ
m,n‖2 − ‖κm−

1

2
,n− 1

2

∂̄1θ
m,n−1‖2

)

= 4∂̄1‖κm−
1

2
,n− 1

2

θm,n− 1

2‖2 + k2∂̄2‖κm−
1

2
,n− 1

2

∂̄1θ
m,n‖2

+O
(

‖θm−1,n− 1

2‖2 + k2‖∂̄1θm,n−1‖2
)

.

Letting

Pm,n = 4‖θm−
1

2
,n‖2 + k2‖κm−

1

2
,n− 1

2

∂̄1θ
m,n‖2,

Qm,n = 4‖κm−
1

2
,n− 1

2

θm,n− 1

2‖2 + k2‖∂̄2θm,n‖2,
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we have thus

∂̄2P
m,n + ∂̄1Q

m,n ≤ C(hr + k2)2 + C
(

Qm−1,n + Pm,n−1
)

.

As in the proof of Theorem 2 we obtain using (2.4) for both variables

∂̄2(e
−C(sm+tn)Pm,n) + ∂̄1(e

−C(sm+tn)Qm,n) ≤ C(hr + k2)2.

Multiplying by k2 and summing over Σk,

k
∑

(sm,tn)∈Γk

max (Pm,n, Qm,n) ≤ k
∑

sm∈[0,S]

Pm,0 + k
∑

tn∈[0,T ]

Q0,n + C(hr + k2)2.

Note that Pm,n and Qm,n are equivalent to ‖θm,n‖2+‖θm−1,n‖2 and ‖θm,n‖2+‖θm,n−1‖2,
respectively. In view of (2.2) we conclude that

|||θ|||2Γk
≤ C(hr + k2)2.

Together with the estimate (1.6) for ρ this completes the proof of the theorem. �
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