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Abstract. We approximate the solution of initial boundary value problems for non-

linear parabolic equations. In space we discretize by finite element methods. The

discretization in time is based on linear multistep schemes. One part of the equation

is discretized implicitly and the other explicitly. The resulting schemes are stable,

consistent and very efficient, since their implementation requires at each time step the

solution of a linear system with the same matrix for all time levels. We derive optimal

order error estimates. The abstract results are applied to the Kuramoto-Sivashinsky

and the Cahn-Hilliard equations in one dimension, as well as to a class of reaction

diffusion equations in Rν , ν = 2, 3.

1. Introduction

In this paper we construct and analyze implicit-explicit multistep schemes for the

time discretization of a class of nonlinear parabolic problems of the form: Given T > 0

and u0 ∈ H , find u : [0, T ] → D(A) such that

u′(t) + Au(t) = B(u(t)), 0 < t < T,

u(0) = u0,
(1.1)

where A is a linear, selfadjoint, positive definite operator on a Hilbert space (H, (·, ·))
with domain D(A) dense in H, and B : D(A) → H is a (possibly nonlinear) differ-

entiable operator. Considering a finite dimensional subspace Vh of V, V := D(A1/2),

we are led to a semidiscrete problem approximating (1.1): We seek a function uh,

uh(t) ∈ Vh, defined by

u′
h(t) + Ahuh(t) = Bh(uh(t)), 0 < t < T,

uh(0) = u0
h;

(1.2)

here u0
h ∈ Vh is a given approximation to u0, and Ah, Bh are appropriate operators on

Vh with Ah linear, selfadjoint and positive definite.

Following an idea of Crouzeix, [3], for the time discretization of parabolic equations

with time dependent coefficients, we combine implicit and explicit multistep schemes to

discretize (1.2) in time: Implicit schemes are used for discretizing the left-hand side of

the o.d.e. in (1.2), and explicit schemes for the nonlinear right-hand side. Thus, letting
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k be a (constant) time step, tn = nk, n = 0, . . . , N, T = Nk, we define a sequence of

approximations Un, Un ∈ Vh, to un = u(tn), by

(1.3)

q∑

i=0

αiU
n+i + k

q∑

i=0

βiAhU
n+i = k

q−1∑

i=0

γiBh(U
n+i).

A scheme of this form is characterized by three polynomials α, β and γ,

α(ζ) =

q∑

i=0

αiζ
i , β(ζ) =

q∑

i=0

βiζ
i , γ(ζ) =

q−1∑

i=0

γiζ
i .

We note that, when Bh vanishes, the scheme (1.3) reduces to the implicit linear

multistep method (α, β) (or (ρ, σ) in the notation of Dahlquist) for the equation

u′
h(t)+Ahuh(t) = 0; similarly if Ah vanishes, the scheme (1.3) reduces to the linear mul-

tistep method (α, γ), which is explicit since γq = 0, for the equation u′
h(t) = Bh(uh(t)).

The scheme (1.3) is a combination of the methods (α, β) and (α, γ); it is linearly implicit

and nonlinearly explicit. We shall refer to it as the (α, β, γ) scheme.

We shall assume in the sequel that the method (α, β) is strongly A(0)−stable; this

implies, in particular, that αqβq is positive, which in turn ensures invertibility of the

operator αqI + kβqAh. Thus, given U0, . . . , U q−1 in Vh, U
q, . . . , UN are well defined by

the (α, β, γ) scheme. We will assume in the sequel, without loss of generality, that both

αq and βq are positive.

For the analysis of the scheme (1.3) we will need some additional assumptions for

the operators A and B as well as for the finite dimensional spaces Vh; the operators

Ah and Bh will then be appropriately defined. Let, thus, | · | denote the norm of H,

and introduce in V the norm ‖ · ‖ by ‖v‖ = (A1/2v, A1/2v)1/2. We identify H with its

dual, and denote by V ′ the dual of V , again by (·, ·) the duality pairing on V ′ and V,

and by ‖ · ‖⋆ the dual norm on V ′. We assume that B can be extended to an operator

from V into V ′, which is differentiable, and an estimate of the form

(1.4) |(B′(v)w, ω)| ≤ λ‖w‖‖ω‖+ µ(v)|w| |ω| ∀v, w, ω ∈ V

holds with a constant λ < 1 and a functional µ(v) which is bounded for v bounded in

V. Indeed, depending on the particular (α, β, γ) scheme, we shall need to assume that

the constant λ is appropriately small. Further, the assumption that µ(v) is bounded

for v bounded in V will suffice to derive our results under some mild meshconditions;

these conditions can be weakened if µ(v) is bounded for v bounded in some appropriate

weaker norms, and even avoided if µ(v) is bounded for v bounded in H.

We will assume in the sequel that (1.1) possesses a solution which is sufficiently

regular for our results to hold. Uniqueness of smooth solutions follows easily in view

of (1.4).

For the space discretization we use a family Vh, 0 < h < 1, of finite dimensional

subspaces of V. In the sequel the following discrete operators will play an essential

role: Define Po : V ′ → Vh, Rh : V → Vh, Ah : V → Vh, and the nonlinear operator
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Bh : V → Vh by

(Pov, χ) = (v, χ) ∀χ ∈ Vh,

(ARhv, χ) = (Av, χ) ∀χ ∈ Vh,

(Ahϕ, χ) = (Aϕ, χ) ∀χ ∈ Vh,

(Bh(ϕ), χ) = (B(ϕ), χ) ∀χ ∈ Vh.

Then, obviously, AhRh = PoA and Bh = PoB .

In the error analysis we shall use the approximation properties of the “elliptic pro-

jection” Rh. We assume that Rhv is an approximation to v of order r, provided that v

is sufficiently regular,

(1.5) |v −Rhv|+ hd/2‖v −Rhv‖ ≤ M(v)hr,

where r and d are two integers, 2 ≤ d ≤ r, and M(v) is bounded if an appropriate

norm of v is bounded. We further assume that

(1.6) ‖B(v)− B(Rhv)‖⋆ ≤ M(v)hr.

We emphasize that the condition (1.6) serves consistency purposes only. It is needed

to prove consistency of the (α, β, γ) scheme—and, in fact, already of the semidiscrete

problem (1.2)—for Rhu of optimal order with respect to h. It is somehow restrictive

though, since it essentially means that, if A is a differential operator of order d, then

B may contain derivatives of up to order d/2 only. For some concrete differential

equations, however, one can get by with a less stringent condition by taking into

account in the definition of Rh the terms of B of order higher than d/2.

The scheme (1.3) is very efficient since its implementation requires at every time

step solving a linear system with the same matrix for all time levels. If the order of

both the implicit and the explicit scheme is p, then under some mild meshconditions

and for appropriately small λ, and appropriate starting values U0, . . . , U q−1, we derive

the optimal order error estimate

max
0≤n≤N

|u(tn)− Un| ≤ c(kp + hr).

An outline of the paper is as follows: Section 2 is devoted to the analysis of a simple

one step semiexplicit scheme of first order accuracy; its purpose is to motivate the

analysis, in section 3, of more general multistep schemes of higher accuracy. Finally, in

the last section, we apply our abstract results to three examples, namely the Kuramoto-

Sivashinsky equation and the Cahn-Hilliard equation in one space dimension, and to a

class of reaction diffusion equations in Rν , ν = 2, 3.

2. An implicit-explicit one step scheme

As a motivation for the analysis of multistep schemes, we study in this section the

simplest implicit-explicit scheme which is a combination of the backward Euler and the

Euler method.
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Let U0 ∈ Vh be given. We define fully discrete approximations Un ∈ Vh to u(tn),

recursively by

(2.1)
Un+1 − Un

k
+ AhU

n+1 = Bh(U
n), n = 0, . . . , N − 1.

Our main concern in this section is to analyze the approximation properties of the

sequence {Un}. As an intermediate step, we shall show consistency of the scheme (2.1)

for the elliptic projection of the solution u of (1.1). Let

W (t) = Rhu(t), W (t) ∈ Vh, 0 ≤ t ≤ T .

We note for later use that, in view of the definition of Rh, ‖W (t)‖ is obviously bounded

by ‖u(t)‖, and thus bounded uniformly in h and t,

(2.2) sup
h

sup
t

‖W (t)‖ ≤ C .

Consistency. The consistency error En of the scheme (2.1) for W is given by

(2.3) kEn = (W n+1 −W n) + kAhW
n+1 − kBh(W

n), n = 0, 1, . . . , N − 1.

Using the relation AhRh = PoA and the definition of Bh, we rewrite En as

kEn = Rh(u
n+1 − un) + kPoAu

n+1 − kPoB(Rhu
n),

and thus, in view of (1.1), En = En
1 + En

2 , where

kEn
1 =(Rh − Po)(u

n+1 − un) + Po(u
n+1 − un − ku′(tn+1) )

+ kPo(B(un+1)−B(un) ),
(2.4)

and

(2.5) En
2 = Po(B(un)−B(Rhu

n) ).

Obviously

(2.6) max
0≤n≤N−1

|En
1 | ≤ C(k + hr).

Further, in view of (1.6),

(2.7) max
0≤n≤N−1

‖En
2 ‖⋆ ≤ Chr.

Next, we show optimal order rate of convergence of our approximations to the (suf-

ficiently regular) solution of (1.1), provided that the initial approximation U0 ∈ Vh

satisfies

(2.8) |u0 − U0|+ hd/2‖u0 − U0‖ ≤ c(u)hr.

We first introduce some more notation: For v ∈ V and b > 0, let

|||v|||b :=
{
|v|2 + bk‖v‖2

}1/2
,

and set |||v||| := |||v|||1. Further, let
(2.9) m := sup{µ(v) : ‖v‖ ≤ sup

t
‖u(t)‖+ 1}

with µ(v) as in (1.4).
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The main result in this section is given in the following theorem:

Theorem 2.1. Assume that k and h2rk−1 are sufficiently small. Then, we have the

local stability estimate

|||W n − Un|||λ ≤ emtn
{
|||W 0 − U0|||λ + k

n−1∑

j=0

|Ej
1|

+
1√

2(1− λ)

(
k

n−1∑

j=0

‖Ej
2‖2⋆

)1/2}
,

(2.10)

and the error estimate

(2.11) max
0≤n≤N

|u(tn)− Un| ≤ C(k + hr).

Proof. Let ρn = un −W n and ϑn = W n − Un, n = 0, . . . , N . Then, according to (1.5),

(2.12) max
0≤n≤N

|ρn| ≤ Chr.

Further, in view of (1.5) and (2.8),

|||ϑ0|||λ ≤ |ϑ0|+ k1/2‖ϑ0‖
≤ Chr + Ck1/2hr−d/2,

i.e., since d ≤ r,

(2.13) |||ϑ0|||λ ≤ C(k + hr) .

Now, if we assume that (2.10) holds, using (2.13), (2.6) and (2.7), we obtain

(2.14) max
0≤n≤N

|||ϑn|||λ ≤ C(k + hr) ,

and then (2.11) follows in view of (2.12). Thus, it remains to prove (2.10). To this

end, we proceed as follows: From (2.1) and (2.3) we obtain an error equation for ϑn,

ϑn+1 + kAhϑ
n+1 =ϑn + k(Bh(W

n)− Bh(U
n)) + kEn

=ϑn + k

∫ 1

0

B′
h (W

n − sϑn)ϑn ds+ kEn , n = 0, . . . , N − 1.

According to (2.13), (2.6) and (2.7), there exists a constant C⋆ such that

emT
{
|||W 0 − U0|||λ + k

N−1∑

j=0

|Ej
1|+

1√
2(1− λ)

(
k

N−1∑

j=0

‖Ej
2‖2⋆

)1/2}

≤ C⋆(k + hr) .

(2.15)

Next, we split the error ϑn as ϑn = ϑn
1+ϑn

2 . Here ϑ
0
1 = ϑ0, ϑ0

2 = 0, and ϑn
i , n = 1, . . . , N,

are recursively defined by

(2.16) ϑn+1
i + kAhϑ

n+1
i = ϑn

i + k

∫ 1

0

B′
h (W

n − sϑn)ϑn
i ds+ kEn

i , i = 1, 2.
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We shall show inductively that, for n = 0, . . . , N, %

(2.17) |||ϑn
1 |||λ ≤ emtn

{
|||ϑ0

1|||λ + k

n−1∑

j=0

|Ej
1|
}

and

(2.18) |||ϑn
2 |||λ ≤ emtn

1√
2(1− λ)

(
k

n−1∑

j=0

‖Ej
2‖2⋆

)1/2
.

Obviously, (2.10) follows from (2.17) and (2.18). The estimates (2.17) and (2.18) are

of course valid for n = 0. Assume that they hold for some n, 0 ≤ n ≤ N − 1. Then,

according to (2.15) and to (2.10), which also holds for n, we have, for k and k−1h2r

small enough,

‖ϑn‖ ≤ 1√
λ
C⋆(k

1/2 + k−1/2hr) ≤ 1,

i.e.,

(2.19) sup
0<s<1

µ (W n − sϑn) ≤ m.

Taking in (2.16) the inner product with ϑn+1
i and using the definition of Ah and Bh,

we obtain

|||ϑn+1
i |||2 = (ϑn

i , ϑ
n+1
i ) + k

∫ 1

0

(
B′

h (W
n − sϑn)ϑn

i , ϑ
n+1
i

)
ds+ k(En

i , ϑ
n+1
i ) ,

and thus, in view of (1.4) and (2.19),

(2.20) |||ϑn+1
i |||2 ≤ (1 +mk)|ϑn

i | |ϑn+1
i |+ λk‖ϑn

i ‖ ‖ϑn+1
i ‖+ k(En

i , ϑ
n+1
i ) , i = 1, 2.

Therefore,

|||ϑn+1
1 |||2λ ≤ (1 +mk)

(
|ϑn

1 | |ϑn+1
1 |+ λk‖ϑn

1‖ ‖ϑn+1
1 ‖

)
+ k|En

1 | |ϑn+1
1 |

≤ (1 +mk)|||ϑn
1 |||λ|||ϑn+1

1 |||λ + k|En
1 | |||ϑn+1

1 |||λ ,
i.e.,

(2.21) |||ϑn+1
1 |||λ ≤ (1 +mk)|||ϑn

1 |||λ + k|En
1 | .

From (2.21) and the induction hypothesis, it easily follows that (2.17) holds also for

n + 1. Similarly,

|||ϑn+1
2 |||2 ≤ 1

2
(1 +mk)2|ϑn

2 |2 +
1

2
|ϑn+1

2 |2 + 1

2
λk‖ϑn

2‖2 +
1

2
λk‖ϑn+1

2 ‖2

+
1

4(1− λ)
k‖En

2 ‖2⋆ + (1− λ)k‖ϑn+1
2 ‖2 ,

i.e.,

|||ϑn+1
2 |||2λ ≤ (1 +mk)2|ϑn

2 |2 + λk‖ϑn
2‖2 +

1

2(1− λ)
k‖En

2 ‖2⋆ ,

and, therefore,

(2.22) |||ϑn+1
2 |||2λ ≤ (1 +mk)2|||ϑn

2 |||2λ +
1

2(1− λ)
k‖En

2 ‖2⋆.
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From (2.22) and the induction hypothesis, it easily follows that (2.18) holds for n + 1

as well, and the proof is complete. �

Remark 2.1. The weak meshcondition “k−1h2r small” is used in the proof of Theorem

2.1 only to show that ‖ϑn‖ ≤ 1 which implies (2.19). If µ(v) is bounded for v bounded

in a weaker norm, one can get by with an even weaker meshcondition. Assume, for

instance, that µ(v) is bounded for v bounded in a norm ‖ · ‖⋆, for which an inequality

of the form

(2.23) ‖v‖⋆ ≤ |v|+ |v|1−a‖v‖a, v ∈ V,

holds for some constant a, 0 ≤ a < 1. Then, assuming that (2.17) and (2.18) hold for

some n, 0 ≤ n ≤ N − 1, according to (2.15) and (2.10), which is also valid for n, we

have

‖ϑn‖⋆ ≤ |ϑn|+ |ϑn|1−a‖ϑn‖a

≤ C⋆(k + hr) + C⋆λ
−a/2k−a/2(k + hr),

and thus a condition of the form “k and k−ah2r sufficiently small” guarantees that

‖ϑn‖⋆ is small, bounded by 1 say, and this in turn implies that (2.19) is satisfied for an

appropriately defined constant m. In particular, if µ(v) is bounded for v bounded in

H, no meshcondition is required for the results of Theorem 2.1 to hold; we only have

to assume that k and h are sufficiently small. These remarks apply equally well to the

more general multistep schemes which will be investigated in the next section.

In the applications in Section 4, in the case of the Kuramoto-Sivashinsky equation

µ(v) will be bounded for v bounded in H, and no meshcondition will be needed; for

the Cahn-Hilliard equation, µ(v) will be bounded for v bounded in a norm ‖ · ‖⋆ for

which (2.23) holds with a = 1
2
, and thus we only have to assume that k and k−1h4r are

sufficiently small.

Similarly, the same idea can be applied also when µ(v) is bounded for v bounded in

a stronger norm. Then, in special cases, the convergence result of Theorem 2.1 is still

valid but under a stronger meshcondition. A particular example, where this can be

done, is analyzed in section 4.

Remark 2.2. The assumption Vh ⊂ V is not essential in our analysis. One can treat

the case Vh * V by redefining the discrete operator Bh and appropriately modifying

the assumptions (1.4) and (1.6). We shall not dwell on this.

3. Multistep schemes

In this section we shall analyze implicit-explicit multistep schemes of higher order

accuracy.

Let (α, β) be an implicit multistep scheme and α(·), β(·) be the corresponding poly-

nomials introduced in section 1. We order the roots ζj(x), 1 ≤ j ≤ q (resp. ζj(∞) ) of

the polynomial ̟x(·) = α(·)+ xβ(·) (resp. β(·) ) in such a way that the functions ζj(·)
are continuous on [0,+∞] and that the roots ξj := ζj(0), j = 1, . . . , s, satisfy |ξj| = 1 ;

these unimodular roots are called the principal roots of α(·) and the complex numbers
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λj =
β(ξj)

ξjα′(ξj)
are called the growth factors of ξj . We assume that the method (α, β) is

strongly A(0)−stable, that means,

(i) for all 0 < x ≤ ∞ and for all j = 1, . . . , q, there holds |ζj(x)| < 1,

and

(ii) the principal roots of α are simple and satisfy: Re λj > 0, j = 1, . . . , s .

We also consider an explicit multistep scheme (α, γ) and we assume that both methods

(α, β) and (α, γ) are of order p, i.e., (with the convention 00 = 1)

(iii)

q∑

i=0

iℓαi = ℓ

q∑

i=0

iℓ−1βi = ℓ

q−1∑

i=0

iℓ−1γi, ℓ = 0, 1, . . . , p .

An example of a class of (α, β, γ) methods satisfying the above assumptions with the

order p = q is given by the polynomials

α(ζ) =

q∑

j=1

1

j
ζq−j(ζ − 1)j , β(ζ) = ζq , and γ(ζ) = ζq − (ζ − 1)q .

The corresponding implicit (α, β) schemes are the well-known B.D.F. methods which

are strongly A(0)−stable for 1 ≤ q ≤ 6.

Remark 3.1. The hypothesis (iii) may be written in the equivalent form

α(ex) = xβ(ex) +O(xp+1) = xγ(ex) +O(xp+1), as x → 0,

which implies

(3.1) β(y)− γ(y) = O((y − 1)p), as y → 1.

Since β−γ is a polynomial of degree q, we necessarily have p ≤ q ; recall that, cf. Cryer

[5], the strong A(0)−stability of the (α, β) scheme implies also that p ≤ q . In the same

paper Cryer (see also Grigorieff and Schroll [8]) shows that for any q there exists an

(α, β) q-step A(0)−stable method of order q. Following the proof given in Hairer and

Wanner, [9, Thm. 2.2, p. 270], it can be seen that these methods can be chosen to be

strongly A(0)−stable. On the other hand, given an (α, β) method of order p = q, and

since the degree of γ is ≤ q− 1, we deduce from (3.1) that the (α, γ) scheme will be of

order q if and only if γ(ζ) = β(ζ)− βq(ζ − 1)q .

In the sequel assume that we are given approximations U0, U1, . . . , U q−1 ∈ Vh to

u0, . . . , uq−1 such that

(3.2)

q−1∑

j=0

(
|W j − U j |+ k1/2‖W j − U j‖

)
≤ c(kp + hr).

We define Un ∈ Vh, n = q, . . . , N, recursively by the (α, β, γ) scheme (1.3). We shall

prove in this section that the method (1.3) is stable, and we shall show convergence of
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the approximations Un to u(tn), as h and k tend to zero. In particular, under a mild

meshcondition and for λ sufficiently small, we derive the optimal order error estimate

max
0≤n≤N

|u(tn)− Un| ≤ c(kp + hr).

As in the previous section, we shall first show consistency of the scheme (1.3) for the

projection W, W (t) = Rhu(t), 0 ≤ t ≤ T .

Consistency. The consistency error En of the scheme ((1.3) for W is given by

kEn =

q∑

i=0

αiW
n+i + k

q∑

i=0

βiAhW
n+i − k

q−1∑

i=0

γiBh(W
n+i),

n = 0, . . . , N − q.

(3.3)

Using the relations AhRh = PoA and Bh = PoB, we can rewrite (3.3) as

kEn = Rh

q∑

i=0

αiu
n+i + kPo

q∑

i=0

βiAu
n+i − kPo

q−1∑

i=0

γiB(Rhu
n+i),

and thus, in view of (1.1), we split En as En = En
1 + En

2 , where

kEn
1 =(Rh − Po)

q∑

i=0

αiu
n+i + Po

q∑

i=0

(
αiu

n+i − kβiu
′(tn+i)

)

+ kPo

( q∑

i=0

βiB(un+i)−
q−1∑

i=0

γiB(un+i)
)(3.4i)

and

(3.4ii) En
2 = Po

q−1∑

i=0

γi
(
B(un+i)−B(Rhu

n+i)
)
.

First, we will estimate En
1 . Using (1.5) and the fact that α1 + · · ·+ αq = 0, we easily

see that

(3.5i)
∣∣∣(Rh − Po)

q∑

i=0

αiu
n+i

∣∣∣ ≤ Ckhr .

Further, in view of the consistency properties of (α, β),

(3.5ii)
∣∣∣

q∑

i=0

(
αiu

n+i − kβiu
′(tn+i)

) ∣∣∣ ≤ Ckp+1.
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Moreover,

q∑

i=0

βiB(un+i)−
q−1∑

i=0

γiB(un+i)

=

q∑

i=0

βi

p−1∑

ℓ=0

(ik)ℓ

ℓ!

∂ℓ

∂tℓ
B(u)(tn)−

q−1∑

i=0

γi

p−1∑

ℓ=0

(ik)ℓ

ℓ!

∂ℓ

∂tℓ
B(u)(tn) + ϕn

=

p−1∑

ℓ=0

kℓ

ℓ!

( q∑

i=0

βii
ℓ −

q−1∑

i=0

γii
ℓ
) ∂ℓ

∂tℓ
B(u)(tn) + ϕn

= ϕn,

where the last equality holds in view of the consistency properties of (α, β) and (α, γ),

and, obviously, |ϕn| ≤ ckp. This relation and (3.5i,ii) yield

(3.6) max
0≤n≤N−q

|En
1 | ≤ C(kp + hr).

Finally, using (1.6), we obtain

(3.7) max
0≤n≤N−q

‖En
2 ‖⋆ ≤ Chr ,

which completes the estimate of En.

Convergence of the multistep scheme. Let ϑn = W n − Un, n = 0, . . . , N . Then

(3.3) and (1.3) yield the error equation for ϑn

(3.8)

q∑

i=0

αiϑ
n+i + k

q∑

i=0

βiAhϑ
n+i = k

q−1∑

i=0

γi{Bh(W
n+i)− Bh(U

n+i)}+ kEn.

According to the splitting of En, we introduce ϑj
1 and ϑj

2, cf. section 2, by

q∑

i=0

αiϑ
n+i
j + k

q∑

i=0

βiAhϑ
n+i
j =k

q−1∑

i=0

γi

∫ 1

0

B′
h(W

n+i − sϑn+i) ds ϑn+i
j

+ kEn
j , j = 1, 2, n = 0, . . . , N − q,

(3.9)

with initial values ϑj
1 = ϑj and ϑj

2 = 0 for j = 0, . . . , q−1. Then, obviously, ϑn = ϑn
1+ϑn

2 .

In the sequel we shall use the notation

Θn
j =



ϑn+q−1
j
...

ϑn
j


 , En

j =




En
j

0
...

0


 , δi(x) = − αi + βix

αq + βqx
,

∆i = δi(kAh), Γ i
n = γi

∫ 1

0

B′
h(W

n+i − sϑn+i) ds,
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Λ = Λ(kAh) =




∆q−1 ∆q−2 . . . ∆0

I 0 0
. . .

. . .

0 I 0


 , Γn =




Γ q−1
n . . . Γ 0

n

0 . . . 0
...

...

0 . . . 0


 ,

and

(αq + kβqAh)Θ
n
j =



(αq + kβqAh)ϑ

n+q−1
j

...

(αq + kβqAh)ϑ
n
j


 .

Equation (3.9) can then be written in the form

(3.10) (αq + kβqAh)Θ
n+1
j = (αq + kβqAh) ΛΘ

n
j + k ΓnΘ

n
j + k En

j , j = 1, 2.

We quote the following result from Crouzeix, [3]:

Lemma 3.1. There exist a constant η, with 0 ≤ η < 1, and a continuous map H :

R̄+ → Cq×q such that for all x ≥ 0 the matrix H(x) is invertible and the Euclidean

norm ‖ · ‖2 of the matrix L(x),

L(x) = αq + βqx

αq + ηβqx
H(x)−1Λ(x)H(x),

is less or equal to one for all x ≥ 0.

Let

H = H(kAh), L = L(kAh),

and

Y n
j = H−1Θn

j , Γ̃n = H−1Γn, Ẽn
j = H−1En

j ;

then, we can rewrite (3.10) as

(3.11) (αq + kβqAh)Y
n+1
j = (αq + kηβqAh) LY n

j + kΓ̃nHY n
j + kẼn

j , j = 1, 2.

In view of the fact that ‖H(x)‖2, ‖H(x)−1‖2 are uniformly bounded, see relations (3.27)

and (3.28) in [3], it suffices to estimate Y n. We adjust in this section the definition of

||| · ||| to the scheme under consideration by setting

|||v||| := (αq|v|2 + βqk‖v‖2)1/2, v ∈ V.

Further, for V = (v1, . . . , vq)
T and W = (w1, . . . , wq)

T in Hq or in V q we shall use the

notation

(V,W ) :=

q∑

i=1

(vi, wi), |V | :=
( q∑

i=1

|vi|2
)1/2

,

‖V ‖ :=
( q∑

i=1

‖vi‖2
)1/2

, |||V ||| :=
( q∑

i=1

|||vi|||2
)1/2

, ‖V ‖⋆ :=
( q∑

i=1

‖vi‖2⋆
)1/2

,

and, for a linear operator M : Hq → Hq, we set |M | := supV ∈Hq ,V 6=0
|MV |
|V | .

The main result in this paper is given in the following theorem:
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Theorem 3.1. Assume that the constant λ in (1.4) is appropriately small (depending

on the particular scheme) and that k and h2rk−1 are sufficiently small. Then, we have

the local stability estimate

|ϑn|+ k1/2‖ϑn‖ ≤ CecmT
{ q−1∑

j=0

(
|ϑj |+ k1/2‖ϑj‖

)
+ k

n−q∑

j=0

|Ej
1|

+
(
k

n−q∑

j=0

‖Ej
2‖2⋆

)1/2}
, n = q − 1, . . . , N,

(3.12)

and the error estimate

(3.13) max
0≤n≤N

|u(tn)− Un| ≤ C(kp + hr).

Proof. Let ρn = un −W n, n = 0, . . . , N. Then, according to ((1.5),

(3.14) max
0≤n≤N

|ρn| ≤ Chr.

Now, if we assume that (3.12) holds, using (3.2), (3.6) and (3.7), we obtain

(3.15) max
0≤n≤N

|ϑn| ≤ C(kp + hr) ,

and (3.13) follows immediately from (3.14) and (3.15). Thus, it remains to prove (3.12).

According to (3.2), (3.6) and (3.7)), there exists a constant C⋆ such that the right-hand

side of (3.12) can be estimated by C⋆(k
p + hr),

CecmT
{ q−1∑

j=0

(
|ϑj |+ k1/2‖ϑj‖

)
+ k

n−q∑

j=0

|Ej
1|+

(
k

N−q∑

j=0

‖Ej
2‖2⋆

)1/2}

≤ C⋆(k
p + hr) .

(3.16)

We will estimate ϑn by estimating Y n
j . In fact, we shall show that for some ε =

ε(λ, (α, β, γ) ), 0 < ε < (1− η2)βq with η as in Lemma 3.1,

(3.17) |||Y n
1 ||| ≤ ecmtn

{
|||Y 0

1 |||+
k

√
αq

n−1∑

j=0

|Ẽ j
1 |
}

and

(3.18) |||Y n
2 ||| ≤ ecmtn

1√
ε

(
k

n−1∑

j=0

‖Ẽ j
2‖2⋆

)1/2
.

Then, (3.12) follows, and the proof will be complete. We shall use induction: The

estimates (3.17) and (3.18) are valid for n = 0. Assume that they hold for 0, . . . , n, 0 ≤
n ≤ N−q. Then, according to (3.16) and (3.12), which is then valid for 0, . . . , n+q−1,

we have, for k and k−1h2r small enough,

max
0≤j≤n+q−1

‖ϑj‖ ≤ C⋆(k
p−1/2 + k−1/2hr) ≤ 1,
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i.e.,

(3.19) sup
0<s<1

max
0≤j≤n+q−1

µ
(
W j − sϑj

)
≤ m.

Taking in (3.11) the inner product with Y n+1
j , we have

|||Y n+1
j |||2 = ((αq + kηβqAh)LY n

j , Y
n+1
j ) + k(Γ̃nHY n

j , Y
n+1
j )

+ k(Ẽn
j , Y

n+1
j ), j = 1, 2.

(3.20)

First, we shall estimate the second term on the right-hand side of (3.20). LetX, Y ∈ V q

and X ′ = H−1X, Y ′ = HT Y, and recall that Γ̃n = H−1Γn. Then, if xi, yi are the

components of X and Y, respectively, we have

(Γ̃nX, Y ′) = (ΓnX, Y ) =

q−1∑

i=0

γi

∫ 1

0

(B′
h(W

n+i − sϑn+i)xi, y1) ds .

Using here the induction hypothesis, which ensures (3.19), the assumption (1.4) and

the fact that ‖H(x)‖2 and ‖H(x)−1‖2 are uniformly bounded, we see that there exists

a constant M1 such that

|(Γ̃nX, Y ′)| ≤ M1(λ‖X ′‖‖Y ‖+m|X ′| |Y |) .

Therefore,

(3.21) |(Γ̃nHY n
j , Y

n+1
j )| ≤ M1(λ‖Y n

j ‖‖Y n+1
j ‖+m|Y n

j | |Y n+1
j |), j = 1, 2 .

Next, we shall estimate the first term on the right-hand side of (3.20). Lemma 3.1

implies that

(3.22) |L| ≤ 1.

We also have

((αq + kηβqAh)LY n
j , Y

n+1
j ) = αq(LY n

j , Y
n+1
j ) + kηβq(L (A

1/2
h Y n

j ), A
1/2
h Y n+1

j ),

i.e., in view of (3.22),

|((αq + kηβqAh)LY n
j , Y

n+1
j )| ≤ αq|Y n

j | |Y n+1
j |+ ηβqk‖Y n

j ‖ ‖Y n+1
j ‖,

j = 1, 2.
(3.23)

From (3.20), (3.21)) and (3.23)), we obtain

|||Y n+1
j |||2 ≤αq|Y n

j | |Y n+1
j |+ (λM1 + ηβq)k‖Y n

j ‖ ‖Y n+1
j ‖

+M1mk|Y n
j | |Y n+1

j |+ k(Ẽn
j , Y

n+1
j ), j = 1, 2.

(3.24)

Therefore, with λ = (1−η)βq

M1
and c = M1

αq
,

|||Y n+1
1 |||2 ≤ (1 + cmk)αq|Y n

1 | |Y n+1
1 |+ βqk‖Y n

1 ‖ ‖Y n+1
1 ‖+ k|Ẽn

1 | |Y n+1
1 |

≤ (1 + cmk)(αq|Y n
1 | |Y n+1

1 |+ βqk‖Y n
1 ‖ ‖Y n+1

1 ‖) + k|Ẽn
1 | |Y n+1

1 |,
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i.e.,

(3.25) |||Y n+1
1 ||| ≤ (1 + cmk)|||Y n

1 |||+
k

√
αq

|Ẽn
1 |.

From ((3.25) and the induction hypothesis, it easily follows that (3.17) holds also for

n + 1. Similarly, with λ = 1
M1

{
[βq(βq − ε)]1/2 − ηβq

}
for some ε, 0 < ε < (1 − η2)βq,

and c = M1

αq
,

|||Y n+1
2 |||2 ≤ (1 + cmk)αq|Y n

2 | |Y n+1
2 |+ [βq(βq − ε)]1/2k‖Y n

2 ‖ ‖Y n+1
2 ‖

+
1

2ε
k‖Ẽn

2 ‖2⋆ +
ε

2
k‖Y n+1

2 ‖2.

Thus,

|||Y n+1
2 |||2 ≤ 1

2
(1 + cmk)2αq|Y n

2 |2 +
1

2
αq|Y n+1

2 |2 + 1

2
βqk‖Y n

2 ‖2

+
1

2
βqk‖Y n+1

2 ‖2 + 1

2ε
k‖Ẽn

2 ‖2⋆,

i.e.,

(3.26) |||Y n+1
2 |||2 ≤ (1 + cmk)2|||Y n

2 |||2 +
k

ε
‖Ẽn

2 ‖2⋆.

From (3.26) and the induction hypothesis, it easily follows that (3.18) holds for n + 1

as well, and the proof is complete. �

Remark 3.2. Initial approximations. Assume that the data of the problem are

smooth enough such that one can compute the time derivatives u(j)(0), j = 1, . . . ,

p − 1, of the exact solution at t = 0. Then, it is easily seen that U0 = W 0 and

Um = RhT
p
mu(0), m = 1, . . . , q − 1, with

T p
mu(0) = u0 +mku(1)(0) + · · ·+ (mk)p−1

(p− 1)!
u(p−1)(0), m = 1, . . . , q − 1,

satisfy (3.2).

4. Applications

In this section we shall apply our abstract results to two examples in one space

dimension, namely the periodic initial value problems for the Kuramoto-Sivashinsky

equation and the Cahn-Hilliard equation, and to a class of reaction diffusion equations

in Rν , ν = 2, 3.

4.1. The Kuramoto-Sivashinsky equation. We consider the periodic initial value

problem for the Kuramoto-Sivashinsky (KS) equation: For T, ν > 0 we seek a real-

valued function u defined on R× [0, T ], 1-periodic in the space variable and satisfying

(4.1) ut + uux + uxx + νuxxxx = 0 in R× [0, T ]

and

(4.2) u(·, 0) = u0 in R,
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where u0 is a given, smooth 1-periodic function.

The periodic initial value problem (4.1)–(4.2) is well-posed, cf. [13], [17]. For numer-

ical methods to this problem see, e.g., [1] and the references therein. The KS equation

is related to turbulence phenomena in chemistry and combustion, and arises also in

plasma physics and in two-phase flows in cylindrical geometries, see [18] and [14].

For s ∈ N0, let H
s
per denote the periodic Sobolev space of order s, consisting of the

1-periodic elements of Hs
loc (R), and let ‖ · ‖Hs be the norm over a period in Hs

per. The

inner product in H := L2
per = H0

per is denoted by (·, ·), and the induced norm by | · |.
Let A : H4

per → H be defined by Av = ν(vxxxx + v). Then V := D(A1/2) = H2
per, and

the norm in V is given by ‖v‖ = ν1/2(|vxx|2 + |v|2)1/2. Let B : V → H be given by

B(v) = −vxx − vvx + νv. Then,

B′(v)w = −wxx − (vw)x + νw ,

and thus by periodicity

(B′(v)w, ω) = (wx, ωx) + (v, wωx) + ν(w, ω) .

Therefore, in view of the inequality ‖w‖L∞ ≤ |w|+ |w′|, w ∈ H1
per,

|(B′(v)w, ω)| ≤|wx| |ωx|+ |v|‖w‖L∞|ωx|+ ν|w| |ω|
≤(1 + |v|)|wx| |ωx|+ ν|w| |ω|+ |v| |w| |ωx|,

and thus, using the inequality |ux|2 ≤ |u| |uxx|, u ∈ V, we easily see that the condition

(1.4) is satisfied for any λ > 0,

(4.3) |(B′(v)w, ω)| ≤ λ‖w‖‖ω‖+ µ(v)|w| |ω|, ∀v, w, ω ∈ V,

with µ(v) := 1
2λν

[ 1 + 2λν2 + 2|v|(1 + |v|) ] . We note that, since λ can be taken arbi-

trarily small, our results hold for this problem for all implicit-explicit schemes satisfying

our stability and consistency assumptions; further, since µ is bounded for v bounded

in H, the meshcondition of Theorems 2.1 and 3.1 is not needed here, cf. Remark 2.1.

For the space discretization, we let 0 = x0 < x1 < · · · < xJ = 1 be a partition of

[0, 1], and h := maxj(xj+1 − xj). Setting xjJ+s := j + xs, j ∈ Z, s = 0, . . . , J − 1, this

partition is periodically extended to a partition of R. For integer r ≥ 4, let Vh denote a

space of at least once continuously differentiable, 1-periodic splines of degree r − 1, in

which approximations to the solution u(·, t) of (4.1)–(4.2) will be sought for 0 ≤ t ≤ T .

The following approximation property of the family {Vh}0<h<1 is well known, cf., e.g.,

[16],

(4.4) inf
χ∈Vh

2∑

j=0

hj‖v − χ‖Hj ≤ chs‖v‖Hs, v ∈ Hs
per, 2 ≤ s ≤ r.

We define the elliptic projection operator Rh : V → Vh by

(4.5) ((v − Rhv)
′′, χ′′) + (v − Rhv, χ) = 0 ∀χ ∈ Vh.



16 GEORGIOS AKRIVIS, MICHEL CROUZEIX, AND CHARALAMBOS MAKRIDAKIS

It is easily seen that

(4.6)

2∑

j=0

hj‖v −Rhv‖j ≤ chs‖v‖Hs, v ∈ Hs
per , 2 ≤ s ≤ r;

thus, in particular, the estimate (1.5) holds in this case with d = 4. Next, we will verify

(1.6). For v, ω ∈ V, and w := Rhv, we have

(B(v)− B(w), ω) = −(v − w, ω′′) +
1

2
((v + w)(v − w), ω′) + ν(v − w, ω),

and, by (4.6),

|(B(v)−B(w), ω)| ≤ C(1 + ‖v‖H2)‖v‖Hrhr‖ω‖,
i.e.,

(4.7) ‖B(v)−B(Rhv)‖⋆ ≤ C(1 + ‖v‖H2)‖v‖Hrhr ,

and thus (1.6) holds. LetW (t) := Rhu(t), and assume that we are given approximations

U0, . . . , U q−1 ∈ Vh to u0, . . . , uq−1 such that

(4.8)

q−1∑

j=0

(
|W j − U j |+ k1/2‖W j − U j‖

)
≤ c(kp + hr).

Then, we define Un ∈ Vh, n = q, . . . , N, recursively by the (α, β, γ) scheme

q∑

i=0

αi(U
n+i, χ) + kν

q∑

i=0

βi

{
(Un+i

xx , χ′′) + (Un+i, χ)
}

=k

q−1∑

i=0

γi
{
(Un+i

x , χ′)− (Un+iUn+i
x , χ) + ν(Un+i, χ)

}

∀χ ∈ Vh, n = 0, . . . , N − q,

(4.9)

where (α, β) and (α, γ) are multistep schemes of order p, and (α, β) is stronglyA(0)−stable.

Then, Theorem 3.1 yields, for sufficiently small k and h, the error estimate

(4.10) max
n

|un − Un| ≤ c(kp + hr).

As already mentioned, (4.10) holds for all (α, β, γ) schemes satisfying our stability and

consistency properties.

Remark 4.1. It is not difficult to verify that the estimate (4.10) remains valid if the

approximations Un ∈ Vh, n = q, . . . , N, are defined by
q∑

i=0

αi(U
n+i, χ) + kν

q∑

i=0

βi(U
n+i
xx , χ′′)

= k

q−1∑

i=0

γi
{
(Un+i

x , χ′)− (Un+iUn+i
x , χ)

}

∀χ ∈ Vh, n = 0, . . . , N − q.

(4.9′)
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4.2. The Cahn-Hilliard equation. We consider the periodic initial value problem

for the Cahn-Hilliard (CH) equation: For T > 0 we seek a real-valued function u

defined on R× [0, T ], 1-periodic in the space variable and satisfying

(4.11) ut + uxxxx − (u3 − u)xx = 0 in R× [0, T ]

and

(4.12) u(·, 0) = u0 in R,

where u0 is a given, smooth 1-periodic function.

The problem (4.11)–(4.12) is well-posed, see Temam [18] and the references therein.

For numerical methods for this problem we refer to, e.g., [6], [12]. The CH equation

describes the dynamics of pattern formation through phase transition, cf., e.g., [18].

We shall use the same Hilbert spaces, and approximating spaces as in subsection

4.1. We let A : H4
per → H be defined by Av = vxxxx + v. Thus, the norm in V,

V := D(A1/2) = H2
per , is given by ‖v‖ := (|vxx|2 + |v|2)1/2. Let B : V → H be given

by B(v) = (v3 − v)xx + v. Then,

B′(v)w = 3(v2w)xx − wxx + w .

In this case we can show that

(4.13) |(B′(v)w, ω)| ≤ λ‖w‖‖ω‖+ µ(v)|w| |ω|, ∀v, w, ω ∈ V,

with µ(v) := 1 + 1
2
√
2λ
{(1 + 3‖v‖2L∞ + 6‖v‖L∞|vx|)2 + 36‖v‖2L∞|vx|2}. We note that µ is

bounded for v bounded in H1
per. Further, since

(4.14) ‖v‖H1 ≤ |v|+ |v|1/2‖v‖1/2, ∀v ∈ V,

we conclude that a condition of the form (2.23) holds in this case with a = 1
2
.

The projection Rh is also in this case defined by (4.5). In particular, in view of (4.6)

the condition (1.5) is satisfied. Moreover, it is easily seen that

(4.15) ‖B(v)−B(Rhv)‖⋆ ≤ C(1 + ‖v‖2H2)‖v‖Hrhr ,

and thus (1.6) holds in this case. Let W (t) := Rhu(t) and assume that we are given

approximations U0, U1, . . . , U q−1 ∈ Vh satisfying (4.8). Then we define Un ∈ Vh,

n = q, . . . , N, recursively by the (α, β, γ) scheme

q∑

i=0

αi(U
n+i, χ) + k

q∑

i=0

βi

{
(Un+i

xx , χ′′) + (Un+i, χ)
}

= k

q−1∑

i=0

γi
{
( (Un+i)3 − Un+i, χ′′) + (Un+i, χ)

}

∀χ ∈ Vh, n = 0, . . . , N − q,

(4.16)

where (α, β) and (α, γ) are multistep schemes of order p, and (α, β) is stronglyA(0)−stable.

Then, taking into account (4.14) and Remark 2.1, an application of Theorem 3.1 yields,
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for k and h4rk−1 sufficiently small, the error estimate

(4.17) max
n

|un − Un| ≤ c(kp + hr).

4.3. A reaction diffusion equation. In this subsection we shall apply our results to

a class of reaction diffusion equations: Let Ω ⊂ Rν , ν = 2, 3, be a bounded domain

with smooth boundary ∂Ω. For T > 0 we seek a real-valued function u, defined on

Ω̄ × [0, T ], satisfying

(4.18)

ut −∆u = f(u) in Ω × [0, T ],

u = 0 on ∂Ω × [0, T ],

u(·, 0) = u0 in Ω,

where u0 is a given smooth function and f : R → R is a smooth function. We are

interested in approximating smooth solutions of this problem, and assume therefore

that the data are smooth and compatible such that (4.18) gives rise to sufficiently

regular solutions.

We shall distinguish two cases. Assuming that f satisfies a polynomial growth con-

dition of order at most ρ, see (4.19) below, and provided that ρ ≤ 4 for ν = 3, we show

that the abstract theory of sections 2 and 3 is directly applicable and yields, without

any additional assumptions on the discretization spaces, optimal order error estimates

for all (α, β, γ) schemes considered in this paper. For general f our results apply as

well, provided that meshconditions stronger than those of Theorem 3.1 are fulfilled.

Reaction diffusion equations model various physical phenomena related, for instance,

to phase transitions, chemical reactions, pattern formation, cf., e.g., [2], [7], [10] and

their references. The Allen-Cahn model (ρ = 3), which in the limit describes evolu-

tion by mean curvature, [2], [7], and generalized Ginzburg-Landau equations, [10], are

reaction diffusion equations of particular interest with polynomial nonlinearity.

Let Hs = Hs(Ω) be the usual Sobolev space of order s, and ‖ · ‖Hs be the norm of

Hs. The inner product in H := L2(Ω) is denoted by (·, ·), and the induced norm by

| · |; the norm of Ls(Q), 1 ≤ s ≤ ∞, is denoted by ‖ · ‖Ls(Q) and simply by ‖ · ‖Ls for

Q = Ω. Obviously, V = H1
0 (Ω) = H1

0 and the norm in V is equivalent to the H1 norm.

We now consider the case that f satisfies the following growth condition: there exists

L ∈ R such that

(4.19) |f ′(ξ)| ≤ L(1 + |ξ|ρ−1) ∀ξ ∈ R .

In the sequel, we shall use the Sobolev inequality

(4.20) ‖v‖Ls ≤ C‖v‖H1, 1 ≤ s < ∞ for ν = 2, and 1 ≤ s ≤ 6 for ν = 3 ,

as well as its consequence

(4.21) ‖v‖L4 ≤ C‖v‖1−ν/4
L2 ‖v‖ν/4H1 , ν = 2, 3.
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Let B : V → V ′, B(v) = f(v). First, we note that B is well defined. Indeed, for

v, w ∈ V,

(f(v), w) =
( ∫ 1

0

f ′(sv)v ds, w
)
+ (f(0), w),

and, therefore, by (4.19) and Hölder’s inequality,

(4.22) |(f(v), w)| ≤ C
[ ( ∫

Ω

|v|ρ6/5dx
)5/6

‖w‖L6 + (1 + ‖v‖L2) ‖w‖L2

]
,

and thus, in view of (4.20), we see that f(v) ∈ V ′, provided ρ ≤ 5 for ν = 3. Further,

by (4.19), for v, w, ω ∈ V,

|(f ′(v)w, ω)| ≤ C

∫

Ω

|v|ρ−1|w||ω|dx+ C‖w‖L2‖ω‖L2

≤ C
(∫

Ω

|v|2(ρ−1)dx
)1/2

‖w‖L4‖ω‖L4 + C‖w‖L2‖ω‖L2 ,

i.e., in view of (4.21),

(4.23) |(f ′(v)w, ω)| ≤ C‖v‖ρ−1

L2(ρ−1)|w|
4−ν
4 |ω| 4−ν

4 ‖w‖ ν
4 ‖ω‖ ν

4 + C|w| |ω| .

Thus, B is differentiable. Furthermore, (4.23) and Young’s inequality (ab ≤ ε
q
aq +

ε−q′/q

q′
bq

′

, 1
q
+ 1

q′
= 1 ) yield

|(B′(v)w, ω)| ≤ C ν
4
ε‖w‖ ‖ω‖

+ C
(
1 + 4−ν

4
ε−

ν
4−ν

(
‖v‖L2(ρ−1)

) 4(ρ−1)
4−ν

)
|w| |ω| .

(4.24)

Therefore, by Sobolev’s inequality, we see that, for ρ ≤ 4 when ν = 3 (and for any ρ

when ν = 2), the assumption (1.4) is satisfied with λ = C ν
4
ε,

µ(v) = C + C 4−ν
4

ε−
ν

4−ν

(
‖v‖L2(ρ−1)

) 4(ρ−1)
4−ν ,

and µ(v) is bounded for v bounded in V. Again, λ can be taken arbitrarily small and

thus our theory applies to all (α, β, γ) schemes satisfying our stability and consistency

assumptions.

We further analyze the case that f satisfies the growth condition (4.19), with ρ ≤ 4

for ν = 3, by introducing the discretization spaces Vh; the case of general f shall be

discussed at the end of this section. For simplicity, let Vh be the subspace of V defined

on a finite element partition Th of Ω, and consisting of piecewise polynomial functions

of degree at most r− 1, r ≥ 2. Let hK denote the diameter of an element K ∈ Th, and

h = maxK∈Th hK . We define the elliptic projection operator Rh, Rh : V → Vh, by

(∇Rhv,∇χ) = (∇v,∇χ) ∀χ ∈ Vh.

We assume that (we do not attempt here to deal with problems that may arise in the

case of a curved boundary ∂Ω concerning the requirement Vh ⊂ V, cf. Remark 2.2)

(4.25) |v − Rhv|+ h‖v − Rhv‖ ≤ Chr‖v‖Hr , v ∈ Hr ∩H1
0 ;
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then, in particular, the estimate (1.5)) will hold in this case with d = 2. Next, we will

verify (1.6). We shall further assume that

(4.26) sup{‖Rhv‖L∞ : 0 < h < 1} ≤ C‖v‖Hr , v ∈ Hr ∩H1
0 .

For v ∈ Hr ∩H1
0 , we have

B(v)− B(Rhv) =

∫ 1

0

f ′(v − τ(v − Rhv))dτ (v − Rhv);

using here the Sobolev inequality ‖v‖L∞ ≤ C‖v‖Hr (r ≥ 2) and (4.26), we conclude,

in view of (4.25),

(4.27) |B(v)−B(Rhv)| ≤ ChrM̃(v)‖v‖Hr ,

with M̃(v) bounded for v ∈ Hr ∩H1
0 bounded in Hr. Thus, (1.6) is satisfied.

Now, let W (t) := Rhu(t), and assume that we are given approximations U0, . . . ,

U q−1 ∈ Vh to u0, . . . , uq−1 such that

(4.28)

q−1∑

j=0

(
|W j − U j |+ k1/2‖W j − U j‖

)
≤ c(kp + hr).

Then, we define Un ∈ Vh, n = q, . . . , N, recursively by the (α, β, γ) scheme
q∑

i=0

αi(U
n+i,χ) + k

q∑

i=0

βi(∇Un+i,∇χ)

= k

q−1∑

i=0

γi(f(U
n+i), χ) ∀χ ∈ Vh, n = 0, . . . , N − q,

(4.29)

where (α, β) and (α, γ) are multistep schemes of order p, and (α, β) is stronglyA(0)−stable.

Then, Theorem 3.1 yields, for sufficiently small k and k−1h2r, the error estimate

(4.30) max
n

|un − Un| ≤ c(kp + hr).

Remark 4.2. By (4.24), we see that (1.4) holds for any λ > 0 with µ(v) bounded for

v bounded in L2(ρ−1). Using this fact, Sobolev’s inequality

‖v‖Ls ≤ C|v|1−a‖v‖a,
a = ν s−2

2s
, ν = 2, 3, (with s ≤ 6, of course, for ν = 3) and Remark 2.1, it is easily seen

that the meshcondition k−1h2r ≤ c, under which (4.30) holds, can be weakened. We

shall not dwell on this.

We close this subsection by briefly considering the case of a general smooth function

f, as well as the case that f satisfies (4.19) for ν = 3 but with ρ > 4. First, we note

that in our analysis it suffices to assume that B is well defined and differentiable on a

subspace Ṽ of V ∩ L∞ containing Vh, for all h. By tracing back the proof of (4.24) we

see that in this case µ(v) is bounded, provided that
∫

Ω

|f ′(v(x))|2 dx
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is bounded. Note that the assumption k−1h2r ≤ c, for appropriate c, of Theorem 3.1 is

only used to show that ‖ϑn‖ ≤ 1, which implies (3.19), i.e., that

µ(W j − sϑj), s ∈ (0, 1), is bounded by a constant. In the case under investigation,

by using appropriate inverse inequalities, we show that if stronger meshconditions are

satisfied, then sup0<s<1

∫
Ω
|f ′(W j − sϑj)|2 dx is bounded by a constant independent of

h and k, and thus µ(W j−sϑj) will be bounded by an appropriately defined constant m,

i.e., (3.19)—and, consequently, the error estimate of Theorem 3.1—will remain valid.

We will distinguish the following cases: ν = 2 and general f, ν = 3 and f satisfies

(4.19) with ρ > 4, and ν = 3 and general f.

i. ν = 2 and general f. First, we note that

‖χ‖L∞ ≤ C| log(h)|1/2‖χ‖H1 ∀χ ∈ Vh,

with h = minK∈Th hK , cf. [19, p. 67]. Obviously,
∫
Ω
|f ′(χ(x))|2 dx is bounded if ‖χ‖L∞

is bounded. Now,

max
0≤j≤n+q−1

‖ϑj‖L∞ ≤ C| log(h)|1/2 max
0≤j≤n+q−1

‖ϑj‖,

and thus, according to (3.16),

max
0≤j≤n+q−1

‖ϑj‖L∞ ≤ C⋆C| log(h)|1/2(kp−1/2 + k−1/2hr).

Therefore, if k and h are chosen such that | log(h)|k2p−1 and | log(h)|k−1h2r are suffi-

ciently small, then µ(W j − sϑj) will be bounded, and the convergence results hold.

ii. ν = 3 and f satisfies (4.19) with ρ > 4. If s ≥ 6, we have

(4.31) ‖χ‖Ls(Ω) ≤ Ch− s−6
2s ‖χ‖H1(Ω) ∀χ ∈ Vh.

Indeed, employing standard homogeneity arguments, one can show that for an arbitrary

element K ∈ Th,

‖χ‖Ls(K) ≤ Ch
− s−6

2s
K

(
‖∇χ‖L2(K) + ‖χ‖L6(K)

)
,

and (4.31) follows in view of (4.20). Hence,

max
0≤j≤n+q−1

‖ϑj‖L2(ρ−1) ≤ Ch
− ρ−4

2(ρ−1) max
0≤j≤n+q−1

‖ϑj‖.

Therefore, if k and h are such that h
−ρ−4
ρ−1k2p−1 and k−1h

−ρ−4
ρ−1h2r are sufficiently small,

then, as before,

max
0≤j≤n+q−1

‖ϑj‖L2(ρ−1) ≤ C⋆h
− ρ−4

2(ρ−1) (kp−1/2 + k−1/2hr) ≤ 1,

µ(W j − sϑj) will be bounded in view of (4.24) and (4.26), and our convergence results

hold.

iii. ν = 3 and general f. In this case,

‖χ‖L∞ ≤ Ch−1/2‖χ‖H1 ∀χ ∈ Vh,
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as one can see by modifying the proof of the two dimensional case. By the same

arguments as for ν = 2, the convergence results of this paper hold, provided that

h−1k2p−1 and k−1h−1h2r are sufficiently small.
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3. M. Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations
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