Borel Determinacy and the Word Problem for Finitely Generated Groups

Simon Thomas

Rutgers University

July 6th 2011

୬ ର ៚ ଏ 🗗 । ଏ 🖹 । July 6th 2011

The word problem for finitely generated groups

For each $n \ge 1$, fix an computable enumeration $\{ w_k(x_1, \dots, x_n) \mid k \in \mathbb{N} \}$ of the words in $x_1, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}$.

Definition

If $G = \langle a_1, \cdots, a_n \rangle$ is a finitely generated group, then

$$\mathsf{Word}(G) = \{ \, k \in \mathbb{N} \mid w_k(a_1, \cdots, a_n) = 1 \, \}$$

Proposition

If $G = \langle a_1, \cdots, a_n \rangle = \langle b_1, \cdots, b_m \rangle$ is a finitely generated group, then

$$\{ k \in \mathbb{N} \mid w_k(a_1, \cdots, a_n) = 1 \} \equiv_T \{ \ell \in \mathbb{N} \mid w_\ell(b_1, \cdots, b_m) = 1 \}.$$

Theorem (Folklore)

For each subset $A \subseteq \mathbb{N}$, there exists a finitely generated group G_A such that $Word(G_A) \equiv {}_T A$.

Question

Does there exist a uniform construction $A \mapsto G_A$ with the property that the isomorphism type of G_A only depends upon the Turing degree of A?

Simon Thomas (Rutgers University)

If (X, d) is a complete separable metric space, then the corresponding topological space (X, T) is a Polish space.

Example

The Cantor space $2^{\mathbb{N}} = \mathcal{P}(\mathbb{N})$ is a Polish space.

Definition

If X, Y are Polish spaces, then a function $f : X \to Y$ is Borel if graph(f) is a Borel subset of $X \times Y$.

Church's Thesis for Real Mathematics

 $\mathsf{EXPLICIT} = \mathsf{BOREL}$

Simon Thomas (Rutgers University)

- A marked group (G, s̄) consists of a f.g. group with a distinguished sequence s̄ = (s₁, · · · , s_m) of generators.
- For each *m* ≥ 1, let *G_m* be the set of isomorphism types of marked groups (*G*, (*s*₁, · · · , *s_m*)) with *m* distinguished generators.
- Then there exists a canonical embedding $\mathcal{G}_m \hookrightarrow \mathcal{G}_{m+1}$ defined by

$$(G, (s_1, \cdots, s_m)) \mapsto (G, (s_1, \cdots, s_m, 1_G)).$$

• And $\mathcal{G}_{fg} = \bigcup \mathcal{G}_m$ is the space of f.g. groups.

The Polish space of f.g. groups

Let (G, s̄) ∈ G_m and let d_S be the corresponding word metric. For each ℓ ≥ 1, let

$$B_\ell(G, \overline{s}) = \{g \in G \mid d_S(g, 1_G) \leq \ell\}.$$

• The basic open neighborhoods of (G, \bar{s}) in \mathcal{G}_m are given by

$$U_{(G,\bar{s}),\ell} = \{ (H,\bar{t}) \in \mathcal{G}_m \mid B_\ell(H,\bar{t}) \cong B_\ell(G,\bar{s}) \}, \qquad \ell \ge 1.$$

Example

For each $n \ge 1$, let $C_n = \langle g_n \rangle$ be cyclic of order *n*. Then:

$$\lim_{n\to\infty}(C_n,g_n)=(\mathbb{Z},1).$$

୬**୯**୯⊀∄ ► ₹≣♪

An inevitable non-uniformity result

Theorem

- Suppose that A → G_A is any Borel map from 2^N to G_{fg} such that Word(G_A) ≡ T A for all A ∈ 2^N.
- Then there exists a Turing degree d₀ such that for all d ≥_T d₀, there exists an infinite subset { A_n | n ∈ N } ⊆ d such that the groups { G_{A_n} | n ∈ N } are pairwise incomparable with respect to embeddability.

Today we will prove a slighly weaker version:

Main Theorem

There does not exist a Borel map $A \mapsto G_A$ from $2^{\mathbb{N}}$ to \mathcal{G}_{fg} such that for all $A, B \in 2^{\mathbb{N}}$,

- Word(G_A) $\equiv_T A$; and
- if $A \equiv_T B$ then $G_A \cong G_B$.

- An equivalence relation E on a Polish space X is Borel if E is a Borel subset of X × X.
- A Borel equivalence relation E is countable if every E-class is countable.

Some Examples

- The isomorphism relation \cong is a countable Borel equivalence relation on the space \mathcal{G}_{fg} of f.g. groups.
- The Turing equivalence relation \equiv_{T} is a countable Borel equivalence relation on $2^{\mathbb{N}}$.

Let E, F be Borel equivalence relations on the Polish spaces X, Y respectively.

• $E \leq_B F$ if there exists a Borel map $f : X \to Y$ such that

$$x E y \iff f(x) F f(y).$$

In this case, f is called a Borel reduction from E to F.

- $E \sim_B F$ if both $E \leq_B F$ and $F \leq_B E$.
- $E <_B F$ if both $E \leq_B F$ and $E \nsim_B F$.

A countable Borel equivalence relation E is universal if $F \leq_B E$ for every countable Borel equivalence relation F.

Theorem (Thomas-Velickovic)

The isomorphism relation \cong on \mathcal{G}_{fg} is a universal countable Borel equivalence relation.

Remark

It is currently not known whether the Turing equivalence relation $\equiv T$ is countable universal.

Corollary

There exists a Borel reduction from $\equiv T$ to \cong .

Main Theorem

- There does not exist a Borel reduction A → G_A from ≡ T to ≅ such that Word(G_A) ≡ T A for all A ∈ 2^N.
- "Equivalently", there does not exist a continuous reduction from ≡ T to ≅.

Question (Kanovei)

Find natural examples of Borel equivalence relations E, F such that $E \leq_B F$ but there is no continuous reduction from E to F.

Theorem (Folklore)

If X, Y are Polish spaces and $\varphi : X \to Y$ is a Borel map, then there exists a comeager subset $C \subseteq X$ such that $\varphi \upharpoonright C$ is continuous.

Theorem (Lusin)

Let X, Y be Polish spaces and let μ be any Borel probability measure on X. If $\varphi : X \to Y$ is a Borel map, then for every $\varepsilon > 0$, there exists a compact set $K \subseteq X$ with $\mu(K) > 1 - \varepsilon$ such that $\varphi \upharpoonright K$ is continuous.

うくらく回マス回り

For each $z \in 2^{\mathbb{N}}$, the corresponding cone is $\mathcal{C}_z = \{ x \in 2^{\mathbb{N}} \mid z \leq_T x \}.$

• Suppose $z_n = \{ a_{n,\ell} \mid \ell \in \mathbb{N} \} \in 2^{\mathbb{N}}$ for each $n \in \mathbb{N}$ and define

$$\oplus z_n = \{ p_n^{a_{n,\ell}} \mid n, \ell \in \mathbb{N} \} \in 2^{\mathbb{N}},$$

where p_n is the *n*th prime.

• Then $z_m \leq T \oplus z_n$ for each $m \in \mathbb{N}$ and so $\mathcal{C}_{\oplus z_n} \subseteq \bigcap_n \mathcal{C}_{z_n}$.

Remark

It is well-known that if $\mathcal{C} \subsetneq 2^{\mathbb{N}}$ is a proper cone, then \mathcal{C} is both null and meager.

*) � (* * 🗗 ト * 🗏

Simon Thomas (Rutgers University)

8th Panhellenic Logic Symposium

July 6th 2011

Theorem (Folklore)

If $\theta : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, then the following are equivalent:

- (a) θ is continuous.
- (b) There exists $C \in 2^{\mathbb{N}}$ and $e \in \mathbb{N}$ such that $\theta(A) = \varphi_e^{C \oplus A}$.

Corollary

If $\theta : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is continuous, then there exists a cone \mathcal{C} such that $\theta(A) \leq_{T} A$ for all $A \in \mathcal{C}$.

Corollary

If $G \mapsto K_G$ is a continuous map from \mathcal{G}_{fg} to \mathcal{G}_{fg} , then there exists a cone \mathcal{C} such that if $Word(G) \in \mathcal{C}$, then $Word(K_G) \leq_T Word(G)$.

The "obvious" vs "nonobvious" Turing reductions ...

Definition

If $A, B \in 2^{\mathbb{N}}$, then A is one-one reducible to B, written $A \leq_1 B$, if there exists an injective recursive function $f : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$,

$$n \in A \iff f(n) \in B.$$

Example

If
$$G, H \in \mathcal{G}_{fg}$$
 and $G \hookrightarrow H$, then $Word(G) \leq_1 Word(H)$.

Proof.

Suppose that $G = \langle a_1, \dots, a_n \rangle$ and $H = \langle b_1, \dots, b_m \rangle$. Let $\varphi : G \to H$ be an embedding and let $\varphi(a_i) = t_i(\bar{b})$. Then

$$w_k(a_1,\cdots,a_n)=1$$
 \iff $w_k(t_1(\bar{b}),\cdots,t_n(\bar{b}))=1.$

Turing Equivalence vs. Recursive Isomorphism

Definition

The sets $A, B \in 2^{\mathbb{N}}$ are recursively isomorphic, written $A \equiv_1 B$, if both $A \leq_1 B$ and $B \leq_1 A$.

Theorem (Myhill)

If $A, B \in 2^{\mathbb{N}}$, then $A \equiv_1 B$ if and only if there exists a recursive permutation $\pi \in \text{Sym}(\mathbb{N})$ such that $\pi[A] = B$.

Theorem (Folklore)

The map $A \mapsto A'$ is a Borel reduction from \equiv_T to \equiv_1 .

Observation

The Borel reduction $A \mapsto A'$ from \equiv_T to \equiv_1 is certainly not continuous.

シ < ? ◆ @ ▶ ◆ ≣ ▶

Let *E*, *F* be Borel equivalence relations on the Polish spaces *X*, *Y*. Then the Borel map $\varphi : X \to Y$ is a homomorphism from *E* to *F* if

$$x E y \Longrightarrow \varphi(x) F \varphi(y).$$

Main Lemma

If $\theta : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a continuous homomorphism from \equiv_{T} to \equiv_{1} , then there exists a cone \mathcal{C} such that θ maps \mathcal{C} into a single \equiv_{1} -class.

Corollary

There does not exist a continuous reduction from \equiv_T to \equiv_1 .

Corollary

There does not exist a continuous reduction from \equiv_T to \cong .

Proof.

- Suppose $A \mapsto H_A$ is a continuous reduction from \equiv_T to \cong .
- Note that *H* → Word(*H*) is an injective continuous homomorphism from ≃ to ≡₁.
- Thus A → Word(H_A) is a countable-to-one continuous homomorphism from ≡ T to ≡1, which is a contradiction.

For each $X \subseteq 2^{\mathbb{N}}$, let G(X) be the two player game

where I wins if and only if $s = (s(0) s(1) s(2) s(3) \cdots) \in X$.

Definition

- A strategy is a map 2^{<ℕ} → 2 which tells the relevant player which move to make in a given position.
- The game G(X) is determined if one of the players has a winning strategy.

Observation

If X is countable, then player II has a winning strategy in G(X).

Theorem (AC)

There exists a subset $X \subseteq 2^{\mathbb{N}}$ such that G(X) is not determined.

Borel Determinacy (Martin)

If $X \subseteq 2^{\mathbb{N}}$ is a Borel subset, then G(X) is determined.

An easy application of Borel Determinacy

Definition

A subset $X \subseteq 2^{\mathbb{N}}$ is $\equiv _{T}$ -invariant if it is a union of $\equiv _{T}$ -classes.

Theorem (Martin)

If $X \subseteq 2^{\mathbb{N}}$ is a \equiv_T -invariant Borel subset, then either X or $2^{\mathbb{N}} \setminus X$ contains a cone.

Cf. Kolmogorov's Zero-One Law ...

Proof of Martin's Theorem

• Suppose that $X \subseteq 2^{\mathbb{N}}$ is a \equiv_{T} -invariant Borel subset.

• Consider the two player game G(X)

$$s(0)$$
 $s(1)$ $s(2)$ $s(3)$ \cdots

where *I* wins if and only if $s = (s(0) s(1) s(2) \cdots) \in X$.

- Then the Borel game G(X) is determined. Suppose, for example, that σ : 2^{<ℕ} → 2 is a winning strategy for *I*.
- Let $\sigma \leq_T t \in 2^{\mathbb{N}}$ and consider the run of G(X) where
 - *II* plays $t = (s(1) s(3) s(5) \cdots)$
 - *I* uses the strategy σ and plays ($s(0) s(2) s(4) \cdots$).
- Then $s \in X$ and $s \equiv_T t$. Hence $t \in X$ and so $C_{\sigma} \subseteq X$.

Theorem (Martin)

If $X \subseteq 2^{\mathbb{N}}$ is a \equiv_T -invariant Borel subset, then either X or $2^{\mathbb{N}} \setminus X$ contains a cone.

Corollary

If $X \subseteq 2^{\mathbb{N}}$ is a \equiv_{T} -invariant \leq_{T} -cofinal Borel subset, then X contains a cone.

Corollary

If $X \subseteq 2^{\mathbb{N}}$ is an arbitrary \leq_{T} -cofinal Borel subset, then X contains representatives of a cone.

- A subset S ⊆ 2^{<ℕ} is a tree if it is closed under taking initial segments.
- If S is a tree, then [S] ⊆ 2^N denotes the set of infinite branches through T.
- The tree S is perfect if for each s ∈ S, there exist incomparable a, b ∈ S with s < a, b.
- The perfect tree S is pointed if $S \leq T$ y for all $y \in [S]$.

Theorem (Martin)

If $X \subseteq 2^{\mathbb{N}}$ is a \leq_T -cofinal Borel subset, then there exists a pointed tree $S \subseteq 2^{<\mathbb{N}}$ such that $[S] \subseteq X$.

シ∢ (? ▲ 🗇 ▶ ▲ 🗎 ▶

Main Lemma

If $\theta : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a continuous homomorphism from \equiv_{T} to \equiv_{1} , then there exists a cone \mathcal{C} such that θ maps \mathcal{C} into a single \equiv_{1} -class.

- Let \mathcal{A} be a cone such that $\theta(\mathcal{A}) \leq T \mathcal{A}$ for all $\mathcal{A} \in \mathcal{A}$.
- Then there exists a cone C ⊆ A such that either
 (a) θ(A) < T A for all A ∈ C; or
 (b) θ(A) ≡ T A for all A ∈ C.

Theorem (Slaman-Steel)

If C is a cone and $\theta : C \to 2^{\mathbb{N}}$ is a Borel homomorphism from $\equiv_T \upharpoonright C$ to \equiv_T such that $\theta(A) <_T A$ for all $A \in C$, then there exists a cone $\mathcal{D} \subseteq C$ such that θ maps \mathcal{D} into a single \equiv_T -class.

- Thus θ maps a cone \mathcal{D} into a single $\equiv \tau$ -class **a**.
- Let $\mathbf{a} = \bigsqcup_{n \in \mathbb{N}} \mathbf{b}_n$ be the decomposition of \mathbf{a} into \equiv_1 -classes.
- For each $n \in \mathbb{N}$, let $\mathcal{B}_n = \theta^{-1}(\mathbf{b}_n)$.
- Then there exists $n \in \mathbb{N}$ such that \mathcal{B}_n contains a cone, as required.

Case (b): suppose that $\theta(A) \equiv T A$ for all $A \in C$.

The Non-Selector Theorem

- If C is a cone, then there does not exist a Borel homomorphism $\theta : C \to C$ from $\equiv_T \upharpoonright C$ to $\equiv_1 \upharpoonright C$ such that $\theta(A) \equiv_T A$ for all $A \in C$.
- In other words, if C is a cone, then there does not exist a Borel map which selects an ≡₁-class within each ≡ _T-class.

- Suppose $\theta : C \to C$ selects a \equiv_1 -class within each \equiv_T -class.
- Then $\theta[\mathcal{C}]$ is a \leq_T -cofinal Borel subset of $2^{\mathbb{N}}$.
- By Martin's Theorem, there exists a pointed tree S ⊆ 2^{<ℕ} such that [S] ⊆ θ[C].
- Note that if $x, y \in [S]$, then $x \equiv_T y$ iff $x \equiv_1 y$.
- We can suppose that $(\pi_n \mid n \in \mathbb{N}) \leq_T S$, where $\{\pi_n \mid n \in \mathbb{N}\}$ is the group of recursive permutations.
- Let $x \in [S]$ be the left-most branch, so that $x \equiv_T S$.
- Then we can construct a branch $y \leq_T S$ such that $\pi_n(y) \neq x$ for all $n \in \mathbb{N}$.
- But then $y \equiv_T x$ and $y \not\equiv_1 x$, which is a contradiction!

Main Theorem

There does not exist a Borel reduction $A \mapsto G_A$ from \equiv_T to \cong such that Word(G_A) $\equiv_T A$ for all $A \in 2^{\mathbb{N}}$.

- Suppose that A → G_A is a Borel reduction from ≡ T to ≅ such that Word(G_A) ≡ T A for all A ∈ 2^N.
- Consider the Borel map $\theta : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ defined by $A \mapsto Word(G_A)$.
- If $A \equiv_T B$, then $G_A \cong G_B$ and so Word $(G_A) \equiv_1$ Word (G_B) .
- Thus θ : 2^N → 2^N is a Borel map which selects an ≡₁-class within each ≡_T-class, which is a contradiction!

The End