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GEORGIOS D. AKRIVIS

Abstract. We analyze the discretization of an initial-boundary value problem for

the cubic Schrödinger equation in one space dimension by a Crank–Nicolson–type

finite difference scheme. We then linearize the corresponding equations at each time

level by Newton’s method and discuss an iterative modification of the linearized

scheme which requires solving linear systems with the same tridiagonal matrix. We

prove second-order error estimates.

1. Introduction

For T > 0 and λ a nonzero real number, we consider the following initial-boundary

value problem for the cubic Schrödinger equation: We seek a complex-valued function

u defined on [0, 1]× [0, T ] satisfying

(1.1)

ut = iuxx + iλ|u|2u in [0, 1]× [0, T ],

u(0, ·) = u(1, ·) = 0 on [0, T ],

u(·, 0) = u0 in [0, 1],

where u0 is a complex-valued initial value. We assume that (1.1) admits a unique

solution which is smooth enough for our purposes.

For the mathematical theory and the physical significance of the cubic Schrödinger

equation we refer to Strauss [6] and Strauss [7]. It is well-known that

(1.2) ∀t ∈ [0, T ] ‖u(·, t)‖ = ‖u0‖,

and

(1.3) ∀t ∈ [0, T ] ‖ux(·, t)‖
2 −

λ

2
|u(·, t)|44 = ‖u0‖

2 −
λ

2
|u0|

4
4,

where | · |p, p 6= 2, denotes the Lp−norm over [0, 1], and ‖ · ‖ the L2−norm. To obtain

(1.2) and (1.3) multiply the Schrödinger equation by ū—the complex conjugate of u—

and by iūt, respectively, then integrate by parts over [0, 1], use the boundary conditions

and finally take real parts.

In our one dimensional situation it is also easily seen that the solution u of (1.1)

does not blow up. In fact, denoting by H1
0 (0, 1) the Sobolev space of complex-valued
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functions belonging, together with their distributional derivatives, to L2(0, 1) and van-

ishing at the endpoints 0 and 1, and using the well-known and easily established Sobolev

inequality

(1.4) |v|44 ≤ ‖v‖3 ‖v′‖ ∀v ∈ H1
0 (0, 1),

and (1.2), we obtain

(1.5) ∀t ∈ [0, T ] |u(·, t)|44 ≤ c‖ux(·, t)‖,

with c := 2‖u0‖
3. From (1.3), (1.5) follows the existence of a constant C such that

max
{

‖ux(·, t)‖, |u(·, t)|4 : t ∈ [0, T ]
}

< C.

Using the well-known inequality |v|∞ ≤ ‖v′‖ for v ∈ H1
0 (0, 1), we conclude that

sup
{

|u(x, t)| : 0 < x < 1, 0 < t < T
}

< C

with a constant C independent of T.

Several numerical methods have been proposed in the literature for discretizing the

cubic Schrödinger equation, see, e.g., Akrivis, Dougalis & Karakashian [1], Delfour,

Fortin & Payre [2], Griffiths, Mitchell & Morris [3], Karakashian, Akrivis & Dougalis [4],

Sanz-Serna [5], Tourigny & Morris [9], Verwer & Sanz-Serna [10], Weideman & Herbst

[11] and the references therein. In this paper we discretize (1.1) by a Crank–Nicolson-

type finite difference method, and analyze a linearization of the scheme by Newton’s

method. This Crank-Nicolson-type scheme has been proposed for the equation at

hand by Delfour, Fortin & Payre [2]; the spatial discretization of the nonlinear term

is motivated by a method of Strauss & Vasquez [8]. Dirichlet boundary conditions

serve here as a model case; periodic or Neumann conditions can be analyzed with no

additional complications.

Let N, J ∈ N, h := 1/(J + 1), k := T/N, xj := jh, j = 0, . . . , J + 1, and tn :=

nk, tn+1/2 := (n + 1/2)k, unj := u(xj , t
n), un := (un0 , . . . , u

n
J+1), n = 0, . . . , N. Let

C
J+2
0 :=

{

v = (v0, . . . , vJ+1) ∈ CJ+2 : v0 = vJ+1 = 0
}

and for v ∈ C
J+2
0 set ∆hv0 :=

∆hvJ+1 := 0, ∆hvj := (vj−1 − 2vj + vj+1)/h
2, j = 1, . . . , J. For v0, . . . , vN ∈ C

J+2
0 we

set vn+1/2 := (vn+1 + vn)/2 and ∂vn := (vn+1 − vn)/k. Setting U0 := u0, we define

approximations Un ∈ C
J+2
0 of un recursively by

(1.6) ∂Un
j = i∆hU

n+1/2
j + iλϕ(Un+1

j , Un
j ), j = 1, . . . , J,

n = 0, . . . , N −1, where ϕ(z, w) :=
(

|z|2+ |w|2
)

(z+w)/4, z, w ∈ C, see Delfour, Fortin

& Payre [2]. It is easily seen that this method is conservative in a discrete L2−norm;

specifically

‖Un‖h = ‖U0‖h, n = 1, . . . , N,

where ‖v‖h :=
(

h
∑J

j=1 |vj|
2
)

1

2 for v ∈ C
J+2
0 . A discrete analog of (1.3) holds as well,

see (2.3) below. The scheme (1.6) has been extensively used in computations.
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In section 2 we show existence and for k small enough (independent of h) uniqueness

of the approximate solutions and derive the error estimate

(1.7) max
1≤n≤N

‖un − Un‖h ≤ c(k2 + h2),

where here and in the sequel c and C denote generic constants independent of k and

h, not necessarily the same at any two places unless indices are used. In section 3 we

use Newton’s method to linearize the scheme (1.6). We extrapolate from previous time

levels to construct suitable starting values and perform one Newton iteration at each

time level. Second-order estimates for the linearized scheme are also given. A disad-

vantage of this method is that the matrix of the linear system to be solved at each time

level tn changes with n. To overcome this, in section 4, we solve approximately these

systems by an “inner” iterative procedure that requires solving linear systems with a

tridiagonal matrix, the same at each time level. Although the overall scheme is not

theoretically conservative any more, it performs well numerically. In our computations

in the case of three inner iterations at each time level the discrete L2−norm ‖ · ‖h was

conserved to a satisfactory accuracy. We show second-order error estimates for this

efficient scheme as well.

This paper is similar in spirit to Akrivis, Dougalis & Karakashian [1] where analo-

gous results for the midpoint scheme in the finite element case are derived. In the error

analysis of the linearized schemes in Akrivis, Dougalis & Karakashian [1] the approxi-

mations of the linearized schemes are compared to the approximations of the nonlinear

scheme. Here we compare the approximations of the linearized schemes directly to the

exact solution and simplify the error analysis considerably.

2. Crank–Nicolson-type discretization

Existence. To show existence of the approximations U1, . . . , UN for the scheme (1.6)

we shall use the following Brouwer-type theorem, cf. Akrivis, Dougalis & Karakashian

[1].

Lemma 2.1. Let
(

H, (·, ·)
)

be a finite dimensional inner product space, ‖ · ‖ the asso-

ciated norm, and g : H → H be continuous. Assume moreover that

∃α > 0 ∀z ∈ H ‖z‖ = α Re
(

g(z), z
)

≥ 0.

Then, there exists a z∗ ∈ Hsuch that g(z∗) = 0 and ‖z∗‖ ≤ α. �

For v, w ∈ C
J+2
0 , we define

|v|1,h :=
[

h

J
∑

j=0

∣

∣

vj+1 − vj
h

∣

∣

2
]1/2

, ‖v‖h,p :=
[

h

J
∑

j=1

|vj|
p
]1/p

, p ≥ 1,

(v, w)h := h
∑J

j=1 vjw̄j , and ‖v‖h := (v, w)
1

2

h = ‖v‖h,2. For fixed n, we rewrite (1.6) in

the form

U
n+1/2
j = Un

j +
ik

2
∆hU

n+1/2
j +

ikλ

4

(

|2U
n+1/2
j − Un

j |
2 + |Un

j |
2
)

U
n+1/2
j , j = 1, . . . , J.
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The mapping Π : CJ+2
0 → C

J+2
0

(

Π(v)
)

j
:= vj − Un

j −
ik

2
∆hvj −

ikλ

4

(

|2vj − Un
j |

2 + |Un
j |

2
)

vj , j = 1, . . . , J,

is obviously continuous. Since for v ∈ C
J+2
0

(2.1) − (∆hv, v)h = |v|21,h,

we have Re(Π(v), v)h = ‖v‖2h − Re(Un, v)h, i.e.,

Re(Π(v), v)h ≥ ‖v‖h
(

‖v‖h − ‖Un‖h
)

.

Hence, for ‖v‖h = ‖Un‖h+1,Re(Π(v), v)h > 0, and the existence of Un+1 follows from

Lemma 2.1.

Conservation. Taking in (1.6) the inner product with Un+1/2, using (2.1) and taking

real parts, we obtain ‖Un+1‖h = ‖Un‖h, i.e.,

(2.2) ‖Un‖h = ‖U0‖h, n = 1, . . . , N.

Thus, a discrete analog of (1.2) holds, i.e., the scheme (1.6) is conservative. Taking in

(1.6) the inner product with Un+1 − Un, using (2.1) and taking imaginary parts, we

see that

(2.3) |Un|21,h −
λ

2
‖Un‖4h,4 = |U0|21,h −

λ

2
‖U0‖4h,4, n = 1, . . . , N.

which is a discrete analog of (1.3), see Delfour, Fortin & Payre [2].

Uniqueness. For k small enough (independent of h), we shall show global uniqueness

of the approximations U1, . . . , UN satisfying (1.6). We shall only use the regularity

assumption u0 ∈ H1
0 (0, 1). First, the following Sobolev-type inequality holds

(2.4) ∀v ∈ C
J+2
0 ‖v‖4h,4 ≤ 2‖v‖3h |v|1,h,

cf. (1.4). This follows immediately from the inequalities

‖v‖4h,4 ≤ max
j

|vj |
2 ‖v‖2h and max

j
|vj|

2 ≤ 2‖v‖h |v|1,h, v ∈ C
J+2
0 ,

the first one being trivial and the second one following from

|vj |
2 =

j−1
∑

i=0

vi(v̄i+1 − v̄i) +

j−1
∑

i=0

v̄i+1(vi+1 − vi),

by applying the Schwarz inequality. Let now v, w ∈ C
J+2
0 be such that Π(v) = Π(w) =

0. Setting χ := v − w, we obviously have

(2.5) χj =
ik

2
∆hχj +

ikλ

4

[

ψ(vj , wj) + |Un
j |

2χj

]

, j = 1, . . . , J,

where

ψ(vj , wj) := |2vj−U
n
j |

2vj−|2wj−U
n
j |

2wj, and ψ(v, w) :=
(

ψ(v0, w0), . . . , ψ(vJ+1, wJ+1)
)

.
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Taking in (2.5) the inner product with χ, using (2.1), taking real and imaginary parts,

respectively, and using Hölder’s inequality in the right-hand sides of the resulting iden-

tities, we obtain

(2.6a) ‖χ‖2h ≤
k

4
|λ|‖ψ(v, w)‖h, 4

3

‖χ‖h,4

(2.6b) |χ|21,h ≤
|λ|

2
‖ψ(v, w)‖h, 4

3

‖χ‖h,4 +
|λ|

2
‖Un‖2h,4 ‖χ‖

2
h,4.

Using
∣

∣|2z1 − z|2z1 − |2z2 − z|2z2
∣

∣ ≤ 4
(

|z1|+ |z2|+
1
2
|z|

)2
|z1 − z2| for z1, z2, z ∈ C, and

applying Hölder’s inequality, we have

‖ψ(v, w)‖h, 4
3

≤ c‖v, w, Un‖2h,4 ‖χ‖h,4,

where ‖v, w, Un‖h,4 := max
(

‖v‖h,4, ‖w‖h,4, ‖U
n‖h,4

)

, and c is a numerical constant.

This estimate, inserted in (2.6) yields

(2.7a) ‖χ‖2h ≤ c1|λ|k‖v, w, U
n‖2h,4 ‖χ‖

2
h,4,

(2.7b) |χ|21,h ≤ c2|λ| ‖v, w, U
n‖2h,4 ‖χ‖

2
h,4,

where c1, c2 are numerical constants. Further, for initial value u0 ∈ H1
0 (0, 1) obviously

holds

(2.8) |U0|1,h ≤ ‖u′0‖.

From (2.4), (2.2) follows ‖Um‖4h,4 ≤ c|Um|1,h, m = 0, . . . , N. Then, (2.3), (2.8) yield

|Um|21,h − λc|Um|1,h ≤ C; we conclude

|Um|1,h + ‖Um‖h,4 ≤ c, m = 0, . . . , N,

i.e., ‖v, w, Un‖h,4 ≤ c. Then, using (2.4), (2.7), we obtain

‖χ‖4h,4 ≤ cλ2k
3

2‖χ‖4h,4,

i.e., uniqueness for k sufficiently small.

Convergence. Setting M := max
{

|u(x, t)| : (x, t) ∈ [0, 1]× [0, T ]
}

+ 1, we define the

auxiliary function ϕ̃ : C× C → C by

ϕ̃(z, w) :=







































ϕ(z, w) if |z|, |w| ≤M,

1

4
(M2 + |w|2)(z + w) if |z| > M, |w| ≤M,

1

4
(M2 + |z|2)(z + w) if |z| ≤M, |w| > M,

1

2
M2(z + w) if |z|, |w| > M.

ϕ̃ is obviously globally Lipschitz continuous. Let V 0 := u0 and V n ∈ CJ+2
0 , n =

1, . . . , N, satisfy

(2.9) ∂V n
j = i∆hV

n+1/2
j + iλϕ̃(V n+1

j , V n
j ), j = 1, . . . , J.
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Existence of V n, n = 1, . . . , N, can be shown using Lemma 2.1, and uniqueness for k

sufficiently small (independent of h) follows from the global Lipschitz continuity of ϕ̃.

Proposition 2.1. Let the solution u of (1.1) be smooth enough, and V 1, . . . , V N satisfy

(2.9). Then, for k small enough,

(2.10) max
1≤n≤N

‖un − V n‖h ≤ c(k2 + h2),

with a constant independent of h and k.

Proof. Let rn ∈ C
J+2
0 be the consistency error of the method (1.6) (or (2.9)), i.e., with

un+1/2 = (un+1 + un)/2

(2.11) rnj := ∂unj − i∆hu
n+1/2
j + iλϕ̃(un+1

j , unj ), j = 1, . . . , J.

It is easily seen that

(2.12) max
j,n

|rnj | ≤ C(k2 + h2).

Let en := un − V n, n = 0, . . . , N. Then we have

(2.13) ∂enj = i∆he
n+1/2
j + iλ

[

ϕ̃(un+1
j , unj )ϕ̃(V

n+1
j , V n

j )
]

+ rnj , j = 1, . . . , J.

Taking the inner product with en+1/2, using (2.1), taking real parts and applying the

Schwarz inequality we obtain using the Lipschitz continuity of ϕ̃

‖en+1‖2h − ‖en‖2h ≤ Ck
[

‖en+1‖h + ‖en‖h + ‖rn‖h
]

‖en+1/2‖h,

i.e.,

(1− ck)‖en+1‖h ≤ (1 + ck)‖en‖h + Ck(k2 + h2).

The result follows in view of Gronwall’s discrete inequality. �

The main result in this section is given in the following theorem.

Theorem 2.1. Let the solution u of (1.1) be smooth enough, U1, . . . , UN satisfy (1.7),

and k = o(h1/4). Then, for k small enough

(2.14) max
1≤n≤N

‖un − Un‖h ≤ c(k2 + h2).

Proof. Using the obvious inequality

(2.15) max
1≤j≤J

|ωj| ≤ h−
1

2‖ω‖h

for ω ∈ C
J+2
0 , (2.10) yields

max
1≤n≤N

max
1≤j≤J

|unj − V n
j | ≤ Ch−

1

2 (k2 + h2),

i.e., for k, h sufficiently small |V n
j | ≤ M,n = 1, . . . , N, j = 1, . . . , J. Therefore the V n

satisfy (1.6), i.e., for k small enough V n = Un, and the result follows from (2.10). �
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3. Linearization by Newton’s method

Computing the approximations U1, . . . , UN satisfying (1.6) requires solving at each

time level a J × J nonlinear system. In this section we shall analyze the approximate

solution of these systems by Newton’s method.

In the rest of the paper, for v0, . . . , vN ∈ C
J+2
0 we let v̂0 := v0, v̂1 := v1 unless

explicitly otherwise stated, and v̂n+1 := 2vn−vn−1, n = 1, . . . , N−1. Let τ(x, y, z, w) :=

x2 + y2 − xz − yw + (z2 + w2)/2 = 1
4

(

|2(x+ iy)− (z + iw)|2 + |z + iw|2
)

(x+ iy), and

g(x, y, z, w) := (x+ iy)τ(x, y, z, w), x, y, z, w ∈ R. Setting U0 := u0 we approximate un

by Un ∈ C
J+2
0 , Un = V n + iW n, V n

j ,W
n
j ∈ R, such that for n = 0, . . . , N − 1

∂Un
j − i∆hU

n+1/2
j − iλ

[

∂1g(E
n
j , Z

n
j , V

n
j ,W

n
j )(V

n+1
j − V̂ n+1

j )

+ ∂2g(E
n
j , Z

n
j , V

n
j ,W

n
j )(W

n+1
j − Ŵ n+1

j )
]

= 2iλg(En
j , Z

n
j , V

n
j ,W

n
j ), j = 1, . . . , J,

(3.1)

where En := 1
2
(V n + V̂ n+1), Zn := 1

2
(W n + Ŵ n+1), and Û1 is given by

(3.2) ∂Û1
j − i∆hÛ

1/2
j = iλϕ(u0j , u

0
j), j = 1, . . . , J.

Taking in (1.6) real and imaginary parts, using Ûn+1 as a starting approximation and

performing one Newton step leads easily to (3.1).

Theorem 3.1. Let the solution u of (1.1) be sufficiently smooth, k and h be sufficiently

small and k = o(h1/4). Then Un, n = 1, . . . , N, are uniquely defined by (3.1), (3.2), and

(3.3) max
0≤n≤N

‖un − Un‖h ≤ c(k2 + h2).

Proof. Let en := un −Un, n = 0, . . . , N. It is easily seen that Û1 is well defined. Let us

now estimate ‖ê1‖h, e
1 := u1 − Û1 : from (3.2) and (2.11) we obtain

ê1j −
ik

2
∆hê

1
j = iλk

[

ϕ(u1j , u
0
j)− ϕ(u0j , u

0
j)
]

+ kr0j , j = 1, . . . , J.

Taking the inner product with ê1, using (2.1), taking real parts, applying the Schwarz

inequality, and using the local Lipschitz continuity of ϕ and (2.12) we easily obtain

(3.4) ‖ê1‖h ≤ Γ (k2 + h2),

with a constant Γ. We shall now prove inductively that Un, n = 1, . . . , N, are uniquely

defined,

(3.5) ‖uν − Uν‖h ≤ Cν(k
2 + h2) 0 ≤ ν ≤ N,

with

(3.6) Cν = Dk + (1 +Dk)Cν−1 +DkCν−2 2 ≤ ν ≤ N,

where C0 = 0, C1 = 1 say, and the constant D is defined as follows: We write the

solution u of (1.1) in the form u = v + iw where v and w are real-valued, and set



8 GEORGIOS D. AKRIVIS

vnj := v(xj , t
n), wn

j := w(xj , t
n). Let sn ∈ C

J+2
0 be the consistency error of the scheme

(3.1), i.e., with un+1/2 = (un + un+1)/2, for n = 0, . . . , N − 1

snj := ∂unj − i∆hu
n+1/2
j − iλ

[

∂1g(ε
n
j , ζ

n
j , v

n
j , w

n
j )(v

n+1
j − v̂n+1

j )

+ ∂2g(ε
n
j , ζ

n
j , v

n
j , w

n
j )(w

n+1
j − ŵn+1

j )
]

− 2iλg(εnj , ζ
n
j , v

n
j , w

n
j ), j = 1, . . . , J,

(3.7)

where εn := 1
2
(vn + v̂n+1), ζn := 1

2
(wn + ŵn+1). It is easily seen that

(3.8) max
j,n

|snj | ≤ c(u)(k2 + h2).

Let K := {α ∈ R4 : |αj| ≤ M, j = 1, . . . , 4}, where M is as in section 2, D1 :=

|λ|max{|∂jg(α)| : j = 1, . . . , 4, α ∈ K}, D̃2 := |λ|max{|∂j,mg(α)| : j,m = 1, . . . , 4, α ∈

K}, and D2 be such that D̃2maxn,j |u
n+1
j − ûn+1

j | ≤ D2k
2.

With d := 2D1, d1 := 24D1+20D2, d2 := 6D1+4D2 and d3 := c(u) we let D be such

that for k sufficiently small (k ≤ 1/(2d), say)

δ1j + djk

1− dk
≤ δ1j +Dk, j = 1, 2, 3,

where δ is the Kronecker symbol. It can be easily seen that max0≤n≤N Cn ≤ C∗ with a

constant C∗ independent of h and k. In the sequel, let k and h be small enough such

that

(3.9) max(Γ,C∗)h−1/2(k2 + h2) < 1/4 (k = o(h1/4)).

Now, (3.5) is trivially true for ν = 0. We assume that Uν , ν = 0, . . . , n, n < N, are

uniquely defined and satisfy (3.5); using (3.9) it is easily seen that Un+1 is well defined

for k sufficiently small (independent of h and n), and it remains to show (3.5) for

ν = n + 1. Obviously

∂enj − i∆he
n+1/2
j = iλ

[

∂1g(ε
n
j , ζ

n
j , v

n
j , w

n
j )(v

n+1
j − v̂n+1

j )

+ ∂2g(ε
n
j , ζ

n
j , v

n
j , w

n
j )(w

n+1
j − ŵn+1

j )
]

+ 2iλg(εnj , ζ
n
j , v

n
j , w

n
j )

− iλ
[

∂1g(E
n
j , Z

n
j , V

n
j ,W

n
j )(V

n+1
j − V̂ n+1

j ) + ∂2g(E
n
j , Z

n
j , V

n
j ,W

n
j )(W

n+1
j − Ŵ n+1

j )
]

− 2iλg(En
j , Z

n
j , V

n
j ,W

n
j ) + snj , j = 1, . . . , J.

Taylor expanding g, ∂1g and ∂2g around (En
j , Z

n
j , V

n
j ,W

n
j ) until first-order terms, and

then taking the inner product with en+1/2, using (2.1), taking real parts and applying

the Schwarz inequality, we obtain

1

k

(

‖en+1‖h − ‖en‖h
)

≤ 2D1‖e
n+1 − ên+1‖h + 4D2k

2
(

‖en + ên+1‖h + 2‖en‖h
)

+ 4D1

(

‖en + ên+1‖h + 2‖en‖h
)

+ c(u)(k2 + h2)
(3.10)

and conclude easily that (3.5) holds for ν = n + 1. �
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4. On the practical implementation of Newton’s method

In order to compute Un+1 by (3.1) we have to solve a linear system whose matrix

varies from step to step. In this section we shall analyze an iterative scheme in order

to approximate Un+1 which requires solving linear systems with the same coefficient

matrix.

For m0, . . . , mN ∈ N we define approximations Un(m) ∈ C
J+2
0 , Un(m) = V n(m) +

iW n(m), V
n(m)
j ,W

n(m)
j ∈ R, m = 0, . . . , mn, to u

n as follows

(4.1) U0(m) = U0, m = 0, . . . , m0,

U1(0) := Û1 (see (3.2))

Un+1(0) := 2Un(mn) − Un−1(mn−1), n = 1, . . . , N − 1
(4.2)

and for n = 0, . . . , N − 1

1

k

(

U
n+1(m+1)
j − U

n(mn)
j

)

−
i

2
∆h

(

Un+1(m+1) + Un(mn)
)

j

= iλ
[

∂1g(H
n
j , Θ

n
j , V

n(mn)
j ,W

n(mn)
j )(V

n+1(m)
j − V

n+1(0)
j )

+ ∂2g(H
n
j , Θ

n
j , V

n(mn)
j ,W

n(mn)
j )(W

n+1(m)
j −W

n+1(0)
j )

]

+ 2iλg(Hn
j , Θ

n
j , V

n(mn)
j ,W

n(mn)
j ), j = 1, . . . , J,

n = 0, . . . , mn+1 − 1,

(4.3)

where Hn := 1
2

(

V n+1(0) + V n(mn)
)

, Θn := 1
2

(

W n+1(0) +W n(mn)
)

, and g is as in section

3.

Theorem 4.1. Let the solution u of (1.1) be sufficiently smooth, k and h be sufficiently

small, and k = o(h1/4). Then, for given integers mn > 0, Un(mn) ∈ C
J+2
0 are uniquely

defined by (4.1)–(4.3), and

(4.4) max
0≤n≤N

‖un − Un(mn)‖h ≤ c(k2 + h2).

Proof. It is easily seen that Un(m), n = 0, . . . , N,m = 0, . . . , mn, are well defined by

(4.1)–(4.3). We shall show inductively that

(4.5) ‖uν − Uν(mν )‖h ≤ cν(k
2 + h2), ν = 0, . . . , N,

with

(4.6) cν = (dk)mν

(

d̃+ 2cν−1 + cν−2

)

+Dk + (1 +Dk)cν−1 +Dkcν−2, 2 ≤ ν ≤ N,

where c0 = 0, c1 = 1 say, the constants d and D are as in section 3, and d̃ is such that

max
0≤n≤N

‖un − ûn‖h ≤ c(k2 + h2).

It can be easily seen that max0≤ν≤N cν ≤ c∗ with a constant c∗ independent of h and

k. In the sequel, let k and h be small such that

(4.7) c∗h−1/2(k2 + h2) <
1

4
.
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Note that (4.5) holds trivially for ν = 0. We assume now that (4.5) holds for ν =

0, . . . , n, n < N, and we shall prove it for ν = n + 1. Letting en(m) := un − Un(m), n =

0, . . . , N,m = 0, . . . , mn, we have, with sn as in section 3

1

k

(

e
n+1(m+1)
j − e

n(mn)
j

)

−
i

2
∆h

(

en+1(m+1) + en(mn)
)

j

= iλ
[

∂1g(ε
n
j , ζ

n
j , v

n
j , w

n
j )(v

n+1
j − v̂n+1

j ) + ∂2g(ε
n
j , ζ

n
j , v

n
j , w

n
j )(w

n+1
j − ŵn+1

j )
]

− iλ
[

∂1g(H
n
j , Θ

n
j , V

n(mn)
j ,W

n(mn)
j )(V

n+1(m)
j − V

n+1(0)
j )

+ ∂2g(H
n
j , Θ

n
j , V

n(mn)
j ,W

n(mn)
j )(W

n+1(m)
j −W

n+1(0)
j )

]

+ 2iλ
[

g(εnj , ζ
n
j , v

n
j , w

n
j )− g(Hn

j , Θ
n
j , V

n(mn)
j ,W

n(mn)
j )

]

+ snj , j = 1, . . . , J.

Let ẽn+1 := ûn+1 − Un+1(0). Taylor expanding g, ∂1g and ∂2g around (Hn
j , Θ

n
j , V

n(mn)
j ,

W
n(mn)
j ) until first-order terms, and then taking the inner product with en+1(m+1) +

en(mn), using (2.1), taking real parts and applying the Schwarz inequality, we obtain

1

k

(

‖en+1(m+1)‖h − ‖en(mn)‖h
)

≤ 2D1‖e
n+1(m) − ẽn+1‖h

+ 4D2k
2
(

‖en(mn) + ẽn+1‖h + 2‖en(mn)‖h
)

+ 4D1

(

‖en(mn) + ẽn+1‖h + 2‖en(mn)‖h
)

+ c(u)(k2 + h2)

(4.8)

and conclude easily that (4.5) holds for ν = n + 1. �

Remark 4.1. Taking mn = 1, n = 0, . . . , N, our scheme can be written in the form

(4.9) U
n+1(1)
j −U

n(1)
j =

ik

2
∆h

(

Un+1(1)+Un(1)
)

j
+iλkϕ(2U

n(1)
j −U

n−1(1)
j , U

n(1)
j ), n ≥ 1,

which is the standard way for linearizing the second-order scheme (1.6) by extrapolating

from previous values in the nonlinear term.

Numerical computations show that taking mn > 1 improves essentially the error

constant and the conservation properties of the method.
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