A Descriptive View of Combinatorial Group Theory

Simon Thomas

Rutgers University

July 4th 2011

୬ ର (୦ ଏ 🗗 । ଏ 🖹 ।

Simon Thomas (Rutgers University) 8th Panhellenic Logic Symposium

The Basic Theme:

Descriptive set theory provides a framework for explaining the inevitable non-uniformity of many classical constructions in mathematics.

Two Examples from Combinatorial Group Theory:

- The Higman-Neumann-Neumann Embedding Theorem.
- The word problem for finitely generated groups.

The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)

Every countable group G can be embedded into a 2-generator group.

Sketch Proof.

- Let $(g_n \mid n \in \mathbb{N})$ be a sequence of generators with $g_0 = 1$.
- Let \mathbb{F} be the free group on $\{a, b\}$ and let $G * \mathbb{F}$ be the free product.
- Then $\{ b^{-n}ab^n \mid n \in \mathbb{N} \}$ and $\{ g_n a^{-n}ba^n \mid n \in \mathbb{N} \}$ freely generate free subgroups of $G * \mathbb{F}$.
- Hence we can construct the HNN extension

$$G \hookrightarrow K_G = \langle G * \mathbb{F}, t | t^{-1} b^{-n} a b^n t = g_n a^{-n} b a^n \rangle$$

• Since $g_n \in \langle a, b, t \rangle$ and $t^{-1}at = b$, it follows that $K_G = \langle a, t \rangle$.

The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)

Every countable group G can be embedded into a 2-generator group.

Sketch Proof.

- Let $(g_n \mid n \in \mathbb{N})$ be a sequence of generators with $g_0 = 1$.
- Let \mathbb{F} be the free group on $\{a, b\}$ and let $G * \mathbb{F}$ be the free product.
- Then $\{ b^{-n}ab^n \mid n \in \mathbb{N} \}$ and $\{ g_n a^{-n}ba^n \mid n \in \mathbb{N} \}$ freely generate free subgroups of $G * \mathbb{F}$.
- Hence we can construct the HNN extension

$$G \hookrightarrow K_G = \langle G * \mathbb{F}, t \mid t^{-1}b^{-n}ab^nt = g_na^{-n}ba^n \rangle$$

• Since $g_n \in \langle a, b, t \rangle$ and $t^{-1}at = b$, it follows that $K_G = \langle a, t \rangle$.

Observation

It is **reasonably clear** that the isomorphism type of the 2-generator group K_G usually depends upon both the generating set of G and the particular enumeration that is used.

Question

Does there exist a more uniform construction with the property that the isomorphism type of K_G only depends upon the isomorphism type of G?

Simon Thomas (Rutgers University)

The word problem for finitely generated groups

For each $n \ge 1$, fix an computable enumeration $\{ w_k(x_1, \dots, x_n) \mid k \in \mathbb{N} \}$ of the words in $x_1, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}$.

Definition

If $G = \langle a_1, \cdots, a_n \rangle$ is a finitely generated group, then

$$\mathsf{Word}(G) = \{ \, k \in \mathbb{N} \mid w_k(a_1, \cdots, a_n) = 1 \, \}$$

Remark

The word problem for $G = \langle a_1, \cdots, a_n \rangle$ is the problem of deciding whether $k \in Word(G)$.

Simon Thomas (Rutgers University)

クへで ∢ / ♪ ◆ ミ → July 4th 2011

Convention

Throughout these talks, the powerset $\mathcal{P}(\mathbb{N})$ will be identified with $2^{\mathbb{N}}$ by identifying subsets of \mathbb{N} with their characteristic functions.

Definition

If $A, B \in 2^{\mathbb{N}}$, then A is Turing reducible to B, written $A \leq_T B$, if there exists a B-oracle Turing machine which computes A.

Remark

In other words, there is an algorithm which computes A modulo an oracle which correctly answers questions of the form "Is $n \in B$?"

If $A, B \in 2^{\mathbb{N}}$, then A is Turing equivalent to B, written $A \equiv_T B$, if both $A \leq_T B$ and $B \leq_T A$.

Definition

If $A \in 2^{\mathbb{N}}$, then the corresponding Turing degree is defined to be

$$\mathbf{a} = \{ B \in \mathbf{2}^{\mathbb{N}} \mid B \equiv_T A \}.$$

Proposition

If $G = \langle a_1, \cdots, a_n \rangle = \langle b_1, \cdots, b_m \rangle$ is a finitely generated group, then

$$\{k \in \mathbb{N} \mid w_k(a_1, \cdots, a_n) = 1\} \equiv_T \{\ell \in \mathbb{N} \mid w_\ell(b_1, \cdots, b_m) = 1\}.$$

Prescribing the Turing degree of the word problem

Theorem (Folklore)

For each subset $A \subseteq \mathbb{N}$, there exists a finitely generated group G_A such that Word(G_A) $\equiv_T A$.

• Notation:
$$[x, y] = x^{-1} y^{-1} x y$$

Sketch Proof.

Let G_A be the group generated by the elements a, b subject to the following defining relations, where $c_n = [b, a^{-(n+1)}b a^{n+1}]$.

- $a c_n = c_n a$ for all $n \in \mathbb{N}$.
- $b c_n = c_n b$ for all $n \in \mathbb{N}$.
- $c_n^2 = 1$ for all $n \in \mathbb{N}$.
- $c_n = 1$ for all $n \in A$.

Observation

The above construction of G_A is highly dependent on the specific subset $A \subseteq \mathbb{N}$, in the sense that if $A \neq B$ are subsets such that $A \equiv_T B$, then we "usually" have that $G_A \ncong G_B$.

Question

Does there exist a more uniform construction $A \mapsto G_A$ with the property that the isomorphism type of G_A only depends upon the Turing degree of A?

Simon Thomas (Rutgers University)

Notation

 ${\cal G}$ and ${\cal G}_{\textit{fg}}$ denotes the spaces of countable groups and f.g. groups.

"Theorem"

There does not exist an explicit map $G \mapsto K_G$ from \mathcal{G} to \mathcal{G}_{fg} such that for all $G, H \in \mathcal{G}$,

- $G \hookrightarrow K_G$; and
- if $G \cong H$, then $K_G \cong K_H$.

"Theorem"

There does not exist an explicit map $A \mapsto G_A$ from $2^{\mathbb{N}}$ to \mathcal{G}_{fg} such that for all $A, B \in 2^{\mathbb{N}}$,

- Word(G_A) $\equiv_T A$; and
- if $A \equiv T$ B then $G_A \cong G_B$.

Question

Which functions $f : \mathbb{R} \to \mathbb{R}$ are explicit?

Church's Thesis for the Reals

 $\mathsf{EXPLICIT} = \mathsf{BOREL}$

Definition

- A function $f : \mathbb{R} \to \mathbb{R}$ is Borel if graph(f) is a Borel subset of $\mathbb{R} \times \mathbb{R}$.
- Equivalently, $f^{-1}(A)$ is Borel for each Borel subset $A \subseteq \mathbb{R}$.

• The Cantor space 2^ℕ is a complete separable metric space with respect to the metric

$$d(x,y) = \sum_{n=0}^{\infty} \frac{|x(n) - y(n)|}{2^{n+1}}$$

 The corresponding topological space is a Polish space with basic open neighborhoods

$$U_s = \{ x \in 2^{\mathbb{N}} \mid x \upharpoonright n = s \},$$
 where $s \in 2^{<\mathbb{N}}$.

Simon Thomas (Rutgers University)

The Polish space of countably infinite groups

- Let \mathcal{G} be the set of groups with underlying set \mathbb{N} .
- We can identify each group

$$G \in \mathcal{G} \longleftrightarrow m_G \in \mathbf{2}^{\mathbb{N} imes \mathbb{N} imes \mathbb{N}}$$

with the graph of its multiplication operation.

- Then *G* is a *G_δ* subset of the Cantor space 2^{N×N×N};
 i.e. *G* is a countable intersection of open subsets.
- It follows that \mathcal{G} is a Polish subspace of the Cantor space $2^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$.

- A marked group (G, s̄) consists of a f.g. group with a distinguished sequence s̄ = (s₁, · · · , s_m) of generators.
- For each *m* ≥ 1, let *G_m* be the set of isomorphism types of marked groups (*G*, (*s*₁, · · · , *s_m*)) with *m* distinguished generators.
- Then there exists a canonical embedding $\mathcal{G}_m \hookrightarrow \mathcal{G}_{m+1}$ defined by

$$(G, (s_1, \cdots, s_m)) \mapsto (G, (s_1, \cdots, s_m, 1_G)).$$

• And $\mathcal{G}_{fg} = \bigcup \mathcal{G}_m$ is the space of f.g. groups.

The Polish space of f.g. groups

Let (G, s̄) ∈ G_m and let d_S be the corresponding word metric. For each ℓ ≥ 1, let

$$B_\ell(G, \overline{s}) = \{g \in G \mid d_S(g, 1_G) \leq \ell\}.$$

• The basic open neighborhoods of (G, \bar{s}) in \mathcal{G}_m are given by

$$U_{(G,\bar{s}),\ell} = \{ (H,\bar{t}) \in \mathcal{G}_m \mid B_\ell(H,\bar{t}) \cong B_\ell(G,\bar{s}) \}, \qquad \ell \ge 1.$$

Example

For each $n \ge 1$, let $C_n = \langle g_n \rangle$ be cyclic of order *n*. Then:

$$\lim_{n\to\infty}(C_n,g_n)=(\mathbb{Z},1).$$

୬**୯**୯⊀∄ ► ₹≣♪

Some Isolated Points

- Finite groups
- Finitely presented simple groups

The Next Stage

•
$$SL_3(\mathbb{Z})$$

Question (Grigorchuk)

What is the Cantor-Bendixson rank of G?

Simon Thomas (Rutgers University)

Theorem

There does not exist a Borel map $G \mapsto K_G$ from \mathcal{G} to \mathcal{G}_{fg} such that for all $G, H \in \mathcal{G}$,

- $G \hookrightarrow K_G$; and
- if $G \cong H$, then $K_G \cong K_H$.

Theorem

There does not exist a Borel map $A \mapsto G_A$ from $2^{\mathbb{N}}$ to \mathcal{G}_{fg} such that for all $A, B \in 2^{\mathbb{N}}$,

- Word(G_A) $\equiv_T A$; and
- if $A \equiv_T B$ then $G_A \cong G_B$.

Theorem

- Suppose that $A \mapsto G_A$ is any Borel map from $2^{\mathbb{N}}$ to \mathcal{G}_{fg} such that $Word(G_A) \equiv_T A$ for all $A \in 2^{\mathbb{N}}$.
- Then there exists a Turing degree d₀ such that for all d ≥ T d₀, there exists an infinite subset { A_n | n ∈ N } ⊆ d such that the groups { G_{A_n} | n ∈ N } are pairwise incomparable with respect to embeddability.

But Greg Cherlin wasn't satisfied ...

Theorem (*LC*)

- Suppose that G → K_G is any Borel map from G to G_{fg} such that G → K_G for all G ∈ G.
- Then there exists an uncountable Borel family *F* ⊆ *G* of pairwise isomorphic groups such that the groups { *K_G* | *G* ∈ *F* } are pairwise incomparable with respect to relative constructibility; i.e., if *G* ≠ *H* ∈ *F*, then *K_G* ∉ *L*[*K_H*] and *K_H* ∉ *L*[*K_G*].

Remarks

- (*LC*): There exists a Ramsey cardinal κ .
- In ZFC, we can find an uncountable Borel family *F* ⊆ *G* such that the groups { *K_G* | *G* ∈ *F* } are pairwise incomparable with respect to embeddability.

Let *E*, *F* be equivalence relations on the Polish spaces *X*, *Y*. Then the Borel map $\varphi : X \to Y$ is a homomorphism if

$$x E y \Longrightarrow \varphi(x) F \varphi(y).$$

Theorem

If $\varphi : \langle \mathcal{G}, \cong_{\mathcal{G}} \rangle \to \langle \mathcal{G}_{fg}, \cong_{\mathcal{G}_{fg}} \rangle$ is any Borel homomorphism, then there exists a group $G \in \mathcal{G}$ such that $G \not\hookrightarrow \varphi(G)$.

Heuristic Reason

Since $\cong_{\mathcal{G}}$ is much more complex than $\cong_{\mathcal{G}_{fg}}$, the Borel homomorphism must have a "large kernel" and hence "too many" groups $G \in \mathcal{G}$ will be mapped to a fixed $K \in \mathcal{G}_{fg}$.

シ < ? < @ > < ≧ >

Let E, F be equivalence relations on the Polish spaces X, Y.

• $E \leq_B F$ if there exists a Borel map $\varphi : X \to Y$ such that

$$x E y \iff \varphi(x) F \varphi(y).$$

In this case, φ is called a Borel reduction from E to F.

- $E \sim_B F$ if both $E \leq_B F$ and $F \leq_B E$.
- $E <_B F$ if both $E \leq_B F$ and $E \nsim_B F$.

Let E be an equivalence relation on the Polish space X.

- *E* is Borel if *E* is a Borel subset of $X \times X$.
- *E* is analytic if *E* is an analytic subset of $X \times X$.

Example

If $G, H \in \mathcal{G}$, then

$$G \cong H$$
 iff $\exists \pi \in \operatorname{Sym}(\mathbb{N}) \ \pi[m_G] = m_H.$

Hence $\cong_{\mathcal{G}}$ is an analytic equivalence relation.

Theorem (Folklore)

The isomorphism relation on \mathcal{G} is analytic but not Borel.

クへ (? ▲ 🗇 🕨 🛓 🖹)

Simon Thomas (Rutgers University)

8th Panhellenic Logic Symposium

Theorem

The isomorphism relation on \mathcal{G}_{fg} is a countable Borel equivalence relation.

Definition

The Borel equivalence relation E is countable if every E-class is countable.

Theorem

$$\cong_{\mathcal{G}_{fg}} <_{\mathcal{B}} \cong_{\mathcal{G}}.$$

Proof.

Suppose that $f : \mathcal{G} \to \mathcal{G}_{fg}$ is a Borel reduction. Then $\cong_{\mathcal{G}} = f^{-1}(\cong_{\mathcal{G}_{fg}})$ is Borel, which is a contradiction.

クへ (? ▲ 🗇 🕨 🛓 🖹)

Simon Thomas (Rutgers University)

8th Panhellenic Logic Symposium

���� ▲ ⊒ ▶

Simon Thomas (Rutgers University)

8th Panhellenic Logic Symposium

Simon Thomas (Rutgers University)

8th Panhellenic Logic Symposium

Definition (HKL)

 E_0 is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

୬ ର ୯ ଏ 🗗 🕨 ଏ 🖹 🕨

Simon Thomas (Rutgers University)

8th Panhellenic Logic Symposium

Definition (HKL)

 E_0 is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Definition (DJK)

A countable Borel equivalence relation E is universal if $F \leq_B E$ for every countable Borel equivalence relation F.

Simon Thomas (Rutgers University)

クへ (? ▲ @ ト ▲ 亘 ト July 4th 2011

Definition (HKL)

 E_0 is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Definition (DJK)

A countable Borel equivalence relation E is universal if $F \leq_B E$ for every countable Borel equivalence relation F.

Question

Where do $\cong_{\mathcal{G}_{fq}}$ and \equiv_T fit in?

シ < ? ▲ 🗗 🕨 🛓 🗎 🕨

Confirming a conjecture of Hjorth-Kechris ...

Theorem (S.T.-Velickovic)

 $\cong_{\mathcal{G}_{fg}}$ is a universal countable Borel equivalence relation.

Corollary

 $\equiv_T \leq_B \cong_{\mathcal{G}_{fg}}$.

Remark

Unfortunately the Word Problem Theorem isn't so "obviously true" ...

シ < ? ▲ 🗗 🕨 🛓 🗎 🕨

The Word Problem Theorem

- Reduce to a problem in Recursion Theory and then apply Martin's Theorem on the determinacy of Borel games.
- To be explained in the second talk ...

The HNN Embedding Theorem

- To be explained in the third talk ...

The obvious follow-up question to the HNN Theorem

Question (Cherlin, Hrushovski, ...)

Does there exist a Borel homomorphism $\varphi : \mathcal{G}_3 \to \mathcal{G}_2$ such that $G \hookrightarrow \varphi(G)$ for all $G \in \mathcal{G}_3$?

The Friedman Embedding Theorem

There exists a Borel homomorphism $\psi : \mathcal{G}_{fg} \to \mathcal{G}_2$ such that $G \hookrightarrow \psi(G)$ for all $G \in \mathcal{G}_{fg}$.

Question

What does Friedman know that the group theorists don't know ... and that might conceivably be useful?

Answer

Absolutely nothing!

Simon Thomas (Rutgers University)

The word problem as a group-theoretic invariant

Theorem (Friedman)

There exists a Borel map $A \mapsto (g_A, h_A)$ from $2^{\mathbb{N}}$ to $Sym(\mathbb{N}) \times Sym(\mathbb{N})$ such that:

- If $\Gamma \in \mathcal{G}_{fg}$ and $Word(\Gamma) \leq_T A$, then $\Gamma \hookrightarrow \langle g_A, h_A \rangle \in \mathcal{G}_2$.
- If A ≡_T B, then { g_A, h_A } and { g_B, h_B } generate the same subgroup of Sym(ℕ) and so ⟨ g_A, h_A ⟩ ≅ ⟨ g_B, h_B ⟩.

Corollary (Friedman)

Let $\psi : \mathcal{G}_{fg} \to \mathcal{G}_2$ be the Borel homomorphism defined by

$$\Gamma \mapsto \mathsf{Word}(\Gamma) \mapsto \langle g_{\mathsf{Word}(\Gamma)}, h_{\mathsf{Word}(\Gamma)} \rangle.$$

Then $\Gamma \hookrightarrow \psi(\Gamma)$ for all $\Gamma \in \mathcal{G}_{fg}$.

Notation

If $A \in 2^{\mathbb{N}}$, then φ_i^A is the *i*-th partial A-recursive function and

$$\psi_i^{\mathcal{A}} = egin{cases} arphi_i^{\mathcal{A}} & ext{ if } arphi_i^{\mathcal{A}} \in \mathsf{Sym}(\mathbb{N}); \ \mathsf{id}_{\mathbb{N}} & ext{ otherwise.} \end{cases}$$

Lemma (Friedman)

If $A \equiv_T B$, then there exists a recursive permutation $\theta \in \text{Sym}(\mathbb{N})$ such that $\psi_i^B = \psi_{\theta(i)}^A$ for all $i \in \mathbb{N}$.

Simon Thomas (Rutgers University)

Define
$$\pi_A \in \text{Sym}(\mathbb{N} \times \mathbb{N})$$
 by $\pi_A(i,j) = (i, \psi_i^A(j))$.

Lemma (Friedman)

If $A \equiv_T B$, then there exists a recursive permutation $\theta \in \text{Sym}(\mathbb{N} \times \mathbb{N})$ such that $\theta^{-1}\pi_A \theta = \pi_B$.

Definition

Let $H_A \leq \text{Sym}(\mathbb{N} \times \mathbb{N})$ be the subgroup generated by

 $\{\pi_A\} \cup \{\theta \in \mathsf{Sym}(\mathbb{N} \times \mathbb{N}) \mid \theta \text{ is recursive } \}.$

Simon Thomas (Rutgers University)

8th Panhellenic Logic Symposium

クへで ∉ / ♪ ◆ ミ → July 4th 2011

Notation

For each $g\in {
m Sym}(\mathbb{N}),$ define $ilde g\in {
m Sym}(\mathbb{N} imes\mathbb{N})$ by

$$ilde{g}(i,j) = egin{cases} (\,0,g(j)\,) & ext{if } i=0.\ (\,i,j\,) & ext{otherwise.} \end{cases}$$

Proposition (Friedman)

$$\{ \, \widetilde{g} \mid g \in \mathsf{Sym}(\mathbb{N}) \text{ and } g \leq_T A \,\} \leqslant H_A.$$

Corollary (Friedman)

If $\Gamma \in \mathcal{G}_{fg}$ and Word(Γ) $\leq_T A$, then $\Gamma \hookrightarrow H_A$.

୬ ର (୦ ଏ 🗗 । ଏ 🖹 ।

Simon Thomas (Rutgers University)

Galvin's Embedding Theorem

Notation

For each $\pi \in \text{Sym}(\Omega)$, define $\hat{\pi} \in \text{Sym}(\mathbb{Z} \times \mathbb{Z} \times \Omega)$ by

$$\hat{\pi}(\textit{m},\textit{n},\omega) = egin{cases} (0,0,\pi(\omega)) & ext{if } \textit{m}=\textit{n}=\textit{0}; \ (\textit{m},\textit{n},\omega) & ext{otherwise.} \end{cases}$$

Theorem (Galvin)

If $K \leq \text{Sym}(\Omega)$ is a countable subgroup, then there exists a 2-generator subgroup $T_K \leq \text{Sym}(\mathbb{Z} \times \mathbb{Z} \times \Omega)$ such that $\{\hat{k} \mid k \in K\} \leq T_K$.

Definition

Let $\Omega = \mathbb{N} \times \mathbb{N}$ and let *K* be the group of recursive permutations of $\mathbb{N} \times \mathbb{N}$. Then G_A is the 3-generator group generated by $T_K \cup \{ \hat{\pi}_A \}$.

And to get a 2-generator group? Work a little harder!

Simon Thomas (Rutgers University)

8th Panhellenic Logic Symposium

クへで ∉ / ♪ ◆ ミ → July 4th 2011

Observation

The standard group-theoretic constructions (e.g. wreath products, free products with amalgamation, HNN extensions, ...) induce continuous homomorphisms $\varphi : \mathcal{G}_{fg} \to \mathcal{G}_{fg}$.

Conjecture

There does not exist a continuous homomorphism $\varphi : \mathcal{G}_3 \to \mathcal{G}_2$ such that $G \hookrightarrow \varphi(G)$ for all $G \in \mathcal{G}_3$.

う∢⊙▲□▶▲≣▶