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Introduction

The Basic Theme:
Descriptive set theory provides a framework for explaining the
inevitable non-uniformity of many classical constructions in
mathematics.

Two Examples from Combinatorial Group Theory:
The Higman-Neumann-Neumann Embedding Theorem.
The word problem for finitely generated groups.
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The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)
Every countable group G can be embedded into a 2-generator group.

Sketch Proof.
Let ( gn | n ∈ N ) be a sequence of generators with g0 = 1.
Let F be the free group on {a,b } and let G ∗F be the free product.
Then {b−nabn | n ∈ N } and {gna−nban | n ∈ N } freely generate
free subgroups of G ∗ F.
Hence we can construct the HNN extension

G ↪→ KG = 〈G ∗ F, t | t−1b−nabnt = gna−nban 〉

Since gn ∈ 〈a,b, t〉 and t−1at = b, it follows that KG = 〈a, t〉.
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A natural question

Observation
It is reasonably clear that the isomorphism type of the 2-generator
group KG usually depends upon both the generating set of G and
the particular enumeration that is used.

Question
Does there exist a more uniform construction with the property
that the isomorphism type of KG only depends upon the
isomorphism type of G?
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The word problem for finitely generated groups

For each n ≥ 1, fix an computable enumeration
{wk (x1, · · · , xn) | k ∈ N } of the words in x1, · · · , xn, x−1

1 , · · · , x−1
n .

Definition
If G = 〈a1, · · · ,an 〉 is a finitely generated group, then

Word(G) = { k ∈ N | wk (a1, · · · ,an) = 1 }

Remark
The word problem for G = 〈a1, · · · ,an 〉 is the problem of deciding
whether k ∈Word(G).
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Turing Reducibility

Convention
Throughout these talks, the powerset P(N) will be identified with 2N

by identifying subsets of N with their characteristic functions.

Definition
If A, B ∈ 2N, then A is Turing reducible to B, written A ≤T B, if there
exists a B-oracle Turing machine which computes A.

Remark
In other words, there is an algorithm which computes A modulo an
oracle which correctly answers questions of the form “Is n ∈ B?”
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Turing Reducibility

Definition
If A, B ∈ 2N, then A is Turing equivalent to B, written A ≡T B, if both
A ≤T B and B ≤T A.

Definition
If A ∈ 2N, then the corresponding Turing degree is defined to be

a = {B ∈ 2N | B ≡T A }.

Proposition
If G = 〈a1, · · · ,an 〉 = 〈b1, · · · ,bm 〉 is a finitely generated group, then

{ k ∈ N | wk (a1, · · · ,an) = 1 } ≡T { ` ∈ N | w`(b1, · · · ,bm) = 1 }.
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Prescribing the Turing degree of the word problem

Theorem (Folklore)
For each subset A ⊆ N, there exists a finitely generated group
GA such that Word(GA) ≡T A.

Notation: [ x , y ] = x−1 y−1 x y

Sketch Proof.
Let GA be the group generated by the elements a, b subject to the
following defining relations, where cn = [ b,a−(n+1)b a n+1 ].

a cn = cn a for all n ∈ N.
b cn = cn b for all n ∈ N.
c 2

n = 1 for all n ∈ N.
cn = 1 for all n ∈ A.
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Another natural question

Observation
The above construction of GA is highly dependent on the specific
subset A ⊆ N, in the sense that if A 6= B are subsets such that
A ≡T B, then we “usually” have that GA � GB.

Question
Does there exist a more uniform construction A 7→ GA with the
property that the isomorphism type of GA only depends upon
the Turing degree of A?
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The answers ...

Notation
G and Gfg denotes the spaces of countable groups and f.g. groups.

“Theorem”
There does not exist an explicit map G 7→ KG from G to Gfg
such that for all G, H ∈ G,

G ↪→ KG; and
if G ∼= H, then KG

∼= KH .

“Theorem”
There does not exist an explicit map A 7→ GA from 2N to Gfg
such that for all A, B ∈ 2N,

Word(GA) ≡T A; and
if A ≡T B then GA

∼= GB.
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What is an explicit map?

Question
Which functions f : R→ R are explicit?

Church’s Thesis for the Reals
EXPLICIT = BOREL

Definition
A function f : R→ R is Borel if graph(f ) is a Borel subset of R×R.
Equivalently, f−1(A) is Borel for each Borel subset A ⊆ R.
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The Cantor Space

The Cantor space 2N is a complete separable metric space
with respect to the metric

d(x , y) =
∞∑

n=0

|x(n)− y(n)|
2n+1 .

The corresponding topological space is a Polish space with
basic open neighborhoods

Us = { x ∈ 2N | x � n = s }, where s ∈ 2<N.
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The Polish space of countably infinite groups

Let G be the set of groups with underlying set N.

We can identify each group

G ∈ G ←→ mG ∈ 2N×N×N

with the graph of its multiplication operation.

Then G is a Gδ subset of the Cantor space 2N×N×N;
i.e. G is a countable intersection of open subsets.

It follows that G is a Polish subspace of the Cantor space 2N×N×N.
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The Polish space of f.g. groups

A marked group (G, s̄) consists of a f.g. group with a distinguished
sequence s̄ = (s1, · · · , sm) of generators.

For each m ≥ 1, let Gm be the set of isomorphism types of marked
groups (G, (s1, · · · , sm)) with m distinguished generators.

Then there exists a canonical embedding Gm ↪→ Gm+1 defined by

(G, (s1, · · · , sm)) 7→ (G, (s1, · · · , sm,1G)).

And Gfg =
⋃
Gm is the space of f.g. groups.
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The Polish space of f.g. groups

Let (G, s̄) ∈ Gm and let dS be the corresponding word metric. For
each ` ≥ 1, let

B`(G, s̄) = {g ∈ G | dS(g,1G) ≤ `}.

The basic open neighborhoods of (G, s̄) in Gm are given by

U(G,s̄),` = { (H, t̄) ∈ Gm | B`(H, t̄) ∼= B`(G, s̄) }, ` ≥ 1.

Example
For each n ≥ 1, let Cn = 〈gn〉 be cyclic of order n. Then:

lim
n→∞

(Cn,gn) = (Z,1).
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A slight digression ...

Some Isolated Points
Finite groups
Finitely presented simple groups

The Next Stage
SL3(Z)

Question (Grigorchuk)
What is the Cantor-Bendixson rank of G?
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The answers revisited ...

Theorem
There does not exist a Borel map G 7→ KG from G to Gfg
such that for all G, H ∈ G,

G ↪→ KG; and
if G ∼= H, then KG

∼= KH .

Theorem
There does not exist a Borel map A 7→ GA from 2N to Gfg
such that for all A, B ∈ 2N,

Word(GA) ≡T A; and
if A ≡T B then GA

∼= GB.
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But Greg Cherlin wasn’t satisfied ...

Theorem
Suppose that A 7→ GA is any Borel map from 2N to Gfg such that
Word(GA) ≡T A for all A ∈ 2N.
Then there exists a Turing degree d0 such that for all d ≥T d0,
there exists an infinite subset {An | n ∈ N } ⊆ d such that the
groups {GAn | n ∈ N } are pairwise incomparable with respect
to embeddability.
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But Greg Cherlin wasn’t satisfied ...

Theorem (LC)
Suppose that G 7→ KG is any Borel map from G to Gfg such that
G ↪→ KG for all G ∈ G.
Then there exists an uncountable Borel family F ⊆ G of pairwise
isomorphic groups such that the groups {KG | G ∈ F } are
pairwise incomparable with respect to relative constructibility;
i.e., if G 6= H ∈ F , then KG /∈ L[ KH ] and KH /∈ L[ KG ].

Remarks
(LC): There exists a Ramsey cardinal κ.
In ZFC, we can find an uncountable Borel family F ⊆ G such that
the groups {KG | G ∈ F } are pairwise incomparable with respect
to embeddability.
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Why are the Theorems “obviously true”?

Definition
Let E, F be equivalence relations on the Polish spaces X, Y . Then
the Borel map ϕ : X → Y is a homomorphism if

x E y =⇒ ϕ(x) F ϕ(y).

Theorem
If ϕ : 〈 G,∼=G 〉 → 〈Gfg ,∼=Gfg 〉 is any Borel homomorphism, then there
exists a group G ∈ G such that G 6↪→ ϕ(G).

Heuristic Reason
Since ∼=G is much more complex than ∼=Gfg , the Borel homomorphism
must have a “large kernel” and hence “too many” groups G ∈ G will
be mapped to a fixed K ∈ Gfg .
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Borel reductions

Definition
Let E, F be equivalence relations on the Polish spaces X, Y .

E ≤B F if there exists a Borel map ϕ : X → Y such that

x E y ⇐⇒ ϕ(x) F ϕ(y).

In this case, ϕ is called a Borel reduction from E to F.
E ∼B F if both E ≤B F and F ≤B E.
E <B F if both E ≤B F and E �B F.
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The isomorphism relations on G and Gfg

Definition
Let E be an equivalence relation on the Polish space X.

E is Borel if E is a Borel subset of X × X.
E is analytic if E is an analytic subset of X × X.

Example
If G, H ∈ G, then

G ∼= H iff ∃π ∈ Sym(N) π[mG] = mH .

Hence ∼=G is an analytic equivalence relation.

Theorem (Folklore)
The isomorphism relation on G is analytic but not Borel.
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The isomorphism relations on G and Gfg

Theorem
The isomorphism relation on Gfg is a countable Borel equivalence
relation.

Definition
The Borel equivalence relation E is countable if every E-class is
countable.

Theorem
∼=Gfg <B

∼=G .

Proof.
Suppose that f : G → Gfg is a Borel reduction. Then ∼=G = f−1(∼=Gfg )
is Borel, which is a contradiction.

Simon Thomas (Rutgers University) 8th Panhellenic Logic Symposium July 4th 2011



Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx
Definition (HKL)
E0 is the equivalence relation of
eventual equality on the space 2N

of infinite binary sequences.
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx
Definition (HKL)
E0 is the equivalence relation of
eventual equality on the space 2N

of infinite binary sequences.

Definition (DJK)
A countable Borel equivalence
relation E is universal if F ≤B E for
every countable Borel equivalence
relation F .
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx

Uncountably
many

relations

Definition (HKL)
E0 is the equivalence relation of
eventual equality on the space 2N

of infinite binary sequences.

Definition (DJK)
A countable Borel equivalence
relation E is universal if F ≤B E for
every countable Borel equivalence
relation F .

Question
Where do ∼=Gfg and ≡T fit in?

Simon Thomas (Rutgers University) 8th Panhellenic Logic Symposium July 4th 2011



Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx

Uncountably
many

relations

Confirming a conjecture of
Hjorth-Kechris ...

Theorem (S.T.-Velickovic)
∼=Gfg is a universal countable Borel
equivalence relation.

Corollary
≡T ≤B

∼=Gfg .

Remark
Unfortunately the Word Problem
Theorem isn’t so “obviously true” ...
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How to prove such theorems?

The Word Problem Theorem
Reduce to a problem in Recursion Theory and then apply
Martin’s Theorem on the determinacy of Borel games.
To be explained in the second talk ...

The HNN Embedding Theorem
Collapse the continuum R to a countable set and then apply
a suitable Absoluteness Theorem.
To be explained in the third talk ...
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The obvious follow-up question to the HNN Theorem

Question (Cherlin, Hrushovski, ...)
Does there exist a Borel homomorphism ϕ : G3 → G2 such that
G ↪→ ϕ(G) for all G ∈ G3?

The Friedman Embedding Theorem
There exists a Borel homomorphism ψ : Gfg → G2 such that
G ↪→ ψ(G) for all G ∈ Gfg .

Question
What does Friedman know that the group theorists don’t know ...
and that might conceivably be useful?

Answer
Absolutely nothing!
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The word problem as a group-theoretic invariant

Theorem (Friedman)
There exists a Borel map A 7→ ( gA,hA ) from 2N to Sym(N)× Sym(N)
such that:

If Γ ∈ Gfg and Word(Γ) ≤T A, then Γ ↪→ 〈gA,hA 〉 ∈ G2.
If A ≡T B, then {gA,hA } and {gB,hB } generate the same
subgroup of Sym(N) and so 〈gA,hA 〉 ∼= 〈gB,hB 〉.

Corollary (Friedman)
Let ψ : Gfg → G2 be the Borel homomorphism defined by

Γ 7→Word(Γ) 7→ 〈g Word(Γ),h Word(Γ) 〉.

Then Γ ↪→ ψ(Γ) for all Γ ∈ Gfg .
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Friedman’s Idea

Notation
If A ∈ 2N, then ϕA

i is the i-th partial A-recursive function and

ψA
i =

{
ϕA

i if ϕA
i ∈ Sym(N);

idN otherwise.

Lemma (Friedman)
If A ≡T B, then there exists a recursive permutation θ ∈ Sym(N)
such that ψB

i = ψA
θ(i) for all i ∈ N.
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Friedman’s Idea

Definition
Define πA ∈ Sym(N× N) by πA(i , j) = (i , ψA

i (j)).

Lemma (Friedman)
If A ≡T B, then there exists a recursive permutation θ ∈ Sym(N× N)
such that θ−1πAθ = πB.

Definition
Let HA 6 Sym(N× N) be the subgroup generated by

{πA} ∪ { θ ∈ Sym(N× N) | θ is recursive }.
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Friedman’s Idea

Notation
For each g ∈ Sym(N), define g̃ ∈ Sym(N× N) by

g̃(i , j) =

{
( 0,g(j) ) if i = 0.
( i , j ) otherwise.

Proposition (Friedman)
{ g̃ | g ∈ Sym(N) and g ≤T A } 6 HA.

Corollary (Friedman)
If Γ ∈ Gfg and Word( Γ) ≤T A, then Γ ↪→ HA.
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Galvin’s Embedding Theorem

Notation
For each π ∈ Sym(Ω), define π̂ ∈ Sym(Z× Z× Ω) by

π̂( m,n, ω ) =

{
( 0,0, π(ω) ) if m = n = 0;
( m,n, ω ) otherwise.

Theorem (Galvin)
If K 6 Sym(Ω) is a countable subgroup, then there exists a 2-generator
subgroup TK 6 Sym(Z× Z× Ω) such that { k̂ | k ∈ K } 6 TK .

Definition
Let Ω = N× N and let K be the group of recursive permutations of
N× N. Then GA is the 3-generator group generated by TK ∪ { π̂A }.

And to get a 2-generator group? Work a little harder!
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An Open Problem

Observation
The standard group-theoretic constructions (e.g. wreath products,
free products with amalgamation, HNN extensions, ...) induce
continuous homomorphisms ϕ : Gfg → Gfg .

Conjecture
There does not exist a continuous homomorphism ϕ : G3 → G2 such
that G ↪→ ϕ(G) for all G ∈ G3.
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