A Descriptive View of Combinatorial Group Theory

Simon Thomas
Rutgers University

July 4th 2011

Introduction

The Basic Theme:

Descriptive set theory provides a framework for explaining the inevitable non-uniformity of many classical constructions in mathematics.

Two Examples from Combinatorial Group Theory:

- The Higman-Neumann-Neumann Embedding Theorem.
- The word problem for finitely generated groups.

The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)

Every countable group G can be embedded into a 2-generator group.

Sketch Proof.

- Let $\left(g_{n} \mid n \in \mathbb{N}\right)$ be a sequence of generators with $g_{0}=1$.
- Let \mathbb{F} be the free group on $\{a, b\}$ and let $G * \mathbb{F}$ be the free product.
- Then $\left\{b^{-n} a b^{n} \mid n \in \mathbb{N}\right\}$ and $\left\{g_{n} a^{-n} b a^{n} \mid n \in \mathbb{N}\right\}$ freely generate free subgroups of $G * \mathbb{F}$.
- Hence we can construct the HNN extension

$$
G \hookrightarrow K_{G}=\left\langle G * \mathbb{F}, t \mid t^{-1} b^{-n} a b^{n} t=g_{n} a^{-n} b a^{n}\right\rangle
$$

- Since $g_{n} \in\langle a, b, t\rangle$ and $t^{-1} a t=b$, it follows that $K_{G}=\langle a, t\rangle$.

The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)

Every countable group G can be embedded into a 2-generator group.

Sketch Proof.

- Let $\left(g_{n} \mid n \in \mathbb{N}\right)$ be a sequence of generators with $g_{0}=1$.
- Let \mathbb{F} be the free group on $\{a, b\}$ and let $G * \mathbb{F}$ be the free product.
- Then $\left\{b^{-n} a b^{n} \mid n \in \mathbb{N}\right\}$ and $\left\{g_{n} a^{-n} b a^{n} \mid n \in \mathbb{N}\right\}$ freely generate free subgroups of $G * \mathbb{F}$.
- Hence we can construct the HNN extension

$$
G \hookrightarrow K_{G}=\left\langle G * \mathbb{F}, t \mid t^{-1} b^{-n} a b^{n} t=g_{n} a^{-n} b a^{n}\right\rangle
$$

- Since $g_{n} \in\langle a, b, t\rangle$ and $t^{-1} a t=b$, it follows that $K_{G}=\langle a, t\rangle$.

A natural question

Observation

It is reasonably clear that the isomorphism type of the 2-generator group K_{G} usually depends upon both the generating set of G and the particular enumeration that is used.

Question

Does there exist a more uniform construction with the property that the isomorphism type of K_{G} only depends upon the isomorphism type of G ?

The word problem for finitely generated groups

For each $n \geq 1$, fix an computable enumeration
$\left\{w_{k}\left(x_{1}, \cdots, x_{n}\right) \mid k \in \mathbb{N}\right\}$ of the words in $x_{1}, \cdots, x_{n}, x_{1}^{-1}, \cdots, x_{n}^{-1}$.

Definition

If $G=\left\langle a_{1}, \cdots, a_{n}\right\rangle$ is a finitely generated group, then

$$
\operatorname{Word}(G)=\left\{k \in \mathbb{N} \mid w_{k}\left(a_{1}, \cdots, a_{n}\right)=1\right\}
$$

Remark

The word problem for $G=\left\langle a_{1}, \cdots, a_{n}\right\rangle$ is the problem of deciding whether $k \in \operatorname{Word}(G)$.

Turing Reducibility

Convention

Throughout these talks, the powerset $\mathcal{P}(\mathbb{N})$ will be identified with $2^{\mathbb{N}}$ by identifying subsets of \mathbb{N} with their characteristic functions.

Definition

If $A, B \in 2^{\mathbb{N}}$, then A is Turing reducible to B, written $A \leq T B$, if there exists a B-oracle Turing machine which computes A.

Remark

In other words, there is an algorithm which computes A modulo an oracle which correctly answers questions of the form "Is $n \in B$?"

Turing Reducibility

Definition

If $A, B \in 2^{\mathbb{N}}$, then A is Turing equivalent to B, written $A \equiv{ }_{T} B$, if both $A \leq_{T} B$ and $B \leq_{T} A$.

Definition

If $A \in 2^{\mathbb{N}}$, then the corresponding Turing degree is defined to be

$$
\mathbf{a}=\left\{B \in 2^{\mathbb{N}} \mid B \equiv{ }_{T} A\right\} .
$$

Proposition

If $G=\left\langle a_{1}, \cdots, a_{n}\right\rangle=\left\langle b_{1}, \cdots, b_{m}\right\rangle$ is a finitely generated group, then

$$
\left\{k \in \mathbb{N} \mid w_{k}\left(a_{1}, \cdots, a_{n}\right)=1\right\} \equiv T\left\{\ell \in \mathbb{N} \mid w_{\ell}\left(b_{1}, \cdots, b_{m}\right)=1\right\}
$$

Prescribing the Turing degree of the word problem

Theorem (Folklore)

For each subset $A \subseteq \mathbb{N}$, there exists a finitely generated group G_{A} such that $\operatorname{Word}\left(G_{A}\right) \equiv{ }_{T} A$.

- Notation: $[x, y]=x^{-1} y^{-1} x y$

Sketch Proof.

Let G_{A} be the group generated by the elements a, b subject to the following defining relations, where $c_{n}=\left[b, a^{-(n+1)} b a^{n+1}\right]$.

- $a c_{n}=c_{n} a \quad$ for all $n \in \mathbb{N}$.
- $b c_{n}=c_{n} b \quad$ for all $n \in \mathbb{N}$.
- $c_{n}^{2}=1 \quad$ for all $n \in \mathbb{N}$.
- $c_{n}=1 \quad$ for all $n \in A$.

Another natural question

Observation

The above construction of G_{A} is highly dependent on the specific subset $A \subseteq \mathbb{N}$, in the sense that if $A \neq B$ are subsets such that $A \equiv{ }_{T} B$, then we "usually" have that $G_{A} \nRightarrow G_{B}$.

Question

Does there exist a more uniform construction $A \mapsto G_{A}$ with the property that the isomorphism type of G_{A} only depends upon the Turing degree of A ?

The answers ...

Notation

\mathcal{G} and $\mathcal{G}_{\text {fg }}$ denotes the spaces of countable groups and f.g. groups.

"Theorem"

There does not exist an explicit map $G \mapsto K_{G}$ from \mathcal{G} to $\mathcal{G}_{\text {fg }}$ such that for all $G, H \in \mathcal{G}$,

- $G \hookrightarrow K_{G}$; and
- if $G \cong H$, then $K_{G} \cong K_{H}$.

"Theorem"

There does not exist an explicit map $A \mapsto G_{A}$ from $2^{\mathbb{N}}$ to $\mathcal{G}_{\text {fg }}$ such that for all $A, B \in 2^{\mathbb{N}}$,

- $\operatorname{Word}\left(G_{A}\right) \equiv{ }_{T} A$; and
- if $A \equiv{ }_{T} B$ then $G_{A} \cong G_{B}$.

What is an explicit map?

Question

Which functions $f: \mathbb{R} \rightarrow \mathbb{R}$ are explicit?

Church's Thesis for the Reals EXPLICIT = BOREL

Definition

- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Borel if graph (f) is a Borel subset of $\mathbb{R} \times \mathbb{R}$.
- Equivalently, $f^{-1}(A)$ is Borel for each Borel subset $A \subseteq \mathbb{R}$.

The Cantor Space

- The Cantor space $2^{\mathbb{N}}$ is a complete separable metric space with respect to the metric

$$
d(x, y)=\sum_{n=0}^{\infty} \frac{|x(n)-y(n)|}{2^{n+1}} .
$$

- The corresponding topological space is a Polish space with basic open neighborhoods

$$
U_{s}=\left\{x \in 2^{\mathbb{N}}|x| n=s\right\}, \quad \text { where } s \in 2^{<\mathbb{N}} .
$$

The Polish space of countably infinite groups

- Let \mathcal{G} be the set of groups with underlying set \mathbb{N}.
- We can identify each group

$$
G \in \mathcal{G} \longleftrightarrow m_{G} \in 2^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}
$$

with the graph of its multiplication operation.

- Then \mathcal{G} is a G_{δ} subset of the Cantor space $2^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$; i.e. \mathcal{G} is a countable intersection of open subsets.
- It follows that \mathcal{G} is a Polish subspace of the Cantor space $2^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$.

The Polish space of f.g. groups

- A marked group (G, \bar{s}) consists of a f.g. group with a distinguished sequence $\bar{s}=\left(s_{1}, \cdots, s_{m}\right)$ of generators.
- For each $m \geq 1$, let \mathcal{G}_{m} be the set of isomorphism types of marked groups $\left(G,\left(s_{1}, \cdots, s_{m}\right)\right)$ with m distinguished generators.
- Then there exists a canonical embedding $\mathcal{G}_{m} \hookrightarrow \mathcal{G}_{m+1}$ defined by

$$
\left(G,\left(s_{1}, \cdots, s_{m}\right)\right) \mapsto\left(G,\left(s_{1}, \cdots, s_{m}, 1_{G}\right)\right)
$$

- And $\mathcal{G}_{f g}=\bigcup \mathcal{G}_{m}$ is the space of f.g. groups.

The Polish space of f.g. groups

- Let $(G, \bar{s}) \in \mathcal{G}_{m}$ and let d_{S} be the corresponding word metric. For each $\ell \geq 1$, let

$$
B_{\ell}(G, \bar{s})=\left\{g \in G \mid d_{S}\left(g, 1_{G}\right) \leq \ell\right\}
$$

- The basic open neighborhoods of (G, \bar{s}) in \mathcal{G}_{m} are given by

$$
U_{(G, \bar{s}), \ell}=\left\{(H, \bar{t}) \in \mathcal{G}_{m} \mid B_{\ell}(H, \bar{t}) \cong B_{\ell}(G, \bar{s})\right\}, \quad \ell \geq 1
$$

Example

For each $n \geq 1$, let $C_{n}=\left\langle g_{n}\right\rangle$ be cyclic of order n. Then:

$$
\lim _{n \rightarrow \infty}\left(C_{n}, g_{n}\right)=(\mathbb{Z}, 1)
$$

A slight digression ...

Some Isolated Points

- Finite groups
- Finitely presented simple groups

The Next Stage

- $S L_{3}(\mathbb{Z})$

Question (Grigorchuk)

What is the Cantor-Bendixson rank of \mathcal{G} ?

The answers revisited ...

Theorem

There does not exist a Borel map $\mathcal{G} \mapsto K_{G}$ from \mathcal{G} to $\mathcal{G}_{f g}$ such that for all $G, H \in \mathcal{G}$,

- $G \hookrightarrow K_{G}$; and
- if $G \cong H$, then $K_{G} \cong K_{H}$.

Theorem

There does not exist a Borel map $A \mapsto G_{A}$ from $2^{\mathbb{N}}$ to $\mathcal{G}_{\text {fg }}$ such that for all $A, B \in 2^{\mathbb{N}}$,

- $\operatorname{Word}\left(G_{A}\right) \equiv{ }_{T} A$; and
- if $A \equiv{ }_{T} B$ then $G_{A} \cong G_{B}$.

But Greg Cherlin wasn't satisfied ...

Theorem

- Suppose that $A \mapsto G_{A}$ is any Borel map from $2^{\mathbb{N}}$ to $\mathcal{G}_{\text {fg }}$ such that $\operatorname{Word}\left(G_{A}\right) \equiv{ }_{T} A$ for all $A \in 2^{\mathbb{N}}$.
- Then there exists a Turing degree \mathbf{d}_{0} such that for all $\mathbf{d} \geq{ }_{T} \mathbf{d}_{0}$, there exists an infinite subset $\left\{A_{n} \mid n \in \mathbb{N}\right\} \subseteq \mathbf{d}$ such that the groups $\left\{G_{A_{n}} \mid n \in \mathbb{N}\right\}$ are pairwise incomparable with respect to embeddability.

But Greg Cherlin wasn't satisfied ...

Theorem (LC)

- Suppose that $\mathcal{G} \mapsto K_{G}$ is any Borel map from \mathcal{G} to $\mathcal{G}_{\text {fg }}$ such that $G \hookrightarrow K_{G}$ for all $G \in \mathcal{G}$.
- Then there exists an uncountable Borel family $\mathcal{F} \subseteq \mathcal{G}$ of pairwise isomorphic groups such that the groups $\left\{K_{G} \mid G \in \mathcal{F}\right\}$ are pairwise incomparable with respect to relative constructibility; i.e., if $G \neq H \in \mathcal{F}$, then $K_{G} \notin L\left[K_{H}\right]$ and $K_{H} \notin L\left[K_{G}\right]$.

Remarks

- (LC): There exists a Ramsey cardinal κ.
- In ZFC, we can find an uncountable Borel family $\mathcal{F} \subseteq \mathcal{G}$ such that the groups $\left\{K_{G} \mid G \in \mathcal{F}\right\}$ are pairwise incomparable with respect to embeddability.

Why are the Theorems "obviously true"?

Definition

Let E, F be equivalence relations on the Polish spaces X, Y. Then the Borel map $\varphi: X \rightarrow Y$ is a homomorphism if

$$
x E y \Longrightarrow \varphi(x) F \varphi(y)
$$

Theorem

If $\varphi:\left\langle\mathcal{G}, \cong_{\mathcal{G}}\right\rangle \rightarrow\left\langle\mathcal{G}_{f g}, \cong_{\mathcal{G}_{f g}}\right\rangle$ is any Borel homomorphism, then there exists a group $G \in \mathcal{G}$ such that $G \nLeftarrow \varphi(G)$.

Heuristic Reason

Since $\cong_{\mathcal{G}}$ is much more complex than $\cong_{\mathcal{G}_{f g}}$, the Borel homomorphism must have a "large kernel" and hence "too many" groups $G \in \mathcal{G}$ will be mapped to a fixed $K \in \mathcal{G}_{f g}$.

Borel reductions

Definition

Let E, F be equivalence relations on the Polish spaces X, Y.

- $E \leq_{B} F$ if there exists a Borel map $\varphi: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow \varphi(x) F \varphi(y)
$$

In this case, φ is called a Borel reduction from E to F.

- $E \sim_{B} F$ if both $E \leq_{B} F$ and $F \leq_{B} E$.
- $E<_{B} F$ if both $E \leq_{B} F$ and $E \varkappa_{B} F$.

The isomorphism relations on \mathcal{G} and $\mathcal{G}_{f g}$

Definition

Let E be an equivalence relation on the Polish space X.

- E is Borel if E is a Borel subset of $X \times X$.
- E is analytic if E is an analytic subset of $X \times X$.

Example

If $G, H \in \mathcal{G}$, then

$$
G \cong H \quad \text { iff } \quad \exists \pi \in \operatorname{Sym}(\mathbb{N}) \pi\left[m_{G}\right]=m_{H}
$$

Hence $\cong_{\mathcal{G}}$ is an analytic equivalence relation.

Theorem (Folklore)

The isomorphism relation on \mathcal{G} is analytic but not Borel.

The isomorphism relations on \mathcal{G} and $\mathcal{G}_{f g}$

Theorem

The isomorphism relation on $\mathcal{G}_{\text {fg }}$ is a countable Borel equivalence relation.

Definition

The Borel equivalence relation E is countable if every E-class is countable.

Theorem

$$
\cong_{\mathcal{G}_{I g}}<B \cong_{\mathcal{G}} .
$$

Proof.

Suppose that $f: \mathcal{G} \rightarrow \mathcal{G}_{f g}$ is a Borel reduction. Then $\cong_{\mathcal{G}}=f^{-1}\left(\cong_{\mathcal{G}_{t g}}\right)$ is Borel, which is a contradiction.

Countable Borel equivalence relations

Countable Borel equivalence relations

Countable Borel equivalence relations

Definition (HKL)

E_{0} is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Countable Borel equivalence relations

Definition (HKL)

E_{0} is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Definition (DJK)

A countable Borel equivalence relation E is universal if $F \leq_{B} E$ for every countable Borel equivalence relation F.

Countable Borel equivalence relations

Definition (HKL)

E_{0} is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Definition (DJK)

A countable Borel equivalence relation E is universal if $F \leq_{B} E$ for every countable Borel equivalence relation F.

Question

$$
\text { Where do } \cong_{\mathcal{G}_{t g}} \text { and } \equiv_{T} \text { fit in? }
$$

Countable Borel equivalence relations

Confirming a conjecture of Hjorth-Kechris ...

Theorem (S.T.-Velickovic)

$\cong_{\mathcal{G}_{t g}}$ is a universal countable Borel equivalence relation.

Corollary

$\equiv T \leq_{B} \cong_{\mathcal{G}_{\text {tg }}}$.

Remark

Unfortunately the Word Problem Theorem isn't so "obviously true" ...

How to prove such theorems?

The Word Problem Theorem

- Reduce to a problem in Recursion Theory and then apply Martin's Theorem on the determinacy of Borel games.
- To be explained in the second talk ...

The HNN Embedding Theorem

- Collapse the continuum \mathbb{R} to a countable set and then apply a suitable Absoluteness Theorem.
- To be explained in the third talk ...

The obvious follow-up question to the HNN Theorem

Question (Cherlin, Hrushovski, ...)
Does there exist a Borel homomorphism $\varphi: \mathcal{G}_{3} \rightarrow \mathcal{G}_{2}$ such that $G \hookrightarrow \varphi(G)$ for all $G \in \mathcal{G}_{3}$?

The Friedman Embedding Theorem

There exists a Borel homomorphism $\psi: \mathcal{G}_{\text {fg }} \rightarrow \mathcal{G}_{2}$ such that $G \hookrightarrow \psi(G)$ for all $G \in \mathcal{G}_{\text {fg }}$.

Question

What does Friedman know that the group theorists don't know ... and that might conceivably be useful?

Answer

Absolutely nothing!

The word problem as a group-theoretic invariant

Theorem (Friedman)

There exists a Borel map $A \mapsto\left(g_{A}, h_{A}\right)$ from $2^{\mathbb{N}}$ to $\operatorname{Sym}(\mathbb{N}) \times \operatorname{Sym}(\mathbb{N})$ such that:

- If $\Gamma \in \mathcal{G}_{f g}$ and $\operatorname{Word}(\Gamma) \leq_{T} A$, then $\Gamma \hookrightarrow\left\langle g_{A}, h_{A}\right\rangle \in \mathcal{G}_{2}$.
- If $A \equiv_{T} B$, then $\left\{g_{A}, h_{A}\right\}$ and $\left\{g_{B}, h_{B}\right\}$ generate the same subgroup of $\operatorname{Sym}(\mathbb{N})$ and so $\left\langle g_{A}, h_{A}\right\rangle \cong\left\langle g_{B}, h_{B}\right\rangle$.

Corollary (Friedman)

Let $\psi: \mathcal{G}_{f g} \rightarrow \mathcal{G}_{2}$ be the Borel homomorphism defined by

$$
\Gamma \mapsto \operatorname{Word}(\Gamma) \mapsto\left\langle g_{\operatorname{Word}(\Gamma)}, h_{\operatorname{Word}(\Gamma)}\right\rangle
$$

Then $\Gamma \hookrightarrow \psi(\Gamma)$ for all $\Gamma \in \mathcal{G}_{f g}$.

Friedman's Idea

Notation

If $A \in 2^{\mathbb{N}}$, then φ_{i}^{A} is the i-th partial A-recursive function and

$$
\psi_{i}^{A}= \begin{cases}\varphi_{i}^{A} & \text { if } \varphi_{i}^{A} \in \operatorname{Sym}(\mathbb{N}) \\ \operatorname{id}_{\mathbb{N}} & \text { otherwise }\end{cases}
$$

Lemma (Friedman)

If $A \equiv{ }_{T} B$, then there exists a recursive permutation $\theta \in \operatorname{Sym}(\mathbb{N})$ such that $\psi_{i}^{B}=\psi_{\theta(i)}^{A}$ for all $i \in \mathbb{N}$.

Friedman's Idea

Definition

Define $\pi_{A} \in \operatorname{Sym}(\mathbb{N} \times \mathbb{N})$ by $\pi_{A}(i, j)=\left(i, \psi_{i}^{A}(j)\right)$.

Lemma (Friedman)

If $A \equiv{ }_{T} B$, then there exists a recursive permutation $\theta \in \operatorname{Sym}(\mathbb{N} \times \mathbb{N})$ such that $\theta^{-1} \pi_{A} \theta=\pi_{B}$.

Definition

Let $H_{A} \leqslant \operatorname{Sym}(\mathbb{N} \times \mathbb{N})$ be the subgroup generated by

$$
\left\{\pi_{A}\right\} \cup\{\theta \in \operatorname{Sym}(\mathbb{N} \times \mathbb{N}) \mid \theta \text { is recursive }\}
$$

Friedman's Idea

Notation

For each $g \in \operatorname{Sym}(\mathbb{N})$, define $\tilde{g} \in \operatorname{Sym}(\mathbb{N} \times \mathbb{N})$ by

$$
\tilde{g}(i, j)= \begin{cases}(0, g(j)) & \text { if } i=0 \\ (i, j) & \text { otherwise }\end{cases}
$$

Proposition (Friedman)

$\left\{\tilde{g} \mid g \in \operatorname{Sym}(\mathbb{N})\right.$ and $\left.g \leq_{T} A\right\} \leqslant H_{A}$.

Corollary (Friedman)

If $\Gamma \in \mathcal{G}_{\text {fg }}$ and $\operatorname{Word}(\Gamma) \leq_{T} A$, then $\Gamma \hookrightarrow H_{A}$.

Galvin's Embedding Theorem

Notation

For each $\pi \in \operatorname{Sym}(\Omega)$, define $\hat{\pi} \in \operatorname{Sym}(\mathbb{Z} \times \mathbb{Z} \times \Omega)$ by

$$
\hat{\pi}(m, n, \omega)= \begin{cases}(0,0, \pi(\omega)) & \text { if } m=n=0 \\ (m, n, \omega) & \text { otherwise }\end{cases}
$$

Theorem (Galvin)

If $K \leqslant \operatorname{Sym}(\Omega)$ is a countable subgroup, then there exists a 2-generator subgroup $T_{K} \leqslant \operatorname{Sym}(\mathbb{Z} \times \mathbb{Z} \times \Omega)$ such that $\{\hat{k} \mid k \in K\} \leqslant T_{K}$.

Definition

Let $\Omega=\mathbb{N} \times \mathbb{N}$ and let K be the group of recursive permutations of $\mathbb{N} \times \mathbb{N}$. Then G_{A} is the 3-generator group generated by $T_{K} \cup\left\{\hat{\pi}_{A}\right\}$.

And to get a 2-generator group? Work a little harder!

An Open Problem

Observation

The standard group-theoretic constructions (e.g. wreath products, free products with amalgamation, HNN extensions, ...) induce continuous homomorphisms $\varphi: \mathcal{G}_{f g} \rightarrow \mathcal{G}_{f g}$.

Conjecture

There does not exist a continuous homomorphism $\varphi: \mathcal{G}_{3} \rightarrow \mathcal{G}_{2}$ such that $G \hookrightarrow \varphi(G)$ for all $G \in \mathcal{G}_{3}$.

