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The word problem for finitely generated groups

For each n ≥ 1, fix an computable enumeration
{wk (x1, · · · , xn) | k ∈ N } of the words in x1, · · · , xn, x−1

1 , · · · , x−1
n .

Definition
If G = 〈a1, · · · , an 〉 is a finitely generated group, then

Word(G) = { k ∈ N | wk (a1, · · · , an) = 1 }

Proposition
If G = 〈a1, · · · , an 〉 = 〈b1, · · · , bm 〉 is a finitely generated group, then

{ k ∈ N | wk (a1, · · · , an) = 1 } ≡T { ` ∈ N | w`(b1, · · · , bm) = 1 }.
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Prescribing the Turing degree of the word problem

Theorem (Folklore)
For each subset A ⊆ N, there exists a finitely generated group
GA such that Word(GA) ≡T A.

Question
Does there exist a uniform construction A 7→ GA with the property
that the isomorphism type of GA only depends upon the
Turing degree of A?
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Polish Spaces & Borel maps

Definition
If ( X , d ) is a complete separable metric space, then the corresponding
topological space ( X , T ) is a Polish space.

Example
The Cantor space 2N = P(N) is a Polish space.

Definition
If X , Y are Polish spaces, then a function f : X → Y is Borel if
graph(f ) is a Borel subset of X × Y.

Church’s Thesis for Real Mathematics
EXPLICIT = BOREL
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The Polish space of f.g. groups

A marked group (G, s̄) consists of a f.g. group with a distinguished
sequence s̄ = (s1, · · · , sm) of generators.

For each m ≥ 1, let Gm be the set of isomorphism types of marked
groups (G, (s1, · · · , sm)) with m distinguished generators.

Then there exists a canonical embedding Gm ↪→ Gm+1 defined by

(G, (s1, · · · , sm)) 7→ (G, (s1, · · · , sm, 1G)).

And Gfg =
⋃
Gm is the space of f.g. groups.
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The Polish space of f.g. groups

Let (G, s̄) ∈ Gm and let dS be the corresponding word metric. For
each ` ≥ 1, let

B`(G, s̄) = {g ∈ G | dS(g, 1G) ≤ `}.

The basic open neighborhoods of (G, s̄) in Gm are given by

U(G,s̄),` = { (H, t̄) ∈ Gm | B`(H, t̄) ∼= B`(G, s̄) }, ` ≥ 1.

Example
For each n ≥ 1, let Cn = 〈gn〉 be cyclic of order n. Then:

lim
n→∞

(Cn, gn) = (Z, 1).
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An inevitable non-uniformity result

Theorem
Suppose that A 7→ GA is any Borel map from 2N to Gfg such that
Word(GA) ≡T A for all A ∈ 2N.
Then there exists a Turing degree d0 such that for all d ≥T d0,
there exists an infinite subset {An | n ∈ N } ⊆ d such that the
groups {GAn | n ∈ N } are pairwise incomparable with respect
to embeddability.

Today we will prove a slighly weaker version:

Main Theorem
There does not exist a Borel map A 7→ GA from 2N to Gfg
such that for all A, B ∈ 2N,

Word(GA) ≡T A; and
if A ≡T B then GA

∼= GB.
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Countable Borel equivalence relations

Definition
An equivalence relation E on a Polish space X is Borel
if E is a Borel subset of X × X.
A Borel equivalence relation E is countable if every E-class
is countable.

Some Examples
The isomorphism relation ∼= is a countable Borel equivalence
relation on the space Gfg of f.g. groups.
The Turing equivalence relation ≡T is a countable Borel
equivalence relation on 2N.
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Borel reductions

Definition
Let E, F be Borel equivalence relations on the Polish spaces X, Y
respectively.

E ≤B F if there exists a Borel map f : X → Y such that

x E y ⇐⇒ f (x) F f (y).

In this case, f is called a Borel reduction from E to F.
E ∼B F if both E ≤B F and F ≤B E.
E <B F if both E ≤B F and E �B F.
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Universal countable Borel equivalence relations

Definition
A countable Borel equivalence relation E is universal if F ≤B E for
every countable Borel equivalence relation F .

Theorem (Thomas-Velickovic)
The isomorphism relation ∼= on Gfg is a universal countable Borel
equivalence relation.

Remark
It is currently not known whether the Turing equivalence relation
≡T is countable universal.
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Universal countable Borel equivalence relations

Corollary
There exists a Borel reduction from ≡T to ∼=.

Main Theorem
There does not exist a Borel reduction A 7→ GA from ≡T to ∼=
such that Word(GA) ≡T A for all A ∈ 2N.
“Equivalently”, there does not exist a continuous reduction
from ≡T to ∼=.

Question (Kanovei)
Find natural examples of Borel equivalence relations E, F such that
E ≤B F but there is no continuous reduction from E to F.
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Why are such examples hard to find?

Theorem (Folklore)
If X , Y are Polish spaces and ϕ : X → Y is a Borel map, then
there exists a comeager subset C ⊆ X such that ϕ � C is continuous.

Theorem (Lusin)
Let X, Y be Polish spaces and let µ be any Borel probability measure
on X. If ϕ : X → Y is a Borel map, then for every ε > 0, there exists
a compact set K ⊆ X with µ(K ) > 1− ε such that ϕ � K is continuous.
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Another notion of largeness ...

Definition
For each z ∈ 2N, the corresponding cone is Cz = { x ∈ 2N | z ≤T x }.

Suppose zn = {an,` | ` ∈ N } ∈ 2N for each n ∈ N and define

⊕zn = {pan,`
n | n, ` ∈ N } ∈ 2N,

where pn is the nth prime.

Then zm ≤T ⊕zn for each m ∈ N and so C⊕zn ⊆
⋂

n Czn .

Remark
It is well-known that if C  2N is a proper cone, then C is both
null and meager.
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Continuous maps on the Cantor space

Theorem (Folklore)
If θ : 2N → 2N, then the following are equivalent:
(a) θ is continuous.
(b) There exists C ∈ 2N and e ∈ N such that θ(A) = ϕC⊕A

e .

Corollary
If θ : 2N → 2N is continuous, then there exists a cone C such that
θ(A) ≤T A for all A ∈ C.

Corollary
If G 7→ KG is a continuous map from Gfg to Gfg , then there exists
a cone C such that if Word(G) ∈ C, then Word(KG) ≤T Word(G).
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The “obvious” vs “nonobvious” Turing reductions ...

Definition
If A, B ∈ 2N, then A is one-one reducible to B, written A ≤1 B,
if there exists an injective recursive function f : N→ N such that
for all n ∈ N,

n ∈ A ⇐⇒ f (n) ∈ B.

Example
If G, H ∈ Gfg and G ↪→ H, then Word(G) ≤1 Word(H).

Proof.
Suppose that G = 〈a1, · · · , an 〉 and H = 〈b1, · · · , bm 〉. Let ϕ : G → H
be an embedding and let ϕ(ai) = ti(b̄). Then

wk (a1, · · · , an) = 1 ⇐⇒ wk (t1(b̄), · · · , tn(b̄)) = 1.
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Turing Equivalence vs. Recursive Isomorphism

Definition
The sets A, B ∈ 2N are recursively isomorphic, written A ≡1 B,
if both A ≤1 B and B ≤1 A.

Theorem (Myhill)
If A, B ∈ 2N, then A ≡1 B if and only if there exists a recursive
permutation π ∈ Sym(N) such that π[A] = B.

Theorem (Folklore)
The map A 7→ A′ is a Borel reduction from ≡T to ≡1.

Observation
The Borel reduction A 7→ A ′ from ≡T to ≡1 is certainly not continuous.
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Turing Equivalence vs. Recursive Isomorphism

Definition
Let E, F be Borel equivalence relations on the Polish spaces X, Y .
Then the Borel map ϕ : X → Y is a homomorphism from E to F if

x E y =⇒ ϕ(x) F ϕ(y).

Main Lemma
If θ : 2N → 2N is a continuous homomorphism from ≡T to ≡1, then
there exists a cone C such that θ maps C into a single ≡1-class.

Corollary
There does not exist a continuous reduction from ≡T to ≡1.
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Turing Equivalence vs. Isomorphism on Gfg

Corollary
There does not exist a continuous reduction from ≡T to ∼=.

Proof.
Suppose A 7→ HA is a continuous reduction from ≡T to ∼=.
Note that H 7→ Word(H) is an injective continuous homomorphism
from ∼= to ≡1.
Thus A 7→ Word(HA) is a countable-to-one continuous
homomorphism from ≡T to ≡1, which is a contradiction.
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Determinacy

Definition
For each X ⊆ 2N, let G(X ) be the two player game

I s(0) s(2) s(4) s(6) · · ·
II s(1) s(3) s(5) s(7) · · ·

where I wins if and only if s = ( s(0) s(1) s(2) s(3) · · · ) ∈ X.

Definition
A strategy is a map 2<N → 2 which tells the relevant player
which move to make in a given position.
The game G(X ) is determined if one of the players has a
winning strategy.
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Determinacy

Observation
If X is countable, then player II has a winning strategy in G(X ).

Theorem (AC)
There exists a subset X ⊆ 2N such that G(X ) is not determined.

Borel Determinacy (Martin)
If X ⊆ 2N is a Borel subset, then G(X ) is determined.
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An easy application of Borel Determinacy

Definition
A subset X ⊆ 2N is ≡T -invariant if it is a union of ≡T -classes.

Theorem (Martin)
If X ⊆ 2N is a ≡T -invariant Borel subset, then either X or 2N r X
contains a cone.

Cf. Kolmogorov’s Zero-One Law ...
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Proof of Martin’s Theorem

Suppose that X ⊆ 2N is a ≡T -invariant Borel subset.

Consider the two player game G(X )

s(0) s(1) s(2) s(3) · · ·

where I wins if and only if s = ( s(0) s(1) s(2) · · · ) ∈ X .

Then the Borel game G(X ) is determined. Suppose,
for example, that σ : 2<N → 2 is a winning strategy for I.

Let σ ≤T t ∈ 2N and consider the run of G(X ) where
II plays t = ( s(1) s(3) s(5) · · · )
I uses the strategy σ and plays ( s(0) s(2) s(4) · · · ).

Then s ∈ X and s ≡T t . Hence t ∈ X and so Cσ ⊆ X .
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Some easy consequences of Martin’s Theorem

Theorem (Martin)
If X ⊆ 2N is a ≡T -invariant Borel subset, then either X or 2N r X
contains a cone.

Corollary
If X ⊆ 2N is a ≡T -invariant ≤T -cofinal Borel subset, then
X contains a cone.

Corollary
If X ⊆ 2N is an arbitrary ≤T -cofinal Borel subset, then
X contains representatives of a cone.
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Pointed Trees

Definition
A subset S ⊆ 2<N is a tree if it is closed under taking initial
segments.
If S is a tree, then [ S ] ⊆ 2N denotes the set of infinite branches
through T .
The tree S is perfect if for each s ∈ S, there exist incomparable
a, b ∈ S with s l a, b.
The perfect tree S is pointed if S ≤T y for all y ∈ [ S ].

Theorem (Martin)
If X ⊆ 2N is a ≤T -cofinal Borel subset, then there exists a
pointed tree S ⊆ 2<N such that [ S ] ⊆ X.
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Proof of the Main Lemma

Main Lemma
If θ : 2N → 2N is a continuous homomorphism from ≡T to ≡1, then
there exists a cone C such that θ maps C into a single ≡1-class.

Let A be a cone such that θ(A) ≤T A for all A ∈ A.

Then there exists a cone C ⊆ A such that either
(a) θ(A) < T A for all A ∈ C; or
(b) θ(A) ≡ T A for all A ∈ C.
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Case (a): suppose that θ(A) <T A for all A ∈ C.

Theorem (Slaman-Steel)
If C is a cone and θ : C → 2N is a Borel homomorphism from
≡T � C to ≡T such that θ(A) <T A for all A ∈ C, then there exists
a cone D ⊆ C such that θ maps D into a single ≡T -class.

Thus θ maps a cone D into a single ≡T -class a.

Let a =
⊔

n∈N bn be the decomposition of a into ≡1-classes.

For each n ∈ N, let Bn = θ−1(bn).

Then there exists n ∈ N such that Bn contains a cone, as required.
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Case (b): suppose that θ(A) ≡T A for all A ∈ C.

The Non-Selector Theorem
If C is a cone, then there does not exist a Borel homomorphism
θ : C → C from ≡T � C to ≡1� C such that θ(A) ≡T A for all A ∈ C.
In other words, if C is a cone, then there does not exist a Borel
map which selects an ≡1-class within each ≡T -class.

Simon Thomas (Rutgers University) 8th Panhellenic Logic Symposium July 6th 2011



Proof of the Non-Selector Theorem

Suppose θ : C → C selects a ≡1-class within each ≡T -class.
Then θ[C] is a ≤T -cofinal Borel subset of 2N.
By Martin’s Theorem, there exists a pointed tree S ⊆ 2<N

such that [ S ] ⊆ θ[C].
Note that if x , y ∈ [ S ], then x ≡T y iff x ≡1 y .
We can suppose that ( πn | n ∈ N ) ≤T S, where {πn | n ∈ N }
is the group of recursive permutations.
Let x ∈ [ S ] be the left-most branch, so that x ≡T S.
Then we can construct a branch y ≤T S such that πn(y) 6= x
for all n ∈ N.
But then y ≡T x and y 6≡1 x , which is a contradiction!
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Proof of the Main Theorem

Main Theorem
There does not exist a Borel reduction A 7→ GA from ≡T to ∼=
such that Word(GA) ≡T A for all A ∈ 2N.

Suppose that A 7→ GA is a Borel reduction from ≡T to ∼=
such that Word(GA) ≡T A for all A ∈ 2N.

Consider the Borel map θ : 2N → 2N defined by A 7→ Word(GA).

If A ≡T B, then GA
∼= GB and so Word(GA) ≡1 Word(GB).

Thus θ : 2N → 2N is a Borel map which selects an ≡1-class
within each ≡T -class, which is a contradiction!

The End
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