Ramsey Cardinals and the HNN Embedding Theorem

Simon Thomas

In memory of Greg Hjorth

July 8th 2011

୬ ର (୦ ଏ 🗗 । ଏ 🖹 ।

Simon Thomas (Rutgers University) 8th Panhellenic Logic Symposium

July 8th 2011

The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)

If G is a countable group, then G can be embedded into a 2-generator group K_G .

Notation

- G denotes the Polish space of countably infinite groups.
- G_{fg} denotes the Polish space of finitely generated groups.

Theorem

There does not exist a Borel map $G \mapsto K_G$ from \mathcal{G} to \mathcal{G}_{fg} such that for all $G, H \in \mathcal{G}$,

- $G \hookrightarrow K_G$; and
- if $G \cong H$, then $K_G \cong K_H$.

Main Theorem (LC)

- Suppose that G → K_G is any Borel map from G to G_{fg} such that G → K_G for all G ∈ G.
- Then there exists an uncountable Borel family *F* ⊆ *G* of pairwise isomorphic groups such that the groups { *K_G* | *G* ∈ *F* } are pairwise incomparable with respect to relative constructibility; i.e., if *G* ≠ *H* ∈ *F*, then *K_G* ∉ *L*[*K_H*] and *K_H* ∉ *L*[*K_G*].

Remarks

- (*LC*): There exists a Ramsey cardinal κ .
- In ZFC, we can find an uncountable Borel family *F* such that the groups { K_G | G ∈ F } are pairwise incomparable with respect to embeddability.

Definition

The relation \leq on the Polish space X is a countable quasi-order if:

- (a) \leq is reflexive and transitive.
- (b) For all $x \in X$, the set { $y \in X | y \leq x$ } is countable.

Some countable Borel quasi-orders

- The embeddability relation on \mathcal{G}_{fg} .
- The Turing reducibility relation \leq_T on $2^{\mathbb{N}}$.

A countable Σ_2^1 quasi-order (*LC*)

The relative constructibility relation \leq_c on $2^{\mathbb{N}}$ defined by

$$x \leq_c y \iff x \in L[y].$$

Simon Thomas (Rutgers University)

Question

What is known about the kernels of homomorphisms from complete analytic equivalence relations to countable Borel equivalence relations?

Answer (Kechris)

Not a lot!

Definition

- $Inj(\mathbb{N}, 2^{\mathbb{N}})$ is the Polish space of all injective maps $z : \mathbb{N} \to 2^{\mathbb{N}}$.
- E_{cntble} is the Borel equivalence relation on $Inj(\mathbb{N}, 2^{\mathbb{N}})$ defined by

$$z \in \mathcal{E}_{cntble} z' \iff \{ z(n) \mid n \in \mathbb{N} \} = \{ z'(n) \mid n \in \mathbb{N} \}.$$

Main Lemma

Suppose that X is a Polish space and that θ : $Inj(\mathbb{N}, 2^{\mathbb{N}}) \to X$ is any Borel map. Then at least one of the following must hold:

- (a) There exists $x \in X$ such that for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ with $r \in \text{range}(z)$ such that $\theta(z) = x$.
- (b) For each countable Borel quasi-order \preccurlyeq on X, there exists a perfect subset $P \subseteq Inj(\mathbb{N}, 2^{\mathbb{N}})$ such that
 - (i) $y E_{cntble} z$ for all $y, z \in P$; and
 - (ii) $\theta(y), \theta(z)$ are incomparable with respect to \preccurlyeq for all $y \neq z \in P$.

Moreover, if (LC) holds, then the conclusion also holds with respect to the quasi-order \leq_c of relative constructibility.

The Proof of the Main Theorem

- Suppose that φ : G → G_{fg} is a Borel map such that G → φ(G) for all G ∈ G.
- Let { *H_r* | *r* ∈ 2^N } ⊆ *G* be a Borel family of pairwise nonisomorphic 2-generator groups. (B. H. Neumann 1937)
- Let ψ : $Inj(\mathbb{N}, 2^{\mathbb{N}}) \to \mathcal{G}$ be the injective Borel map defined by

$$\psi(z) = H_{z(0)} \times H_{z(1)} \times \cdots \times H_{z(n)} \times \cdots$$

and consider $\theta = \varphi \circ \psi : \operatorname{Inj}(\mathbb{N}, 2^{\mathbb{N}}) \to \mathcal{G}_{fg}$.

- First suppose that there exists a group $G \in \mathcal{G}_{fg}$ such that for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ such that $r \in \text{range}(z)$ and $\theta(z) = G$.
- Then *H_r* embeds into *G* for all *r* ∈ 2^N, which is impossible since *G* has only countably many 2-generator subgroups!

- Let ≤ be either the embeddability relation or the relative constructibility relation on *G_{fq}*.
- Then there exists a perfect subset P ⊆ Inj(N, 2^N) such that
 (i) y E_{cntble} z for all y, z ∈ P; and
 (ii) θ(y), θ(z) are incomparable with respect to ≼ for all y ≠ z ∈ P.
- Hence *F* = ψ(*P*) ⊆ *G* is an uncountable Borel family of pairwise isomorphic groups such that the groups { φ(*G*) | *G* ∈ *F* } are pairwise incomparable with respect to *≤*.

Notation

- From now on, we work within a fixed set-theoretic universe V.
- Let \mathbb{P} be a forcing notion.

Definition

• The relation R on the Polish space X is Σ_n^1 if $R(\bar{v})$ has the form

$$(\exists x_1 \in X_1)(\forall x_2 \in X_2) \cdots B(x_1, x_2, \cdots, \overline{\nu}),$$

where X_1, \dots, X_n are Polish spaces and $B(\bar{x}, \bar{v})$ is a Borel relation.

- In this case, R^{V^ℙ} denotes the relation obtained by applying the definition of R within the generic extension V^ℙ.
- *R* is absolute for $V^{\mathbb{P}}$ if $R^{V^{\mathbb{P}}} \cap V = R$.

Theorem (Shoenfield)

If $R \in V$ is a Σ_2^1 relation, then R is absolute for every generic extension $V^{\mathbb{P}}$.

An Application

If \leq is a countable Borel quasi-order on the Polish space *X*, then $\leq^{V^{\mathbb{P}}}$ is a countable Borel quasi-order on $X^{V^{\mathbb{P}}}$.

Proof.

Let Perf(X) be the Polish space of nonempty perfect subsets of *X*. Then \leq is countable if and only if

$$(\forall x \in X) (\forall P \in \operatorname{Perf}(X)) (\exists y \in X) [y \in P \land y \not\preceq x].$$

Theorem (Martin-Solovay)

Suppose that κ is a Ramsey cardinal. If $R \in V$ is a Σ_3^1 relation and $|\mathbb{P}| < \kappa$, then R is absolute for $V^{\mathbb{P}}$.

An Application (LC)

 \leq_c is a countable Σ_2^1 quasi-order on $2^{\mathbb{N}}$.

Proof.

If \mathbb{P} is the poset of finite functions $p: \omega \to \omega_1$, then for all $x \in 2^{\mathbb{N}} \cap V$,

$$\mathcal{V}^{\mathbb{P}}\vDash$$
 ($\exists f\in(2^{\mathbb{N}})^{\mathbb{N}}$)($\forall z\in2^{\mathbb{N}}$)[$z\in\mathcal{L}[x]\Longrightarrow$ ($\exists n$) $f(n)=z$].

By Martin-Solovay, this $\Sigma_3^1(x)$ statement also holds in *V*.

Definition (Kanovei après Hjorth)

Let *E* be a Borel equivalence relation on the Polish space *X* and let \mathbb{P} be a forcing notion. Then a \mathbb{P} -name τ is a virtual *E*-class if:

•
$$\Vdash_{\mathbb{P}} \ au \in X^{V^{\mathbb{P}}}$$

• $\Vdash_{\mathbb{P} imes \mathbb{P}} \ au_{\textit{left}} \ \mathsf{E}^{V^{\mathbb{P} imes \mathbb{P}}} \ au_{\textit{right}}$

Here τ_{left} , τ_{right} are the $(\mathbb{P} \times \mathbb{P})$ -names such that if $G \times H$ is $(\mathbb{P} \times \mathbb{P})$ -generic, then $\tau_{left}[G \times H] = \tau[G]$ and $\tau_{right}[G \times H] = \tau[H]$.

Simon Thomas (Rutgers University)

Example

Simon Thomas (Rutgers University)

- Let *E* = *E_{cntble}* and let ℙ consist of all finite injective partial functions *p* : ℕ → 2^ℕ.
- If *G* is \mathbb{P} -generic, then $g = \bigcup G$ is a bijection between \mathbb{N} and $2^{\mathbb{N}} \cap V$.
- Hence if τ is the canonical \mathbb{P} -name such that $\tau[G] = g$, then τ is a virtual E_{cntble} -class.

 $\mathcal{O} \land \mathcal{O} \land \mathcal{P} \land$

Main Lemma

Suppose that X is a Polish space and that θ : $Inj(\mathbb{N}, 2^{\mathbb{N}}) \rightarrow X$ is any Borel map. Then at least one of the following must hold:

- (a) There exists $x \in X$ such that for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ with $r \in \text{range}(z)$ such that $\theta(z) = x$.
- (b) For each countable Borel quasi-order \preccurlyeq on X, there exists a perfect subset $P \subseteq Inj(\mathbb{N}, 2^{\mathbb{N}})$ such that
 - (i) $y E_{cntble} z$ for all $y, z \in P$; and
 - (ii) $\theta(y), \theta(z)$ are incomparable with respect to \preccurlyeq for all $y \neq z \in P$.

Moreover, if (LC) holds, then the conclusion also holds with respect to the quasi-order \leq_c of relative constructibility.

Towards a proof of the Main Lemma ...

- Let θ : $\text{Inj}(\mathbb{N}, 2^{\mathbb{N}}) \to X$ be any Borel map.
- Let ≤ be either a countable Borel quasi-order on X or else the relative constructibility relation ≤_c.

Notation

- $x \perp y \iff x, y$ are \leq -incomparable.
- $x \parallel y \iff x, y$ are \leq -comparable.
- Let P consist of all finite injective partial functions p : N → 2^N and let τ be the corresponding virtual E_{cntble}-class.

The Fundamental Dichotomy

Are $\theta(\tau_{left}), \theta(\tau_{right})$ comparable with respect to $\leq^{V^{\mathbb{P}\times\mathbb{P}}}$?

Simon Thomas (Rutgers University)

クへぐ∢ / ♪ ▲ ≧ → July 8th 2011

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\text{ left}}) || \theta(\tau_{\text{ right}}).$

Claim

There exists
$$p_1 \leq p_0$$
 such that $\langle p_1, p_1 \rangle \Vdash \theta(\tau_{\text{left}}) = \theta(\tau_{\text{right}})$.

Proof.

- Suppose not and let $\mathbb Q$ collapse $\mathcal P(\mathbb P\times\mathbb P)$ to a countable set.
- Working in V^Q, there exists a perfect subset P ⊆ Inj(N, 2^N) such that θ(P) is an uncountable Borel set of pairwise ∠-comparable elements.
- Let $Z \subseteq \theta(P)$ be a perfect subset.
- By Kuratowski-Ulam, both $A = \{ (x, y) \in Z \times Z \mid x \leq y \}$ and $B = \{ (x, y) \in Z \times Z \mid y \leq x \}$ are meager subsets of $Z \times Z$.
- Since $Z \times Z = A \cup B$, this contradicts the Baire Category Theorem.

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\text{ left}}) || \theta(\tau_{\text{ right}}).$

Working in *V* and assuming that X = [0, 1], we can inductively define conditions

$$p_1 \ge p_2 \ge p_3 \ge \cdots \ge p_n \ge \cdots$$

and closed intervals $I_n \subseteq [0, 1]$ with rational endpoints

$$I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$$

such that the following conditions hold:

•
$$|I_n| = 2^{-(n-1)}$$

• $p_n \Vdash \theta(\tau) \in I_n$.

Still working in V, let

$$\bigcap_{n\geq 1}I_n=\{x\}.$$

Simon Thomas (Rutgers University)

クへで < //>
● < モト July 8th 2011

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\text{left}}) || \theta(\tau_{\text{right}}).$

Claim

$$p_1 \Vdash \theta(\tau) = x.$$

Proof.

- Otherwise, there exists $q \le p_1$ and $n \ge 1$ such that $q \Vdash \theta(\tau) \notin I_n$.
- But then $\langle q, p_n \rangle \leq \langle p_1, p_1 \rangle$ satisfies

$$\langle q, p_n \rangle \Vdash \theta(\boldsymbol{\tau}_{\mathsf{left}}) \notin I_n \text{ and } \theta(\boldsymbol{\tau}_{\mathsf{right}}) \in I_n,$$

which is a contradiction.

Case 1: $(\exists p_0 \in \mathbb{P}) \langle p_0, p_0 \rangle \Vdash \theta(\tau_{\text{left}}) || \theta(\tau_{\text{right}}).$

- Let $G \subseteq \mathbb{P}$ be *V*-generic with $p_1 \in G$.
- Then $V[G] \vDash \theta(\tau[G]) = x$.
- Hence for each $r \in 2^{\mathbb{N}} \cap V$,

 $V[G] \vDash (\exists z \in \mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}})) (\exists n \in \mathbb{N}) [z(n) = r \text{ and } \theta(z) = x].$

- By Shoenfield Absoluteness, this Σ_1^1 property of the reals $r, x \in 2^{\mathbb{N}} \cap V$ must also hold in V.
- Thus, in *V*, for all $r \in 2^{\mathbb{N}}$, there exists $z \in \text{Inj}(\mathbb{N}, 2^{\mathbb{N}})$ with $r \in \text{range}(z)$ such that $\theta(z) = x$.

Case 2: $(\forall p \in \mathbb{P}) \langle p, p \rangle \not\vDash \theta(\tau_{\mathsf{left}}) || \theta(\tau_{\mathsf{right}}).$

- Once again, let \mathbb{Q} collapse $\mathcal{P}(\mathbb{P} \times \mathbb{P})$ to a countable set.
- Then $V^{\mathbb{Q}}$ satisfies the following statement:

$$(\exists P \in \mathsf{Perf}(\mathsf{Inj}(\mathbb{N}, 2^{\mathbb{N}}))) (\forall x) (\forall y) [(x, y \in P \land x \neq y) \Longrightarrow (x E_{cntble} y \land \theta(x) \perp \theta(y))].$$

- Applying either Shoenfield or Martin-Solovay Absoluteness, this statement also holds in *V*.
- This completes the proof of the Main Lemma.

Cayley graphs of finitely generated groups

Definition

Let G be a f.g. group and let $S \subseteq G \setminus \{1_G\}$ be a finite generating set. Then the Cayley graph Cay(G, S) is the graph with vertex set G and edge set

$$E = \{\{x,y\} \mid y = xs ext{ for some } s \in S \cup S^{-1}\}.$$

For example, when $G = \mathbb{Z}$ and $S = \{1\}$, then the corresponding Cayley graph is:

But which Cayley graph?

However, when $G = \mathbb{Z}$ and $S = \{2, 3\}$, then the corresponding Cayley graph is:

Theorem

There does not exist an **Borel** choice of generators for each f.g. group which has the property that isomorphic groups are assigned isomorphic Cayley graphs.

Sketch proof.

Apply some basic geometric group theory and ergodic theory.

クへ? ▲ □ ▶ ▲ 三 ▶

Definition

An infinite group G is said to be just infinite if every proper quotient of G is finite.

Some Examples

- Infinite simple groups are just infinite.
- $SL_3(\mathbb{Z})$ is just infinite.

Remark

An interesting theory of just infinite groups has been developed by Girgorchuk, Wilson, etc.

Proposition

Every infinite f.g. group G has a just infinite quotient G/N.

Proof.

• It is enough to show that the partially ordered set

$$\mathcal{N} = \{ N \trianglelefteq G \mid G/N \text{ is infinite } \}$$

has a maximal element.

- Suppose that $N_0 \leqslant \cdots \leqslant N_\ell \leqslant \cdots$ is a chain and let $N = \bigcup N_\ell$.
- If N ∉ N, then [G: N] < ∞ and this implies that N is f.g., which is a contradiction.

Theorem

There does not exist a Borel map $G \mapsto Q_G$ from \mathcal{G}_{fg} to \mathcal{G}_{fg} such that for all $G, H \in \mathcal{G}_{fg}$,

- Q_G is a just infinite quotient of G; and
- if $G \cong H$, then $Q_G \cong Q_H$.

Sketch proof.

Apply some not so basic topological dynamics.

Question

Is there an inevitable non-uniformity in the proofs in this area?

Simon Thomas (Rutgers University)

8th Panhellenic Logic Symposium

クへで∢ / / ♪ ▲ ミト July 8th 2011