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ABSTRACT
In many large-scale content sharing applications, partici-
pants or peers are grouped together forming clusters based
on their content or interests. In this paper, we deal with
the maintenance of such clusters in the presence of updates.
We model the evolution of the system as a strategic game,
where peers determine their cluster membership based on a
utility function of the query recall. Peers are guided either
by selfish or altruistic motives: selfish peers aim at improv-
ing the recall of their own queries, whereas altruistic peers
aim at improving the recall of the queries of other peers.
We study the evolution of such clusters both theoretically
and experimentally under a variety of conditions. We show
that, in general, local decisions made independently by each
peer enable the system to adapt to changes and maintain
the overall recall of the query workload.

1. INTRODUCTION
Large content sharing applications such as social networks

and peer-to-peer (p2p) file sharing systems have become
highly popular. Measurements from the deployment of such
large-scale systems have shown that the interactions among
their participants (peers) indicate the existence of implicit
groups (clusters) of peers having similar content or inter-
ests. For example, the formation of implicit groups centered
around topics described by common keywords has been ob-
served in the blogosphere [2]. In measurements of popular
on-line social networks [16], it was also observed that the
network structure is such that users form clusters based on
common interests, social affiliations or the wish to exploit
their shared content.

We particularly focus on clustering in p2p systems. In
such systems, peers form clusters by creating logical links to
other peers that share similar content or interests, thus, cre-
ating a clustered overlay network on top of the physical one.
The underlying reason behind the formation of such clusters
is that they enable the peers to find and exchange data rele-
vant to their interests with less effort. The clustered overlay
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is exploited for routing the queries that the users pose for
locating content of interest. Once the appropriate cluster
for a query is identified, the peers in the cluster possess rel-
evant content that can be exploited to evaluate and refine
the query efficiently. In particular, traces of popular p2p
systems have indicated that peers exhibit the property of
interest-based locality, that is, if a peer holds content sat-
isfying some query of another peer, then it is most likely
that it also maintains additional content of interest to this
other peer [18, 10]. Thus, placing the two peers in the same
cluster would increase the recall of their queries.

While, there is a large body of research on the discovery
and construction of clustered overlays [3, 5, 15, 21, 11, 8, 4,
6], their maintenance, which is imperative for coping with
the dynamic nature of peers, has been mostly ignored.

In this paper, we study the dynamics of clustered over-
lay networks by adopting a game-theoretic perspective. We
model the problem of cluster formation as a strategic game
with peers as the players. Each peer plays by selecting which
clusters to join. This selection or strategy is determined in-
dividually by each player, so as to minimize a utility function
that depends on the membership cost entailed in belonging
to a cluster and the cost of evaluating its query workload at
remote clusters. Game-theoretic models have been proposed
for creating overlays based on the connection cost and ra-
dius of the network graph [7, 14, 17]. The originality of our
approach lies on the fact that we consider clustered overlays,
focus on queries and aim at increasing their recall.

We model both selfish and altruistic behavior of peers
as demonstrated in real content-sharing systems by propos-
ing appropriate utility functions. We also introduce global
system quality criteria to measure the performance of the
system as a whole.

To cope with dynamics, our game is a repeated one: peers
re-evaluate their strategy and potentially relocate to other
clusters. We define appropriate relocation policies for both
selfish and altruistic peers and propose an uncoordinated
cluster reformulation protocol based on local decisions made
independently by each peer. We study both theoretically
and experimentally the evolution of clusters under the in-
dividual actions of each peer. Our experimental results
show that the uncoordinated protocol efficiently copes with
the changes in the overlay, while maintaining approximately
the same quality with a coordinated protocol that relies on
global decisions.

The rest of this paper is organized as follows. In Section 2,
we present the cluster formation problem as a game and de-
fine the utility functions for selfish and altruistic peers along
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Figure 1: Examples of cluster topologies

with corresponding global quality criteria. In Section 3, we
study stability and optimality. In Section 4, we describe our
reformulation protocol for cluster maintenance. Section 5
presents our experimental evaluation, and Section 6 refers
to related research. Section 7 concludes the paper.

2. RECALL-BASED CLUSTERING
We consider a distributed system consisting of highly dy-

namic nodes (peers) that share content. Usually, such dis-
tributed systems need to scale up to a large number of peers
(Internet-scale). Thus, a peer is unable to know and directly
communicate with all other peers in the system. Instead, it
establishes logical links with only a few other peers, creating
logical overlay networks on top of the physical one. Queries
are routed through this overlay to locate peers that hold
content of interest.

The efficiency of query evaluation depends heavily on the
topology of the overlay network. In this paper, we con-
sider clustered overlays in which peers with similar content
or interests form groups, called clusters. In such overlays,
the peers inside each cluster usually follow a topology that
ensures high connectivity, thus, making the evaluation of
queries within a cluster very efficient. For example, Fig. 1
shows 8 peers forming a cluster following a fully connected
topology (Fig. 1(a)), where each peer can reach any other
peer in the cluster with 1 hop, while (Fig. 1(b)) a structured
Chord-like ([19]) topology in which finding any peer takes
at most log(8) hops.

We use P to denote the current set of peers. We do not
assume any specific model for the data items shared by the
peers. We denote the number of results for a query q against
the documents of peer pi as result(q, pi).

Let Q be the list of all queries in the system. Note that
a query q may appear more than once in Q. Let num(Q)
be the number of all queries in Q and num(q, Q) be the
number of appearances of query q in Q. We characterize
the importance of a peer pi in the evaluation of a query q
in Q based on the results that pi offers for q with regards to
the total number of available results (i.e. the recall achieved
when q is evaluated solely on pi). Specifically:

r(q, pi) = result(q, pi)∑
pk∈P result(q, pk)

.

We also define as local workload of peer pi, Q(pi), the list of
queries issued by peer pi. Again, num(Q(pi)) stands for the
number of all queries in Q(pi) and num(q, Q(pi)) for the
number of appearances of query q in Q(pi).

Clustering as a Game: We model the problem of cluster
formulation as a strategic game. Each peer pi represents
a player in the game and its strategy si is defined by the
set of clusters it joins. In particular, each peer pi chooses
which clusters to join from the set of Cmax clusters in the
system, C = {c1, c2, . . . , cCmax}, thus, defining its strategy

si ⊆ C. For example, consider P = {p1, p2, p3, p4} and C =
{c1, c2, c3}, and let us assume that p1 belongs to clusters c1

and c2, p2 belongs to c1, p3 to c3 and p4 to c2 and c3. Then,
the corresponding strategies are s1 = {c1, c2}, s2 = {c1},
s3 = {c3} and s4 = {c2, c3}.

We can describe any cluster configuration by the set of
strategies S = {s1, s2, . . . , s|P |} that the peers in P deploy,
since from this set, we can derive the set of peers belonging
to each cluster in C. In this paper, we constrain Cmax to
be equal to |P |, i.e. it cannot exceed the number of peers,
and assume that some clusters may be empty if needed. To
cope with peer dynamics, each peer plays more than once,
thus, the cluster configuration is not static.

The goal of the game is for each player (peer) to mini-
mize or maximize a utility function. We discern between
two types of peers, selfish and altruistic ones, and define a
corresponding utility function for each type.

2.1 Individual Peer Measures
A selfish peer is interested in increasing the recall of its

local query workload by joining those clusters whose peers
would increase the recall of its local workload the most.
Specifically, let P (si) be the set of all peers belonging to any
cluster c ∈ si. The gain for a peer pi for choosing strategy
si is the recall of its local workload achieved by evaluating
its queries in the peers P (si). Stated differently, the cost for
pi associated with si is the cost (recall) for obtaining query
results from peers located in clusters that do not belong to
si, that is, for peers not in P (si).

Clearly, this recall-based cost is minimized, if a peer joins
all Cmax clusters in the system. However, participation in a
cluster imposes communication and processing costs. Such
costs depend on the size and the topology of the cluster.
The larger the size of the cluster, the higher the cost of join-
ing, leaving and maintaining the cluster. Furthermore, a
highly connected topology, where each peer maintains links
to a large number of other peers, increases the cluster mem-
bership cost. To capture this, the cluster membership cost
is defined as a monotonically increasing function θ of the
number of peers belonging to the cluster, i.e. as a function
of the cluster size |c|. This function depends on the cluster
topology, for instance, when all peers are connected to each
other (Fig. 1(a)), θ may be linear, whereas in the case of
structured overlays (Fig. 1(b)), θ may be logarithmic.

Definition 1 (Individual Peer Cost). In a cluster
configuration S, the individual cost for a selfish peer pi for
choosing strategy si is:

pcost(pi, S) = α
∑

ck∈si

θ(|ck|)
|P |

+
∑

q in Q(pi)

num(q, Q(pi))

num(Q(pi))

∑

pj /∈P (si)

r(q, pj)

The first term expresses the cost for cluster membership and
the second one the cost (in terms of recall) for obtaining
results from peers outside the selected clusters, that is, the
average result loss from not participating in all clusters. The
recall loss of each query is weighted by its frequency in the
local workload of pi. Parameter α (α ≥ 0) determines the
extent of influence of the cluster membership cost in cluster
formation. From a system perspective, parameter α charac-
terizes the ratio between updates and queries in the system.
For a given θ, a large value of α means that updates in the
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system are rather frequent and therefore the cost for cluster
maintenance is high, while a small value indicates that query
evaluation efficiency is more important for determining the
overall system performance. Finally, factor 1/|P | is used for
normalizing the cluster membership cost.

Observe that the two terms of the cost function tend to
guide the peer towards selecting opposing strategies. For
example, assume that a peer can join only one cluster and
that α ≥ 1. In a cluster configuration in which all peers form
a single cluster, the membership cost, that is θ, is maximized
(θ(|P |)), while the recall loss is minimized (0) since for any
peer all results for its queries are located within its cluster.
In contrast, the recall loss is maximized when pi forms a
cluster by its own, while the membership cost is in this case
minimized.

In addition to modeling the behavior of selfish peers, we
also want to model the behavior of altruistic peers that are
not concerned about their own queries, but instead, about
offering to other peers. Therefore, we define the corre-
sponding utility function, called individual peer contribution
(pcontr) that an altruistic peer pi aims at maximizing based
on how much pi improves the recall of the other peers that
belong to the clusters of its strategy. Thus, analogously to
Def. 1, the individual contribution is defined as follows:

Definition 2 (Individual Peer Contribution). In
a cluster configuration S, the individual contribution of an
altruistic peer pi by choosing strategy si is:

pcontr(pi, S) =
1

|P |
∑

pj∈P (si)

∑

q∈Q(pj)

num(q, Q(pj))

num(Q(pj))
r(q, pi)−

α

|P |2
∑

ck∈si

|ck|θ(|ck|)

While pcost measures the cost pi pays for its query workload
and membership to clusters in si, pcontr is a positive mea-
sure showing what other peers gain when pi chooses strategy
si. The first term of the sum measures the contribution of
peer pi to the peers in the clusters of its strategy, while the
second term measures the membership cost these peers pay
if pi joins their clusters. Similarly to the individual cost, the
membership cost also takes its lowest value when the peer
forms a cluster by its own and its largest when all peers
form a single cluster (if we consider that each peer joins
only a single cluster), whereas the recall it contributes to
other peers takes its largest value in the single cluster and
its lowest when it forms a cluster by its own. Individual con-
tribution is defined from the perspective of each beneficiary
peer, that is, the queries weights are defined based on their
relative frequencies per such peer.

Besides the pure selfish and the pure altruistic behavior,
hybrid behavior can be captured by trying to minimize the
following cost function:

hpcost(pi, S) = d pcost(pi, S)− (1− d) pcontr(pi, S),
where d ∈ [0, 1] captures the degree of selfishness of peer pi.
A hybrid peer considers both its own cost (with degree d)
and its contribution to the others (with degree 1− d).

Finally, note that our game is a non-cooperative asym-
metric game. A game is asymmetric, if the value of the
utility function or payoff differ if different players select the
same strategy.

2.2 Global Cost Measures
We measure the overall quality of a cluster configuration

by the achieved social cost (SCost) defined as:

Definition 3 (Social Cost). The social cost of a clus-
ter configuration S is defined as the sum of the individual
costs of all peers in P :

SCost(S) =
∑

pi∈P

pcost(pi, S)

We can also evaluate the overall quality of the configura-
tion from a query workload perspective, by considering the
average cost for attaining results for all queries in Q.

Definition 4 (Workload Cost). The workload cost
of a cluster configuration S is:

WCost(S) = α
∑

ck∈C

|ck|θ(|ck|)
|P | +

∑
q in Q

num(q, Q)

num(Q)

∑

pi s.t. q in Q(pi)

num(q, Q(pi))

num(q, Q)

∑

pj /∈P (si)

r(q, pj)

The first term expresses the cost for maintaining the clus-
ters. The second term expresses the cost for all queries, i.e.,
the cost for evaluating them outside the clusters of their
initiator.

The main difference between the social and the workload
cost lies on how they assign weights to the queries. In the
social cost, each peer assigns weights to its queries based on
their frequency in its local workload, whereas in the work-
load cost, the weight assigned to each query is based on the
frequency of the query in the overall query workload. Intu-
itively, while the social cost regards all peers as equals, the
workload cost considers more demanding peers, i.e. peers
that pose more queries, as more important than low de-
manding ones.

The two cost measures are not equal in the general case,
but for equally demanding peers the following proposition
holds.

Proposition 1. If for all peers pi, pj ∈ P , num(Q(pi)) =

num(Q(pj)) = num(Q)
|P | , the social and the workload cost

measures are proportional to each other.
Proof. Using the definition of individual cost (Def. 1), the
social cost can be written as:

SCost(S) = α
∑

pi∈P

∑
ck∈si

θ(|ck|)
|P |

+
∑

pi∈P

∑

q in Q(pi)

num(q, Q(pi))

num(Q(pi))

∑

pj /∈P (si)

r(q, pj)

The membership cost of SCost is equal to the first term of
WCost. Just consider that each cluster ck appears in the
sum of SCost as many times as the peers that belong to it,
i.e., its size |ck|. The second term differs from the second
term of SCost only on how much the workload of each peer
is taken into account. It is easy to see, that if peers get
an equal part of the query workload, i.e., num(Q(pi)) =
num(Q(pj)), for all peers pi, pj ∈ P , the recall parts of the
two costs are proportional.2

Proposition 1 implies that improving the social cost im-
proves the workload cost and vice versa.

In accordance to the social and workload cost, we define
the corresponding social and workload contribution as:

Definition 5 (Social Contribution). The social con-
tribution of a cluster configuration S is defined as the sum
of the individual contributions of all peers in P :

SContr(S) =
∑

pi∈P

pcontr(pi, S)
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Definition 6 (Workload Contribution). The work-
load contribution for a cluster configuration S is:

WContr(S) =
∑

q in Q

num(q, Q)

num(Q)

∑

pi s.t. q in Q(pi)

num(q, Q(pi))

num(q, Q)

∑

pj∈P (si)

r(q, pj)− α

|P |2
∑

pi∈P

∑
ck∈si

|ck|θ(|ck|)

Similarly to SCost and WCost, the SContr and WContr
are also proportional for specific workload distributions, in
particular, when the query workload is uniformly distributed
among the peers.

Proposition 2. If for all pi, pj ∈ P and all q in Q,
num(q, Q(pi))/num(Q(pi)) = num(q, Q(pj))/num(Q(pj)) =
num(q, Q)/num(Q), the social and the workload contribu-
tion measures are proportional to each other.

Intuitively, social contribution favors queries that are pop-
ular to specific peers, whereas its workload counterpart fa-
vors overall popular queries.

Let us now examine the relationship between the workload
cost and the workload contribution.

Proposition 3. For α = 0, that is, if ignore the cluster
membership cost, it holds: WCost(S) = 1 − WContr(S),
which means that the two measures are complementary.
Proof. It holds that:∑

pj /∈P (si)

r(q, pj) +
∑

pj∈P (si)

r(q, pj) = 1, ∀q in Q, si ∈ S. (1)

For α = 0, we have: WCost(S) = 1−WContr(S).2

Let us consider now, the social cost and the social contri-
bution.

Corollary 1. For uniform query workload among peers
the social cost and social contribution are complementary:
SContr(S) = 1− SCost(S).
Proof. Again, for α = 0, we can rewrite SCost(S) using (1)

and if we assume that num(q,Q(pi))
num(Q(pi))

is the same for all peers

pi, then we have that: SContr(S) = 1− SCost(S).2

3. STABILITY AND OPTIMALITY
The goal of each player (peer) is to minimize/maximize

its individual cost/contribution. We will refer in the follow-
ing to selfish peers, but the same results are applicable for
altruistic behavior.

3.1 Stability
The question that arises is: if we leave the players free

to play the game to achieve their goal, will the system ever
reach a stable state in which no players desire to change
their strategy (the set of clusters they belong to)? That is,
will the system reach a Nash equilibrium?
Nash Equilibrium: Formally, a (pure) Nash equilibrium is
a set of strategies S such that, for each peer pi with strategy
si ∈ S, and for all alternative set of strategies S′ which differ
only in the i-th component (different cluster sets s′i for pi):

pcost(pi, S) ≤ pcost(pi, S
′) (2)

This means that in a Nash equilibrium, no peer has an in-
centive to change the set of clusters it currently belongs to,
that is, Nash equilibria are stable.

We shall first prove an interesting property of the cluster
formation game. Due to the form of our cost function, the

stable states in our system have the following property that
constraints the number of possible configurations:

Lemma 1. In any stable state, there are no clusters ci, cj

such that ci ⊆ cj, i 6= j.
Proof. Let S be a cluster configuration, ci, cj be two clusters
in C such that ci ⊆ cj . Consider a peer pk, pk ∈ ci. Clearly,
pk ∈ cj . Let the individual cost of pk be: pcost(pk, S) =
αγ+δ, where γ is the membership cost for pk when following
strategy sk ∈ S and δ the respective recall it loses from the
peers that do not belong to P (sk). Assume for the purposes
of contradiction that S describes a stable configuration, then
pk can not select a strategy that would reduce its cost. Let
us examine the strategy s′k = sk − {ci}. Let S′ be the
configuration resulting by replacing sk with s′k in S. Then,

pcost(pk, S′) = α(γ − θ(|ci|)
|P | + δ) < pcost(pk, S). The recall

part of the cost function remains the same, because P (sk) =
P (s′k). Thus, pk can reduce its cost by selecting the strategy
s′k, and therefore S is not a stable state, which contradicts
our assumption.2

Because of Lemma 1, it holds:

Corollary 2. When a peer forms a cluster by itself, it
cannot belong to any other cluster.

It is rather simple to show that for the cluster formation
game, a pure Nash equilibrium does not always exist.

Proposition 4. A pure Nash equilibrium does not al-
ways exist for the cluster formation game.
Proof. Let us consider a simple scenario of two peers p1

and p2. Consider also that Q(p1) consists of a single query
q1 satisfied by p2 (i.e. r(q1, p2) = 1) and Q(p2) consists
of q2 also satisfied by p2. Let C = {c1, c2} be the clus-
ters in the system. Using Lemma 1, the following cluster
configurations are possible: p1 ∈ c1 and p2 ∈ c2, described
by S1 = {{c1}, {c2}}, p1 ∈ c2 and p2 ∈ c1, described by
S2 = {{c2}, {c1}} and both p1, p2 ∈ c1 or c2 described
by S3 = {{c1}, {c1}} and S4 = {{c2}, {c2}}, respectively.
Let us assume a linear θ function, θ(n) = n. Then, for
any value of α > 0, we can show that none of the pos-
sible configurations is a Nash equilibrium. In particular,
since the first two configurations are symmetric, let us ex-
amine the first one. The individual costs of the two peers
are: pcost(p1, S1) = α 1

2
+ 1 and pcost(p2, S1) = α 1

2
. If p1

moves to cluster c2, then the system configuration becomes
{{c2}, {c2}}, that is, configuration S4, and the cost for p1

becomes pcost(p1, S4) = α ≤ pcost(p1, S1). Thus, configu-
ration S1 is not a Nash equilibrium, since p1 can reduce its
cost by moving to c2. Let us consider now the configuration
S3 (S4 is symmetric) in which both peers belong to the same
cluster. Their individual costs are now: pcost(p1, S3) = α
and pcost(p2, S3) = α. Peer p2 can reduce its cost by moving
to the (empty) cluster c2 (resulting in configuration S1) and
therefore S3 is not a Nash equilibrium. Table 1 summarizes
the payoff (cost) table for this two-player game.2

3.2 Social Optimum
Even if the system does eventually reach a stable state

(Nash equilibrium), it is not always the case that this sta-
ble state has a satisfying cost. A measure widely used for
evaluating how far from the best possible outcome a stable
state is, is the price of anarchy defined as the ratio between
the social cost of the worst Nash equilibrium and the “social
optimum”. The social optimum is obtained by minimizing
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the social cost measure over all possible configurations, even
for those configurations that do not correspond to a stable
state.

We can acquire a rough bound of the social optimum by
considering each peer separately and evaluating its individ-
ual cost over all possible configurations. Then, by selecting
for each peer the configuration that yields the minimum in-
dividual cost and adding these values, we obtain a bound for
the minimum value of the social cost in the system, i.e., for
the social optimum. Note that we are adding together indi-
vidual costs that may correspond to different configurations,
thus, the estimated social cost may refer to a configuration
that cannot exist and may be very far from the actual value
of the social optimum that we can achieve.

3.3 Case Studies
Although, in the general case, a Nash equilibrium does not

always exist, there are cases in which, for specific configu-
rations and data and query workload distributions, stable
clusters may be formed. Next, we present two scenarios:
Case I: No Underlying Clustering: In this case, all
peers in P are considered similar in the following sense:

num(Q(pi)) = num(Q(pj)) = num(Q)/|P |,∀pi, pj ∈ P
r(q, pi) = r(q, pj) = 1/|P |, ∀q in Q, ∀pi, pj ∈ P

This corresponds to a data and query distribution for which
no physical grouping among the peers exist. Note that our
game becomes a symmetric one, since all players yield the
same payoffs when applying the same strategy.
Case II: Symmetric Clusters: In this case, the data
and query distribution are such that a perfect underlying
clustering/grouping exists among the peers. In particular,
the peers in P belong to m (m > 1) different groups of the
same size |c| = |P |/m. The members in each group offer
and demand data only within their group. Formally, for all
pairs of peers pi, pj in the same group, it holds num(Q(pi))
= num(Q(pj)) and ∀q in Q(pj), r(q, pi) = 1/|c|, whereas
for all pairs of peers pi, pj not in the same group, the lists
Q(pi) and Q(pj) have no queries in common and ∀q in Q(pj),
r(q, pi) = 0.

For each of these two scenarios, we consider a number of
cluster configurations and study each of them in terms of
stability and optimality.

Stability
To determine whether a cluster configuration constitutes a
Nash equilibrium, we need to ensure that the individual cost
of any peer is not smaller in any possible configuration that
can result from the current one by changing only the strategy
of this peer, by evaluating Inequality (2).

For the first scenario (Case I), we study the following clus-
ter configurations:
Case(I.a): A single cluster. In this case, all peers form
a single cluster. From Corollary 2, the only way a peer pi

can change its strategy is by forming a cluster by its own.
Case(I.b): Each peer forms a cluster by its own. In
this case, each peer forms a cluster by its own. The only
way for a peer pi to change its strategy is to leave its own
cluster and join k other clusters, where 1 ≤ k ≤ |P | − 1.
Case(I.c): m non-overlapping clusters. The peers
form m non-overlapping clusters of the same size |c|. Con-
sider a peer pi ∈ cj . The available options for pi for changing
its strategy are to: (1) form a cluster by its own; (2) addi-
tionally to cj , join k other clusters, where 1 ≤ k < m; or (3)

leave cj and join k other clusters.
Table 2(line 1) presents the results of our evaluation for

selfish peers that aim at minimizing their individual cost,
while Table 2(line 2) for altruistic peers that aim at maxi-
mizing their contribution.

This shows that, even if there is no underlying clustering
according to the data and query workload distribution, a
system can still reach a stable state. This state depends on
the cluster maintenance costs and the portions of data and
query workload each peer offers or demands.

To make this more concrete, let us assume a θ function
corresponding to a linear function of the form: θ(n) = λn,
0 < λ ≤ 1, and rewrite the conditions regarding α. Then,
a configuration in which all peers belong to a single cluster
is stable for α ≤ 1/λ. Recall that large values of α mean
that maintenance costs are more important than query re-
call. Thus, for the same θ, for values of α larger than this
threshold, the maintenance cost would surpass those gained
by recall and would lead to splitting the cluster. Note also,
that whether a single cluster is stable or not depends also on
the topology as captured through function θ. For instance,
when λ is small (less connected topology), a single cluster
remains stable for larger values of α.

For the symmetric clusters scenario, we limit our analysis
to the case in which each peer can belong only to one cluster
and study the same configurations as in Case I.
Case(II.a): A single cluster. Same as Case (I.a).
Case(II.b): Each peer forms a cluster by its own.
The only option for pi is to join another peer pj , which
either is in the same group with pi, or belongs to a different
group. This configuration is the same, whatever group out
of the m− 1 we consider, since all such peers are symmetric
to pi, i.e., they do not satisfy any of its local query workload.
Case(II.c): m non-overlapping clusters. In this case,
we consider that each of the m clusters contains peers of a
single group. Then, the individual peer cost for each peer
pi ∈ P is equal to its cluster membership cost, since the cost
for computing queries outside its cluster is zero (there are
no results for Q(pi) in peers not in P (si)). If pi wants to
change its strategy si, then it can move either to a cluster
on its own or to a different existing cluster.

The results of the same analysis as in the first case are
presented in Table 2(lines 3) for selfish peers. The results
for altruistic ones can be easily computed and are omitted.

By comparing Case I (no underlying clustering) with k =
1 and Case II (perfect underlying clustering), we see that
in Case II, configuration (b) in which each peer forms its
own cluster (no clustering) is stable for larger values of α,
whereas the other two configurations (a) and (c) (with some
form of clustering) are stable for smaller values of α.

Social Optimum
We examine whether any of the Nash equilibria that we have
previously computed achieve a social cost equal to the social
optimum. To this end, we need to compare their social cost
against that of any other possible configuration. We assume
selfish peers and a linear θ function. Our results can be
easily adapted for altruistic peers.

In Case I, where all peers are symmetric, minimizing the
individual cost of any peer suffices to minimize the social
cost.
Case(I.a): A single cluster. We already know that a
configuration in which each peer forms its own cluster has a
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Table 1: Payoff Table
p2 joins c1 p2 joins c2

p1 joins c1 α,α α
2
+1,α

2
p1 joins c2

α
2
+1,α

2
α,α

larger cost than Case (I.a), since we assume that α ≤ 1/λ
and Case (I.a) is an equilibrium. The only other possible
configuration is when a peer pi joins k clusters with different
sizes. The best case (the case with the lowest cost) is the one
where the k clusters have no overlapping members. It also
holds that |P (si)| < |P |, otherwise we would have a single
cluster. By comparing the social cost of this configuration
to the cost of Case (I.a), we see that for α ≤ 1/λ, Case (I.a)
has the lowest cost. Thus, the value of the cost of Case (I.a)
corresponds to the social optimum.

By applying a similar analysis, we conclude that: Case
(I.b) has a cost equal to the social optimum for a ≥ 1/λ,
while Case (I.c) does not reach the social optimum for any
m > 1.

For Case II, the corresponding conclusions are: Case (II.a)
does not reach the social optimum for any value of α > 0,
since separating the m groups always results in a configu-
ration with a lower social cost. Case (II.b) and Case (II.c)
correspond to states with cost equal to the social optimum
for a ≥ m/λ and α ≤ 1/λ, respectively.

A detailed analysis of the above can be found in [13].

4. CLUSTER EVOLUTION
Assume some initial cluster configuration. As the system

evolves, the recall achieved by this cluster configuration may
deteriorate. Changes that affect the quality of clustering in-
clude topology updates as peers enter and leave the system,
as well as changes of peer content and query workload. We
propose a suite of protocols to keep the clustered overlay
up-to-date with respect to these changes. Our protocols are
based on local relocation policies that each peer follows so
as to move to the most appropriate cluster under the given
system conditions. Such protocols can also be used to boot-
strap the system, for example, by applying them on an initial
configuration in which all peers belong to a single cluster or
each peer forms a cluster by its own. We describe first the
relocation policies followed by each peer, and then how they
are applied to form a new cluster configuration.

4.1 Relocation Policies
Unlike most network creation games, our game is not

a one-shot game but a repeated one, where the peers re-
examine their strategy selection through time to cope with
the system dynamics.

Let Scur be the current cluster configuration. When it is
its turn to play, each peer pi considers all possible configura-
tions Sj that differ from Scur only at their i-th component,
i.e., the strategy si that peer pi follows. For simplicity, in
the rest of this paper, we focus on the case where each peer
belongs to a single cluster. Let Ccur be the current set of
(nonempty) clusters in the system. Then, for each peer pi,
it holds: si = {cl}, for some cl ∈ Ccur. In this case, the
possible strategies for pi besides its current one are: either
moving to a cluster cv, cv 6= cl for cv ∈ Ccur or if cl 6= {pi},
forming a cluster by its own.

Based on the behavior of each peer, we consider two types

of relocation policies: selfish and altruistic. A peer with a
selfish policy chooses the strategy snew for which the corre-
sponding cluster configuration Snew is:

Snew = arg minSj pcost(pi, Sj)
Analogously, a peer with an altruistic policy chooses the
strategy snew for which the corresponding Snew is:

Snew = arg maxSj pcontr(pi, Sj)
A hybrid relocation policy that uses the hybrid peer cost,
hpcost, is also feasible.

To measure how much a peer benefits from moving to a
new cluster, we define a new measure, the gain. The gain is
defined for a selfish peer as:

gainpi = pcost(pi, Scur)− pcost(pi, Snew)
If gainpi > 0, then pi benefits from selecting the new strat-
egy. Analogously, gain is defined for altruistic peers.

To implement the policies, we assume that each cluster
has a unique identifier, cid, known by all its peers, which
is assigned based on peer IPs and timestamps. For exam-
ple, when the first peer joins a cluster, its cid is formed by
the IP of the peer concatenated with a timestamp. When
other peers join the cluster, they are informed of its cid.
Query results are annotated with the corresponding cids of
the clusters that provide them. Thus, peers do not need to
know all system cids, but they gradually learn them, as their
queries acquire results annotated with new cids. Therefore,
when all peers leave a cluster, its cid just becomes unused.
Recycling cids is beyond the scope of this paper.

In the selfish relocation policy, since, all query results re-
ceived by a peer are annotated with the cid of the cluster
they came from, each peer can monitor its recall with re-
spect to all clusters in the system and use it to evaluate its
individual cost for the different configurations it needs to
consider when it plays. In the altruistic relocation policy,
instead of its recall, each peer records the number of re-
sults it sends to each cluster so as to evaluate its individual
contribution for all different si components.

Since no global view of the system is available, a peer
can not be aware of all available results for a query and we
instead use as recall, in the cost evaluation, the fraction of
results returned to peer pi for query q by a cluster cj to the
total number of results returned for the query.

4.2 Cluster Reformulation Protocol
The relocation policies along with the gain are used to

form the reformulation protocols.
Coordinated Protocol. We first consider a coordinated
reformulation protocol. Cluster representatives are used to
achieve this coordination by gathering and exchanging infor-
mation about their clusters. Each peer applies its relocation
policy and determines the cluster it needs to move to. Then,
all relocation requests are gathered by the representatives
and ordered according to non-increasing value of gain. Each
representative grants a percentage x of them (Alg. 1).

The cluster representative does not need to remain the
same. Representative selection is local within each clus-
ter and may be random or based on specific properties of
the peers. When a peer stops acting as a representative,
it suffices to redirect all requests to the new representative.
Furthermore, for a peer to join a cluster it just needs to
know one of its members. It then sends a relocation request
to that member, which forwards the request to the current
cluster representative.
Uncoordinated Protocol. We argue that the use of coor-
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Table 2: Conditions for Stability
Case (I.a) Case (I.b) Case (I.c)

Cost-based α ≤ |P |−1
θ(|P |)−θ(1)

α ≥ k
kθ(2)−θ(1)

α ≤ |c|−1
θ(|c|)−θ(1)

, α ≥ |c|
θ(|c|+1)

, α ≥ k(|c|−1)+1
kθ(|c|+1)−θ(|c|)

Contribution-based α ≤ |P |−1
|P |θ(|P |)−θ(1)

α ≥ 2k−1
2kθ(2)−θ(1)

1
θ(|c|) ≤ α ≤ |c|−1

|c|θ(|c|)−θ(1)

Case (II.a) Case (II.b) Case (II.c)

Cost-based α ≤ |P |(|P |−m)
mθ(|P |)−|P |θ(1)

α ≥ m
θ(2)−θ(1)

|P |2−m
|P |(θ(|P |/m+1)−θ(|P |/m))

≤ α ≤ (|P |−m)
(θ(|P |/m)−θ(1))

dination is not necessary and instead propose an uncoordi-
nated reformulation protocol in which each peer determines
when to play locally and independently from the other peers.
When a peer determines that it is its turn to play, it applies
its relocation policy locally and moves to the cluster the
policy indicates. Cluster representatives may be used to fa-
cilitate moves between clusters and reduce the overhead.
Protocol Variations. Based on when the peers determine
that there is their turn to play, we define two variations
of the reformulation protocol: an event and a trigger-based
one.

The coordinated event-based protocol is initiated after
each system event, i.e., a query or an update. In the un-
coordinated event-based protocol, a peer determines that it
is its turn to play after it becomes aware of a relevant event.
Selfish peers consider as relevant the evaluation of queries
of their local query workload, while altruistic peers the pro-
vision of results to another peer’s query. A hybrid peer may
choose either one or both types of events as relevant. A vari-
ation of the event-based protocol, the batch-based protocol,
is initiated after a number (batch) of events instead of just
after a single one.

In the coordinated trigger-based protocol, the social or
workload cost (or corresponding contributions) are continu-
ously updated and the protocol is initiated when the respec-
tive global gain becomes greater than zero. For the unco-
ordinated protocol, each peer continuously updates its indi-
vidual gain and plays whenever this value becomes greater
than zero. For updating the measures, trigger-based proto-
cols require to monitor the system (workload and content)
continuously and thus, introduce additional overheads.

4.3 Controlling Parameters
The gains that individual peers attain from relocation may

not always worth the re-organization cost. To this end, we
present three mechanisms for overhead control, which can be
applied to all variations of both the uncoordinated and co-
ordinated protocols, either individually or in combinations.
Stopping Condition. After applying its relocation pol-
icy, each peer compares its gain against a system-defined
threshold ε. The peer determines that it needs to move only
if its gain is larger than ε. Consequently, reformulation stops
without the system reaching an equilibrium, but rather an
ε-stable state. In the coordinated protocol, the stopping
condition may also be applied on a global level, if we mea-
sure the gain with respect to the social cost or contribution.
Playing Probability. Instead of allowing a peer to play
(i.e. re-evaluate its strategy) every time it is its turn, we
introduce the use of a playing probability Pr, which deter-
mines how aggressive a player is, i.e., how high is the player’s
chance to play. The playing probability can either be the
same for all peers, so as to treat all peers as equals or it
may differ for each peer. For example, giving higher proba-
bility to peers that change their content or workload often

allows them to adapt faster to these changes. Alternatively,
a higher probability may be given to peers with more con-
tent or heavier query workload, since they are the ones that
influence the workload cost and contribution the most.
Quota. Overhead can finally be controlled by enforcing a
movement quota. Each peer is assigned a quota of n possible
moves, which is the maximum number of moves it is allowed
for a specified period Tq. After the end of Tq, the quota is
replenished and the peer has again n available moves for
the next Tq. Tq can either be a time interval or a number
of events. Note, that using a time interval corresponds to
treating all peers as equals, while using events to measure
Tq may allow more demanding peers to play more often, as
they are affected by more events.

The value of n expresses a trade-off between consuming
system resources for re-clustering and tolerating low recall
values from a poor clustering.

Algorithm 1 Coordinated Event-Based Protocol

|P |: number of peers, C = {c1, . . . , cn}: cluster set,
R = {r1, . . . , rn}: cluster representatives

1: for all global events do
2: for all ri ∈ R do
3: send a game initialise request to all pj ∈ ci

4: for all pj ∈ ci do
5: evaluate gainpj

6: send to ri a relocation request with gainpj for cnew

7: end for
8: send all relocation requests to all other ri ∈ R
9: sort relocation requests in non-increasing order of gain
10: end for
11: for all gainpj within x% of the list do

12: pj moves from ci to cnew

13: end for
14: end for

5. EXPERIMENTAL EVALUATION
We model a system of peers sharing data belonging to dif-

ferent semantic categories. To capture locality, we use the
model introduced in [18], which was derived from measure-
ments in real traces of p2p systems. Each peer is associated
with a data category j and maintains documents belonging
to it. The local query workload of each peer is generated
by first selecting a data category with probability P (j) fol-
lowing a zipf distribution, and then a document d from that
category with probability P (d, j) following another zipf dis-
tribution within each category. We define Px∈l(d, j) as the
probability of peer x associated with category l posing a
query about document d of category j as:

Px∈l(d, j′) =
{

(1−m)P (d, j), l 6= j
((1−m) + m/P (j))P (d, j), l = j

Parameter m is a measure of the interest-based locality
peers exhibit. We consider three general scenarios. In the
symmetric scenario, in which m = 1, both queries and data
of each peer belong to the same category. In the asymmetric
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scenario, again m = 1 but for a j 6= l which is selected ran-
domly from the remaining categories. That is, each peer has
data from one category but poses queries for a single differ-
ent category. Thus, the symmetric scenario exhibits max-
imum interest-based locality, while the asymmetric none.
Finally, in the random scenario (no underlying clustering),
m = 0. In this case, there is no interest-based locality and
each peer has both data and queries uniformly distributed
from all categories.

We use Newsgroup articles belonging to 10 different cate-
gories as our data set. The articles were pre-processed, stop
words were removed, lemmatization was applied and the re-
sulting words were sorted by frequency of appearance. The
texts are distributed among 10000 peers. Peers inside each
cluster are organized in a Chord-like topology (logarithmic
θ). Table 3 summarizes our parameters. We present four
sets of experiments evaluating our protocols.

5.1 Comparison with coordinated protocols
In the first set of experiments, we evaluate the coordinated

and uncoordinated protocols and their variations. We com-
pare uncoordinated and coordinated versions of the event-
based, trigger-based and batch-based protocols with batches
of 20, 50 and 100 events, which correspond to the 1/10th,
1/4th and 1/2nd of the average local query workload of a
peer respectively. We consider asymmetric peers since they
pose the greatest challenge when applying clustering. We
assume selfish peers; we explore the influence of strategy se-
lection later. We start with an unclustered overlay, in which
each peer forms its own cluster. We measure the social cost
when we reach a stable state, and the induced overhead in
terms of required moves and turns.
Controlling Parameters. We consider the three control-
ling parameters: stopping condition (Fig. 2), playing proba-
bility (Fig. 3) and quota (Fig. 4(center-left)-(center-right)).
In each experiment, we vary the value of one of the pa-
rameters and set the rest to their default values (Table 3).
The stopping condition refers to the individual cost for the
uncoordinated protocols and to the social cost for the coor-
dinated ones. Similarly, instead of the playing probability,
for the coordinated protocols, we evaluate the influence of
the percentage of granted requests (parameter x in Alg. 1).

The value of the stopping condition ε is the main con-
trolling factor of the achieved social cost (Fig. 2). For
each protocol variation, we can determine an appropriate
value for ε such that for values of ε lower than this, the im-
provement in the social cost does not justify the required
overhead. Protocols that entail smaller overheads, such as
the uncoordinated batch-based ones, allow for lower ε val-
ues (10−6), while protocols with large overheads such as the
coordinated trigger-based one require larger values to work
efficiently (10−2). We set ε to these appropriates values for
each protocol for the rest of our experiments.

The playing probability does not influence the value of the
achieved social cost but only the overhead required to reach
it (Fig. 3). For all protocols, a smaller Pr reduces the
number of moves, but increases the required turns, due to
failed probability checks that do not allow the peers to play
at each of their turns. In particular, the batch-based ap-
proaches with larger batch sizes are even more sensitive to
Pr < 0.5 as their turns are increased without a correspond-
ing reduction in the moves.

Using quota influences the protocols similarly to the play-

Table 3: Input Parameters
Parameter Range Default Value

Topology and Strategy
number of peers (|P |) - 10000
parameter α 1-100 10
membership cost function (θ) log, linear log
strategy - self-alt-hybrid-mix
degree of selfishness d 0.25-0.75 -

Data-Query Distribution
number of categories - 10
interest locality degree (m) - 0-1

Controlling Parameters

stopping condition (ε) 0-10−8 10−4, 10−3, 10−6

playing probability (Pr) 0-1 0.5
movement quota (n) 1-15 ∞
quota period in events (Tq) - 20, (5*batch size)
% of granted requests (x) 10-100 50

ing probability (Fig. 4(center-left)-(center-right)). For pro-
tocols with large overheads, combining the use of quota with
the playing probability can further improve performance.
For example, for the uncoordinated trigger-based protocol,
it reduces the required moves by 10% for the same Pr, with-
out increasing the number of required turns as in the case
of lowering the playing probability.

The coordinated protocols achieve approximately the same
values for social cost with the uncoordinated ones, while im-
posing a much larger overhead, especially with regards to the
number of required turns. Among the uncoordinated proto-
cols, the trigger-based one has the greatest overhead, while
the batch-based ones have the smallest.

An advantage of the controlling parameters is that they
can be dynamically adjusted locally by each peer. By ob-
serving its processing and communication cost caused by its
moves and the fluctuations in its utility function, a peer can
achieve appropriate tuning. For example, a low individual
cost may cause the peer to decrease its ε value, while a large
number of moves that do not considerably improve its cost
may cause the peer to increase ε. Similarly, if a peer observes
too many moves, it may decrease its playing probability, or
in the presence of frequent updates increase it to react faster
to changes. Similar observations may be applied to tuning
quota.
Progress through Turns. The values reported so far cor-
respond to the final value of the social cost, when the system
stabilizes. We also evaluate how the value of the social cost
changes through progressing turns. The batch-based proto-
cols are the ones that react the slowest to changes, while the
coordinated trigger and event-based protocols are the ones
which react the fastest (Table 4).

The basic reason is that the coordinated protocols favor
the most cost influencing peers by granting their requests
first, while the uncoordinated ones treat all peers as equals.
If this policy is not enforced, then, the average social cost
per turn for the coordinated protocols becomes up to 15%
higher, especially when x is small (Fig. 4(center-right)).

For the uncoordinated protocols, we can achieve a similar
effect with regards to the workload cost of the system by
adjusting the playing probability of each peer according to
its demand level or by using quota (Fig. 4(right)).

5.2 Cluster Formation
In this set of experiments, we start from a random peer

configuration and examine whether the peer reformulation
protocol leads to the desired cluster configuration. For the
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Figure 2: Varying ε (left), (center-left) with coordinated and (center-right), (right) uncoordinated protocol.
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Figure 3: Varying Pr (left), (center-left) with coordinated and (center-right), (right) uncoordinated protocol.
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 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 16000 12000 8000 4000 0

so
ci

al
 c

os
t

moves

selfish
altruistic

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 16000 12000 8000 4000 0

w
or

kl
oa

d 
co

st

moves

selfish
altruistic

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0  0.2  0.4  0.6  0.8  1

so
ci

al
 c

os
t

free riders

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100

av
er

ag
e 

cl
us

te
r 

si
ze

α

linear
logarithmic

Figure 5: (left) Social and (center-left) workload cost with moves, effect of (center-right) free riders and
(right) α.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  0.2  0.4  0.6  0.8  1

so
ci

al
 c

os
t

percentage of updated x

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  0.2  0.4  0.6  0.8  1

so
ci

al
 c

os
t

percentage of updated peers x

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  0.2  0.4  0.6  0.8  1

so
ci

al
 c

os
t

percentage of updated peers x

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  0.2  0.4  0.6  0.8  1

so
ci

al
 c

os
t

percentage of updated peers x

100%-self
75%-self
50%-self
25%-self

0%-self
no-change

Figure 6: Update workload scenarios (left) WSc1, (center-left) WSc2, (center-right) WSc3 and (right) WSc4.
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Table 4: Social Cost Per Round
Asynchronous Coordinated

Event Trigger Batch-20 Batch-50 Batch-100 Event Trigger Batch-20 Batch-50 Batch-100
989.32 945.56 1207.05 1876.15 2876.45 926.41 926.41 1100.25 1543.55 2454.67
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Table 5: Cluster Formation
Moves Clusters Cluster Size SCost SCont

Self Alt Mix Self Alt Mix Self Alt Mix Self Alt Mix Self Alt Mix
Symmetric Scenario

i 15358 15436 14900 10 10 10 1087.5 1100 1100.5 10.07 10.23 10.15 9.67 9.85 9.84
ii 14786 14365 14657 10 10.5 10 1079 1109.5 1125.5 10.42 10.67 10.93 9.45 9.63 9.58
iii(a) 9654 9812 9867 10 10 10.5 1112 1085.5 1119.5 10.4 10.97 11.35 9.98 9.64 9.69
iii(b) 10211 10210 11270 10 10.5 10.5 1010.5 1056.25 1011.75 11.45 10.81 11.59 9.82 9.36 9.42
iii(c) 9841 9554 9456 10 10.5 10 1012.25 1009.5 1016.5 10.65 10.83 11.72 9.32 9.22 9.29
iv 0 0 0 10 10 10 1100 1100 1100 10.09 10.09 10.09 9.94 9.94 9.94
v 0 0 0 10 10 10 1100 1100 1100 10.09 10.09 10.09 9.94 9.94 9.94

Asymmetric Scenario
i 16875 16758 17008 89.25 89.5 90.25 110.75 110.9 111.15 919.9 922.35 924.85 987.45 974.15 992.09
ii 16257 16109 16431 89.25 89.15 90.01 111.9 111.75 111.45 924.75 929.25 926.05 974.01 959.25 964.26
iii(a) 9405 9115 9650 90.1 90.2 90 111.05 110.5 110.33 922.86 926.41 941.02 947.05 961.67 961.08
iii(b) 9180 9320 9125 89.9 90.05 90.2 111.15 110.9 110.67 922.65 921.15 924.66 967.33 965.09 964.23
iii(c) 8502 8745 8790 89.75 89.5 90.1 110.5 110.24 111 923.08 924.44 926.12 978.02 967.15 976.45
iv 5865 6120 6275 90 90.15 90.15 111.4 111.75 111.05 929.05 926.10 924.57 966.14 967.86 968.1
v 6015 6104 6436 90 89.9 90 110.9 111.09 110.89 917.95 919.05 920.69 952.21 954.33 956

Random Scenario
i 19450 19710 19340 1 1 1 10000 10000 10000 11.33 11.33 11.33 11.04 11.04 11.04
ii 0 0 0 1 1 1 10000 10000 10000 11.33 11.33 11.33 11.04 11.04 11.04

rest of the experiments, we use the uncoordinated event-
based protocol with Pr = 0.5 and ε = 10−4. We define
a clique as a set of peers that have workload and content
belonging to the same semantic category. Let M be the
number of cliques for each scenario, i.e., for the symmet-
ric scenario M = 10. We consider five different cases for
the initial system configuration: (i) each peer forms its own
cluster; (ii) all peers form a single cluster; (iii) peers are ran-
domly distributed to n groups and we discern for different
values of n the subcases: (a) n = M , (b) n < M and (c)
n > M ; (iv) peers are clustered according to their content
and (v) peers are clustered according to their workload. We
apply our protocols and check whether the system reaches
an equilibrium and if so, what is the total number of moves,
the number of clusters formed and the average size of these
clusters, along with the achieved social cost and the absolute
value of the social contribution (Table 5).

In all scenarios, all strategies reach an ε-Nash equilibrium
and form the desired number of clusters regardless of the
number of clusters in the initial configuration. Thus, our
protocol does not require a predefined number of clusters,
but dynamically determines the appropriate number and
may also change it over time to cope with updates as the
desired number may also change over time. Selfish and al-
truistic peers do not differ significantly and a mixed strategy
usually requires more moves, but has the same social cost.

For symmetric peers both social and workload cost are the
same and depend only on the membership cost; the cost for
the recall is zero, since all results to the local query work-
load of each peer are located within its cluster (Table 5 lines
1-7). In fact, the social cost achieved is for the given α = 10
almost equal to the social optimum (almost 10) (Case Study
(II.c) when θ is logarithmic). The value is not exact because
the peers and the clusters are not perfectly symmetrical. For
asymmetric peers, the social cost is higher and the contribu-
tion lower than the ones observed for symmetric ones. Since
queries are not uniformly distributed among peers, the so-
cial and the workload cost differ slightly. For example, in
case (i), the workload cost is 914.77, 920.01 and 925.86 for
selfish, altruistic and mixed populations respectively, only
smaller by 5 in the best case.

When symmetric peers are clustered according to their
content or workload, the appropriate clusters are already
formed (Table 5 lines 6-7). For asymmetric peers, both con-
figurations are not stable, i.e., the peers can improve their
cost, though they require less moves to reach stability than
the other configurations. Thus, relying solely on content or

query workload is not enough to provide the appropriate
clustering.

For the third scenario, we consider all peers forming a
cluster by their own and all peers in one cluster (Table 5
lines 16- 17). This scenario is similar to Case Study I where
no underlying clustering exists. Due to the small value of
the membership cost (logarithmic) and α, the peers form
a single cluster in both cases with a social cost around the
optimum. The second case is already the desired configu-
ration. For the same α, if we use a linear θ, peers split
into smaller clusters. Similarly, a larger value of α forces
the peers to form more clusters. For example, for α = 100
both configurations would converge to the first case of single
membered clusters. Consequently, by tuning α we can favor
configurations with either a small number of larger clusters
or a large number of smaller clusters (Figure 5(right)).
Social vs Workload Cost. As we showed for asymmet-
ric peers, the achieved workload cost is different from the
corresponding social cost. We consider how the two mea-
sures progress as the peers make more moves. By adjusting
the playing probability Pr according to the peer’s demand
levels, the workload cost is reduced faster when we consider
selfish peers (Fig. 5(center-left)). The social cost that con-
siders all peers as equals decreases linearly (Fig. 5(left))
to the number of moves. For altruistic peers, the workload
cost is not reduced much faster than the social one. To have
similar results as for selfish peers we need to increase Pr for
peers with large size.
Free Riders Free-riders, which appear often in p2p systems
([1]), are peers that use data offered by others, without con-
tributing any content. We model a free-rider p as a selfish
peer with r(q, p) = 0, for all q in Q. Increasing the num-
ber of free riders gradually degenerates the overlay to one in
which each peer forms its own cluster (Fig. 5(center-right)).

5.3 Cluster Adaptation
This set of experiments, evaluates how well the reformu-

lation protocol adapts to changes. We start from a “good”
cluster configuration for given content and workload, and
consider content, workload and topology updates (peers join/
leave). The initial configuration consists of clusters of sym-
metric peers. We use mixed populations of both selfish and
altruistic peers with different ratios, i.e., from all selfish
(100% selfish) to all altruistic (0% selfish).

We consider four general workload update scenarios (WSc)
(Fig. 6). In WSc1, a data category becomes more popular;
y% of the peers that are selected randomly from all the clus-
ters change their query workload to this specific category. In
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Figure 8: (left) Peers joining the system, (center) re-clustering and (right) clustering vs caching.

WSc2, a new data category that was not queried so far be-
comes popular. In WSc3, k existing categories become pop-
ular, and in WSc4, k categories seize to be popular, i.e., are
not queried anymore. The four scenarios can also be applied
as the corresponding content update scenarios (CSc).

For all the update scenarios, the reformulation protocol
copes with the changes very efficiently. Compared to a static
overlay in which no measures are taken to deal with the
changes, our protocol reduces the social cost up to 1/3 of
its value. In general, update scenarios in which the reloca-
tions request are more evenly distributed among the clusters
(WSc2) perform slightly better, while scenarios that create
more asymmetric peers (WSc3) behave worse.

Overall, selfish peers react faster to workload changes
(Fig. 6), correcting system behavior faster, while altruis-
tic ones exhibit the same behavior for content changes (Fig.
7 (left)). The reason is that a change in the workload of an
altruistic peer does not instigate a reaction, and for the peer
to become aware of the change in the others’ workload that
change has to affect a large number of peers.

Hybrid peers consider both selfish and altruistic criteria
to determine their cluster membership. When the degree
of selfishness d is small, the peers are affected from content
changes more (Fig. 7(center-right)), while for d closer to 1,
from workload ones (Fig. 7(center-left)). When both selfish
and altruistic criteria are weighted equally (d = 0.5), hy-
brid peers react faster than selfish peers to content changes
but slower than altruistic ones and vice versa for workload
changes.
Workload and Content Change. Besides from updates
that affect only the workload or the content of the peers, we
also consider updates that affect both (Fig. 7(right)). In
particular, changes in the workload of a peer, usually entail
changes in its content, i.e., if a peer becomes interested in a
new data category, then it will gradually acquire data of this
category. At first, such an update increases the social cost
as there are not enough data to satisfy the query workload of
the updated peers. Gradually, as they change more of their
data, the updated peers form a new cluster, thus, effectively
reducing the social cost.
Topology Updates. We now consider updates in the topol-
ogy, i.e., peers joining and leaving the system. When new
peers join the system, they initially cause a considerable in-
crease in the social cost. However, as the new peers pose
queries and are gradually informed about the clusters in the
system, they select an appropriate cluster effectively reduc-
ing the social cost (Fig. 8(left)). When peers leave the
system, the social cost is actually reduced as the number
of peers is reduced. No immediate adaptation is required
but if large percentages of a cluster’s members leave, then
the other members may require to move to improve recall, or
peers from other clusters may move to this cluster to exploit
the low membership cost.

Cluster Reformulation vs Re-Clustering We compare
the reformulation protocol to an alternative approach for
coping with changes by reapplying the clustering procedure
from scratch. Reclustering from scratch (Fig. 8(center)) re-
duces the social cost of the resulting configuration up to 10%
compared to a configuration in which we applied our refor-
mulation protocol to cope with the update (Fig. 6(center)).
However, reclustering entails a much larger overhead, requir-
ing about 250 turns, while the reformulation protocols only
requires 10. Also, reclustering requires > |P | moves, regard-
less of the number of updated peers, unlike reformulation
that mostly affects the updated peers.

5.4 Comparison with a Caching Scheme
We compare our reformulation protocol with a caching

scheme [18], in which peers that provided results to previous
queries are cached and future queries are first forwarded to
them. If the peers receiving a query also forward it to peers
in their cache, we have the transitive variation. The cache
contents are updated after each query. For the peers already
in the cache, an aggregated recall value is updated according
to the results that they provided for the latest query. The y
peers, which provided the most results for a query but are
not in the cache, are inserted in the cache replacing the ones
with the lowest overall recall, if there is not enough space
(update (y)).

We assume a maximum number of links for each peer
equal to the number of links required for establishing a
Chord-like topology within the clusters, i.e., log(|ci|). When
caching is used, 3 of these links are used for the under-
lying network and the rest are allocated as cache entries.
We consider asymmetric peers which are more appropriate
for caching than symmetric ones that favor clustering. In
caching, a peer pi may belong to a peer pj ’s cache, and
provide results to pj , without forcing pj to belong to its
cache. Whereas in clustering, for pi to provide results to
pj , they must both belong to the same cluster. However, by
deploying an efficient topology within the clusters (such as
Chord-like), clustering is again able to outperform caching.
Furthermore, clustering reacts to updates faster and more ef-
ficiently than caching (Fig 8(right)). While caching changes
one to two neighbours, clustering changes all neighbours at
once, thus, achieving lower social cost faster.

6. RELATED WORK
Game theoretic approaches have been applied to model

the behavior of peers in p2p systems. In [7], the creation of
an Internet-like network is modelled as a game with peers
as uncoordinated selfish agents. The goal is for each peer
to choose the peers to link to. The peers pay for the cre-
ation of a link, but gain by reducing the shortest distance
to any other peer in the system. In our approach, instead of
establishing links randomly, we consider content and query
workload for creating clusters of peers with similar proper-
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ties. [14] considers a more sophisticated model, in which
strict bounds are enforced on the out-degree of the peers,
links are directed and peers are allowed to express prefer-
ences regarding the choice of their neighbors. Our approach
can be viewed as setting these preferences based on recall
benefits. In [17], the authors show that allowing peers to
act completely freely performs much worse than collabora-
tion, and prove that even a static p2p system of selfish peers
may never reach convergence. This result agrees with our
findings that show that only in specific scenarios, we reach
stability. In [22], altruistic peers determine the level of their
contribution based on a utility function that depends on
parameters such as the amount of data they upload and
download, whereas in our altruistic policy, the choice of the
cluster depends on the peer contribution to it.

Many recent research efforts have focused on organizing
peers in clusters. In most cases, the focus is on cluster forma-
tion and query processing and the adaptation of the overlay
to changing conditions is not addressed. In [9], a superpeer-
based architecture is proposed in which peers with common
interests are organized based on their caches. The paper
exploits the idea of [18], and since it is based on caches it
implicitly addresses the issue of cluster adaptation, but does
not focus on it. Furthermore, as a cache-based scheme it is
better suited for selfish symmetric peers, while our model
can encompass more types of peers. In [3], peers are parti-
tioned into topic segments based on their data. A fixed set
of M clusters with centroids that are globally known is as-
sumed, each one corresponding to a topic segment. Clusters
of peers are formed in [21] based on the semantic categories
of their data; the semantic categories are predefined. Simi-
larly, [5] assumes predefined classification hierarchies based
on which queries and data are categorized. Instead of pre-
defined categories, [8] uses a learning approach that based
on generalizing the shared data, learns the semantic cat-
egories they belong to and then uses those for clustering.
Clustering in [15] is based on the schemes of the peers and
on predefined policies provided by human experts. Besides
clustering based on peers content, clustering based on other
common features, such as the interests of peers [11], is pos-
sible. In [6], clustering is first applied on the documents of
each peer, and then recursively on the derived feature vec-
tors by selected peer representatives. While this approach
does not assume predefined categories, it still requires the
use of cluster representatives unlike our uncoordinated pro-
tocol. In [4], peers maintain sets of guide rules, which are
formed by the users either explicitly based on their interests,
or implicitly through query history, thus defining semantic
clusters. A somewhat different approach to clustering is
taken in pSearch [20] that maps peer documents on a DHT,
based on their term vectors and exploiting only the most
important terms. Thus, semantically related documents are
“clustered” in the DHT, limiting the search space.

A preliminary version of the model for selfish peers (Sec-
tion 2) and of the relocation policies (Section 4.1) have been
presented in [12].

7. CONCLUSIONS
In this paper, we model peers in a clustered overlay as

players that dynamically change the set of clusters they be-
long to according to an individual utility function, based
on a cluster membership cost and query recall. We model
both selfish peers that aim at minimizing their individual

cost, i.e., maximizing their recall, and altruistic peers that
try to maximize their contribution to others. We define
measures for evaluating global system quality and propose
a reformulation protocol to cope with system maintenance.
Our experimental results show that our protocol succeeds in
gradually correcting system performance.
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