
Fast Contextual Preference Scoring of Database Tuples

Kostas Stefanidis
Department of Computer Science

University of Ioannina
GR-45110 Ioannina, Greece

kstef@cs.uoi.gr

Evaggelia Pitoura
Department of Computer Science

University of Ioannina
GR-45110 Ioannina, Greece

pitoura@cs.uoi.gr

ABSTRACT
To provide users with only relevant data from the huge
amount of available information, personalization systems
utilize preferences to allow users to express their interest
on specific pieces of data. Most often, user preferences vary
depending on the circumstances. For instance, when with
friends, users may like to watch thrillers, whereas, when
with their kids, they may prefer to watch cartoons. Con-
textual preference systems address this challenge by sup-
porting preferences that depend on the values of contextual
attributes such as the surrounding environment, time or lo-
cation. In this paper, we address the problem of finding
interesting data items based on contextual preferences that
assign interest scores to pieces of data based on context.
To this end, we propose a number of pre-processing steps.
Instead of pre-computing scores for all data items under
all potential context states, we exploit the hierarchical na-
ture of context attributes to identify representative context
states. Furthermore, we introduce a method for grouping
preferences based on the similarity of the scores that they
produce. This method uses a bitmap representation of pref-
erences and scores with various levels of precision that lead
to approximate rankings with different degrees of accuracy.
We evaluate our approach using both real and synthetic data
sets and present experimental results showing the quality of
the scores attained using our methods.

1. INTRODUCTION
Personalization systems aim at providing users with only

the data that is of interest to them from the huge volume
of available information. Preferences have been used as a
means to address this challenge. To this end, a variety of
preference models have been proposed most of which follow
either a quantitative or a qualitative approach. With the
quantitative approach (e.g., [4, 15, 17, 18]), users employ
scoring functions that associate a numerical score with spe-
cific pieces of data to indicate their interest in them. With
the qualitative approach (such as the work in [8, 16]), pref-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

erences between two pieces of data are specified directly,
typically using binary preference relations.

To enhance the expressiveness of preference models, con-
textual preferences have recently attracted considerable at-
tention motivated by the fact that preferences may depend
on context. Context is a general term used to express the
situation of the user at the time of the submission of a query,
including the surrounding environment, time or location [9].
Contextual preference models have been introduced follow-
ing both the quantitative [25, 26] and the qualitative [3,
14] approach. Knowledge-based contextual preferences have
also been proposed [27]. In this paper, we use context to in-
dicate any attribute that is not part of the database schema.

As our running example, we use a movie database. Users
express their preferences on movie attributes. These pref-
erences may for example depend on who is accompanying
the user or the user’s age or sex. For instance cartoons may
be a reasonable choice when with family, while a romantic
comedy may be preferable when on a date. To allow more
flexibility in describing context, we assume as in [26], that
contextual attributes take values from hierarchical domains.

We address the problem of scoring database tuples based
on contextual quantitative preferences. In particular, given
a set of contextual preferences P , a database instance r and
a query q, we are interested in providing the user with the
most preferable tuples in r for the current context. Assum-
ing that the database is large and only a few tuples are of
interest at any given context, sorting the whole database for
each query and context will result in both wasting resources
and slow query responses. Thus, we propose preprocessing
steps that can be used to reduce the online time for process-
ing each query.

At one extreme, we could compute all different scores for
each tuple for all potential context states. Since, only a
few tuples may be of interest at each context state, we pro-
pose computing scores only for relevant tuples (i.e., tuples
for which there is sufficient interest). However, the num-
ber of potential scores may be still large, since the number
of context states grows rapidly with the number of context
attributes. For many application, context includes a large
number of attributes with domains of varying sizes. For
instance, in a pervasive environment, a media player sys-
tem for movies and television programs may suggest inter-
esting programs to users according to their current context
that includes their age, sex, taste as well as time, location,
surrounding people, emotional state and the technical char-
acteristics of the targeted device for playing the program.
Thus, we propose computing scores only for representative

344

context states. Our method for identifying context represen-
tatives exploits the hierarchical nature of context attributes
and can be applied to both quantitative and qualitative pref-
erences.

We also consider a complementary method for grouping
preferences based on identifying those preferences that re-
sult in similar scores for all database tuples. This method
takes advantages of the quantitative nature of preferences
and groups together contextual preferences that have similar
predicates and scores. The method is based on a novel rep-
resentation of preferences through a predicate bitmap table
whose size depends on the desired precision of the resulting
scoring.

In summary, in this paper, we make the following contri-
butions:

• We proposes a suite of techniques for quickly providing
users with data of interest in the case of contextual
quantitative preferences.

• We considers a contextual clustering method that ex-
ploits the hierarchical nature of context attributes.

• We introduce a method for grouping those preferences
that produce similar scores for all database tuples. The
method is based on a bitmap representation with tun-
able accuracy.

Finally, we present a number of experiments on both syn-
thetic and real data sets.

The rest of this paper is structured as follows. In Section
2, we introduce the problem of scoring database tuples based
on contextual quantitative preferences. Section 3 proposes a
method for finding representative context states by exploit-
ing the hierarchical nature of context attributes, while Sec-
tion 4 focuses on grouping preferences by identifying those
that result in similar scores. Section 5 discusses issues of
handling the produced scores. In Section 6, we present our
evaluation results. Section 7 describes related work, and fi-
nally, Section 8 concludes the paper with a summary of our
contributions.

2. CONTEXTUAL PREFERENCE
RANKING

In this section, we present our contextual preference model
and introduce the problem of scoring database tuples using
contextual preferences. As a running example, we consider
a simple movie database with schema:

Movie(title, year, director, genre, language, duration).

2.1 Contextual Preference Model
To model context, we use a finite set of special-purpose at-

tributes, called context parameters. We distinguish between
two types of context parameters: simple and composite ones.
A simple context parameter involves a single context at-
tribute Ci with domain dom(Ci), while a composite context
parameter Cj consists of a set of single context attributes
Cj1 , Cj2 , . . . , Cjl with domains dom(Cj1), dom(Cj2), . . . ,
dom(Cjl), respectively and its domain, dom(Cj) is equal to
dom(Cj1) × dom(Cj2) . . . × dom(Cjl). For a given appli-
cation X, we define its context environment CEX as a set
of n context parameters {C1, C2, . . . , Cn}. In our running
movie example, we consider the simple context parameters
accompanying_people, time_period and mood. We also

consider users to be part of context, so that the result of
each query depends on the user submitting it. Each user
is modeled by the composite context parameter user con-
sisting of attributes id, age and sex. Thus, our context en-
vironment is the quadruple (user, accompanying_people,
time_period, mood).

Similar to [26], context attributes take values for multi-
dimensional domains. In particular, we assume that each
context attribute participates in an associated hierarchy of
levels of aggregated data, i.e., it can be viewed using differ-
ent levels of abstraction. Formally, an attribute hierarchy is
a lattice (L,≺): L = (L1, . . . , Lm−1, ALL) of m levels and
≺ is a partial order among the levels of L such that L1 ≺
Li ≺ ALL, for every 1 < i < m. We require that the upper
bound of the lattice is always the level ALL, so that we can
group all values into the single value ‘all’. We use the nota-
tion domLj (Ci) for the domain of level Lj of attribute Ci.
Figure 1 depicts the hierarchies of the context attributes for
our example. Such hierarchies may be constructed using for
example the WordNet [20] or related ontologies. A function
anc

Lk
Lj

assigns a value of the domain of Lj to a value of the
domain of Lk. For instance, ancL2

L1
(Christmas) = holidays.

Hierarchies support the specification of context values with
various levels of detail. For a context environment with n
context attributes, a context state cs is a n–tuple of the
form (c1, c2, . . . , cn), where ci ∈ dom(Ci). For example,
a context state in our example may be ((all, youth, male),
friends, Th, good) or ((id1, middle_age, female), family,
holidays, good).

To specify preferences, we use a simple quantitative pref-
erence model similar to the ones in [4, 26]. In particular,
users express their preference for sets of tuples specified us-
ing selection conditions on some of the attributes of the tu-
ples by rating them using a numerical score. The score is a
real number between 0 and 1 which expresses their degree of
interest for the specified tuples. Value 1 indicates extreme
interest, while value 0 indicates no interest. Preferences are
annotated with context information to denote the context
state in which the preference holds.

Definition 1 (Contextual Preference). Given a
database schema R(A1, A2, . . . , Ad), a contextual preference
p on R is a triple (cs, Pred, score), where cs is a context
state, Pred is a predicate of the form Ai1θ1ai1 ∧ Ai2 θ2 ai2

. . . ∧ Aikθk aik that specifies conditions θi on the values
aij ∈ dom(Aij) of attributes Aij , 1 ≤ ij ≤ d, of R, and
score is a real number between 0 and 1.

The meaning of such a contextual preference is that in
context state cs, all database tuples t for which Pred holds
are assigned the indicated score. In our running example, we
assume θ ∈ {=, <, >,≤,≥, �=} for the attributes year and
duration and θ ∈ {=} for the remaining attributes. For in-
stance, a preference (((id1, youth, male), friends, holidays,
good), (genre = comedy), 0.9) denotes that user with id id1
who is a young male, when accompanied with friends dur-
ing holidays and in good mood enjoys seeing movies of genre
comedy.

Note that it is not necessary for a preference to depend on
all context attributes. This can be expressed by assigning
the value all to the corresponding context attribute. For
instance the preference (((all, youth, all)), all, holidays,
all), (genre = comedy), 0.9) means that all young people

345

All (L2)

good, bad, indiferrent (L1)

Mood

friends, family, alone, date (L1)

Accompanying_people

M, Tu, W, Th, F Sa, Su Summer, Christmas, Easter (L1)

Working_days, Weekend, Holidays (L2)

All (L3)
Time_period

All (L2)

All (L2)

male, female (L1)

All (L2)

Time_of_life

youth, middle_age, old_age (L1)

 Sex

Figure 1: Context Hierarchies.

like to see comedies during holidays independently of the
values of the other context parameters. For simplicity, in the
following, we shall skip all values in the context part of the
preference and for example, simply use ((youth, holidays),
(genre = comedy), 0.9) to express the preference above.

We call the set of contextual preferences that hold for an
application, profile P . By CS(P), we denote the set of con-
text states cs that appear in at least one preference in P .
We assume that such profiles are available. In practice, pref-
erences may be, for example, given by the users explicitly or
may be deduced by say the previous behavior of the same
or similar users. A practical way to create P , considered
in [26], is by assembling a number of default profiles and
allowing users to update them appropriately.

2.2 Computing Interest Scores
Given a set of preferences specified in a profile P , we as-

sociate an interest score for each tuple t of any instance r
of R, for each context state cs ∈ CS(P). In this section, we
specify how.

If none of the preferences specified for context state cs are
applicable to a tuple t, that is, the corresponding predicates
in the preferences defined for cs do not hold for t, then t is
assigned a default score of 0. This is because, we consider
preferences expressed by users to be indicators of positive
interest. Consequently, we assume that an unrated tuple is
less important than any other tuple for which the user has
expressed some interest.

There may be more than one preference applicable to a
specific database tuple t. In other words, a tuple t may sat-
isfy the predicate part Pred of more than one of the pref-
erences specified for context state cs. In general, if more
than one preference is applicable to a tuple, we choose the
one with the highest score, except when the predicates of
the preferences are related in the following sense. We use
the notation Pred[t] to denote that predicate Pred holds for
tuple t. Assuming two predicates Pred1 and Pred2, we say
that Pred1 subsumes Pred2, iff ∀ t ∈ r, Pred1[t] ⇒ Pred2[t],
which means that Pred1 is more specific than Pred2. When
a tuple satisfies predicates that one subsumes the other, to
compute its score, we consider only the preferences with
the most specific predicates, because these are considered as
used by the users to specialize or refine the general ones.

Definition 2 (Tuple Score). Let P be a profile, cs
a context state and t ∈ r a tuple. Let P ′ ⊆ P be the set
of preferences pi = (cs, Predi, scorei), such that, Predi[t]
holds and ¬ ∃ pj = (cs, Predj, scorej) ∈ P ′, such that,

Predj subsumes any Predi. The score of t in cs, score(t, cs),
is defined as follows:

score(t, cs) =

j
maxpi∈P ′scorei, P ′ �= ∅
0, otherwise

For example, assume the movie relation of Table 1 and a
profile with the following simple preferences: p1 = ((friends),
genre = horror, 0.8), p2 = ((friends), director = Hitscock,
0.7), p3 = ((alone), genre = drama, 0.9), p4 = ((alone),
(genre = drama ∧ director = Spielberg), 0.5). In context
friends, both preferences p1 and p2 are applicable to t2.
Similarly, both preferences p3, p4 are applicable to tuple t3
in context alone. In the first case, none of the two predicates
subsumes the other and the score for t2 is the maximum of
the two scores, namely 0.8. Under context alone, the predi-
cate of p4 subsumes the predicate of p3, and so, t3 has score
0.5. The reason is that the user has assigned score 0.9 to
drama movies in general and score 0.5 to drama movies
directed by Spielberg. Tuple t3 belongs to the second cate-
gory and thus it is assigned the corresponding most specific
score.

As another example of more than one preference appli-
cable to a database tuple consider the following. Assume
that a user defines that she prefers to watch horror movies
at the weekend and rates such movies with a high score of
0.9. If later on, she adds a second preference, assigning to
Hitchcock movies under context weekend an interest score
of 0.3, this will cause some kind of conflict, since two differ-
ent scores are assigned to the movie Psycho (Table 1) in the
same context. However, from the way the score of a tuple is
computed (Def. 2), such conflicts are resolved implicitly by
taking the maximum score among all relative scores (score
0.9 in this example), considering contextual preferences as
indicators of positive interest. Note that, as in the previous
Spielberg example, if the user wanted to “exclude” horror
movies by Hitchcock, she could use in her second prefer-
ence the most specific predicate genre = horror ∧ director
= Hitchcock instead of just director = Hitchcock.

Clearly, one could argue for other types of combining
preferences, besides “max”, for instance, using “min” or a
weighed sum. Our main motivation is that we treat prefer-
ences as indicators of positive interest. By using “max”, we
may overrate a database tuple, resulting in some form of a
false positive, but we never miss interesting data items.

2.3 Problem Formulation
Each query submitted by a user is associated with one or

more context states. Typically, the context implicitly asso-

346

Table 1: Database Instance
Title Y ear Director Genre Language Duration

t1 Casablanca 1942 Curtiz Drama English 102
t2 Psycho 1960 Hitchcock Horror English 109
t3 Schindler’s List 1993 Spielberg Drama English 195

ciated with a query corresponds to the current context, that
is, the context surrounding the user at query submission
time. To capture the current context, many context-aware
applications use various devices for determining the values
of the relevant context parameters such as temperature sen-
sors or GPS-enabled devices for location-related attributes.
Besides such implicit context augmentation, queries may be
explicitly enhanced with context states for example for pos-
ing exploratory queries such as what is a good movie to
watch with my family this coming weekend.

Now given the query context states CSq of a query q, we
would like

(1) to identify the set Pq ⊆ P of preferences (cs, Pred,
score) for which cs = csq, for some csq ∈ CSq, and
then,

(2) use them to compute a score for each tuple t in the
result of q.

The first problem is complicated by the fact that for some
csq in CSq, there may be no preference (cs, Pred, score) in
the profile P , with cs = csq, that is csq /∈ CS(P). Note, that
the set of all possible context states for a context environ-
ment with n parameters is equal to |dom(C1)| × |dom(C2)|
× . . . |dom(Cn)|. In practice, the profile contains pref-
erences only for a small number of such states. To ad-
dress this, we use those preferences in P that have the
most similar context states. That is, for each query con-
text state csq, we use the preferences (cs, Pred, score) in P
with mincs ∈ CS(P)distS(cs, csq). We defer the definition of
distance distS between context states to Section 3.1.

Next, we define the score of a tuple with regards to a set
of context states:

Definition 3 (Aggregate Tuple Score). Let P be
a profile, CS ⊆ CS(P) be a set of context states and t ∈ r
a tuple. The aggregate score of t in CS is:

score(t, CS) = maxcs∈CSscore(t, cs).

Now, the second problem can be expressed as follows:

Problem Definition. Assume a database instance r, a pro-
file P and a query q with a set of context states CSq. Let
CS ⊆ CS(P) be the set of context states cs with the min-
imum distS(cs, csq), csq ∈ CSq, that is, the context states
that are the most similar to the context states of the query.
The contextual scoring problem is to rank all tuples t in the
result of q based on the aggregate score score(t, CS).

For computing the scores of all tuples in the result set, a
solution that involves no pre-computation is to first find the
set of context states CSq, compute the scores of all tuples
t in the result and then rank them based on these scores.
Performance can be improved by performing preprocessing
steps offline.

One approach would be to compute the scores of each
tuple for each potential context state. Assuming a large

database and that only a few tuples are of interest at any
given context, computing a score for all database tuples for
each context state will result in both wasting resources and
slow query responses. Since, the number of possible context
states grows rapidly with the number of context attributes,
we could instead compute the scores for all states that ap-
pear in the profile and then combine the scores of the most
similar ones online.

Since the number of context states that appear in a pro-
file can still be large, we propose two approaches for finding
representative scores to precompute. The first approach con-
structs clusters of preferences, considering as similar those
preferences that have either the same or similar context
states. The second one clusters preferences that lead to
similar scores for database tuples.

After constructing the clusters of preferences, we compute
for each cluster, an interest score for each database tuple
using the preferences of this cluster. Furthermore, instead
of storing scores for all database tuples for each cluster, we
just store the nonzero ones. Then, for each query, we can
search for the most similar to the query cluster and quickly
provide the best results, that is, the results with the largest
scores.

In a nutshell, our solution framework for addressing the
above problem consists of the following components:

1. Having defined preferences that hold under different
circumstances, we cluster them according either to

(a) their context part, thus creating clusters of pref-
erences applicable to similar context states, or

(b) their non-context part (i.e., the predicate and score
part), thus creating clusters of preferences that
produce similar scores.

2. Using the preferences of each cluster, we compute an
interest score for each tuple for the given cluster.

3. For a submitted query, we search for the most similar
to the context of the query clusters. Using the scores
of tuples of the returned clusters, we quickly rank the
results based on the computed scores.

In the following two sections, we describe how we cluster
preferences for the case of context state similarity and the
case of predicate similarity.

3. FINDING REPRESENTATIVE CONTEXT
STATES

Instead of computing aggregate scores for all tuples for all
potential context states, we identify representative context
states and pre-compute scores according to them. Comput-
ing interest scores using only representative context states is
based on the assumption that preferences defined for similar
context states would result in producing similar scores for
most tuples.

347

In the following, we first define the notion of similarity
or, equivalently, distance between context states. Then, we
use a simple clustering algorithm that groups similar con-
text states and selects one context state per cluster as a
representative state.

3.1 Similarity between Context States
Defining similarity between context states is a difficult

problem, since context similarity is in general application
dependent. Here, we take a rather generic, syntactic ap-
proach that exploits the hierarchical domains of each con-
text parameter. First, we define similarity for each of the
context parameters.

A direct method to compute the distance between two
values of a context parameter is by relating their distance
with the length of the minimum path that connects them in
their associated hierarchy. However, this method may not
be accurate, when applied to attributes with large domains
and many hierarchy levels. This is because values in upper
levels of the hierarchy are intuitively less similar than values
in lower levels connected with paths of the same length.
For instance, in our simple example of the T ime_period
hierarchy, when considering only the path length, values Tu
and W have the same distance with each other as value
Working_days has with Weekend. Moreover, the distance
between Tu and W is the same as Tu and all, whereas, Tu
is intuitively more similar to W than to all.

Following related research on defining semantic similarity
between terms (e.g., [19]), in defining the distance between
two values of a context parameter, we take into account both
their path distance and the depth of the hierarchy levels
that the two values belong to. Let lca(c1, c2) be the lowest
common ancestor of context values c1 and c2. The path and
depth distance between two values are defined as follows.

Definition 4 (Path distance). The path distance
distP (c1, c2) between two context values c1 ∈ domLj (Ci) and
c2 ∈ domLk (Ci):

• is equal to 0, if c1 = c2,

• is equal to 1, if c1, c2 are values of the lowest hierar-
chy level and lca(c1, c2) is the root value of their cor-
responding hierarchy,

• or is computed through the fp function (1 − e−α×ρ),
where α > 0 is a constant and ρ is the minimum path
length connecting them in the associated hierarchy.

The fp function is a monotonically increasing function
that increases as the path length becomes larger. The above
definition of path distance ensures also that the distance is
normalized in [0, 1].

Definition 5 (Depth distance). The depth distance
distD(c1, c2) between two context values c1 ∈ domLj (Ci) and
c2 ∈ domLk (Ci):

• is equal to 0, if c1 = c2,

• is equal to 1, if lca(c1, c2) is the root value of their
corresponding hierarchy,

• or is computed through the fd function (1 − e−β/γ),
where β > 0 is a constant and γ is the minimum path
length between the lca(c1, c2) value and the root value
of the corresponding hierarchy.

The fd function is a monotonically increasing function of
the depth of the lowest common ancestor. Again, the defi-
nition of depth distance ensures distances within the range
[0, 1]. Having defined the path and the depth distances be-
tween two context values, we define next their overall dis-
tance.

Definition 6 (Value distance). The value distance
between two context values c1 and c2 is computed as:

distV (c1, c2) = distP (c1, c2) × distD(c1, c2).

For example, the path distance between values summer
and working_days is 1− e−3 0.95, their depth distance is
1, and so, their value distance is 1 × 0.95 = 0.95. Whereas
values holidays and summer have value distance equal to
(1 − e−1×1) × (1 − e−1/1) 0.39. This means that the
value summer is more closely related to holidays than to
working_days as expected. In both examples, we assume
that α = β = 1.

Note that to compute the value distance distV , we use the
independent distP and distD distances. This independence
enables us to combine them in different ways by giving differ-
ent weights of interest. To do this, we may assign different
values to the constants α, β. In particular, for constant
values greater than 1, the corresponding distance increases,
while values within the range (0, 1) result in smaller dis-
tances.

Having defined the distance between two context values,
we can now define the distance between two context states.
To achieve this, we use a simple weighted sum, but other
methods of aggregation are also possible.

Definition 7 (State distance). Given two context
states cs1 = (c1

1, c
1
2, . . . , c

1
n) and cs2 = (c2

1, c
2
2, . . . , c

2
n), the

state distance is defined as:
distS(cs1, cs2) =

Pn
i=1 wi × distV (c1

i , c
2
i),

where each wi is a context parameter specific weight.

The above weights are normalized, such that,
Pn

i=1 wi =
1. The weight assigned to each context parameter is appli-
cation dependent, since for some applications, some context
parameters may be more influential than others. Again, in
this paper, we take a generic approach and assign weights
to each context parameter according to the cardinality of its
domain. In particular, we assign larger weights to param-
eters with smaller domains, considering a higher degree of
similarity among values that belong to a large domain.

It is easy to show that the distance relationship between
context states is reflexive (distS(cs1, cs1) = 0), and symmet-
ric (distS(cs1, cs2) = distS(cs2, cs1)). However, it does not
satisfy the triangle inequality (distS(cs1, cs2) ≤ distS(cs1,
cs3) + distS(cs3, cs2)), because of the semantic way of defin-
ing distances among context values, as the following exam-
ple shows. Assume 3 context states cs1, cs2, cs3 with a
single context parameter, say Time_period, and in partic-
ular, cs1 = (Sunday), cs2 = (Summer), cs3 = (All). As-
suming further that α, β are equal to 1, distS(cs1, cs2) ≤
distS(cs1, cs3) + distS(cs3, cs2) does not hold, because 1 ≤
(1 − e−2) + (1 − e−2) does not hold.

3.2 Contextual Clustering
To group preferences with similar context states, we use

a typical hierarchical agglomerative clustering method that
follows a bottom-up strategy. Initially, the d-max algorithm

348

(Algorithm 1) places each context state in a cluster of its
own. Then, at each step, it merges the two clusters with
the smallest distance. The distance between two clusters is
defined as the maximum distance between any two context
states that belong to these clusters. The algorithm termi-
nates when the closest two clusters, i.e., the clusters with the
minimum distance, have distance greater than dcl, where dcl

is an input parameter. Finally, for each produced cluster, we
select as representative context state, the state in the cluster
that has the smallest total distance from all the states in its
cluster. Formally:

Definition 8 (Representative context state). Let
cli be a cluster produced by the d-max algorithm that consists
of a set CScli of m context states, csij . The representative
of cli is the context state cs ∈ CScli , with the minimumPm

j=1 distS(cs, csij) value.

Algorithm 1 d-max Algorithm
Input: A set of preferences with context states csi, a
distance value dcl.
Output: A set of clusters.

Begin
1. Create a cluster for each context state csi.
2. Repeat.

2.1 If the minimum distance among any pair of clusters
is smaller than dcl.

2.1.1 Merge these two clusters.
2.2 Else, end loop.

3. Compute the representative context state of each pro-
duced cluster.
End

Using the d-max algorithm, any two context states cs1, cs2

that belong to the same cluster have distance distS(cs1, cs2)
≤ dcl. Therefore, the following property holds.

Property 1. Given a cluster distance dcl, each cluster
cl produced by the d-max algorithm has context states, such
that, any pair of context states cs1, cs2 ∈ cl have distance
distS(cs1, cs2) ≤ dcl.

Proof: From step 2, of the d-max algorithm, we merge the
closest two clusters, if their distance is less or equal to dcl.
This distance represents the maximum distance between a
context state cs1 of the first cluster and a context state cs2

of the second one. Therefore, any two context states cs1, cs2

that belong to the same cluster, have distance distS(cs1, cs2)
≤ dcl. �

After generating the clusters of preferences, we compute
for each of them an aggregate score for each tuple specified in
any of its preferences (using the definition of the aggregate
tuple score). For each produced cluster cli, we maintain
a table, called scoring table, cliScores(tuple_id, score), in
which we store in decreasing order only the scores of tuples
that satisfy at least one of the predicates in the preferences
of the cluster. That is, we do not maintain scores for all
tuples, but only for those having nonzero scores. Each time
a query is submitted, we search for the most similar cluster
or clusters, that means, for the clusters whose representative
context state is the most similar to the query context. Then,

using the scoring table of the corresponding clusters, we can
quickly retrieve the tuples with the highest scores.

It is straightforward (by Definition 3) that:

Property 2. Let cs be a context state and CS a set of
context states. If cs ∈ CS, then for any t ∈ r, score(t, CS)
≥ score(t, cs).

This means that the score of a tuple computed using the
representative context state is no less than the score of the
tuple computed using any of the context states belonging
to the cluster. In other words, if the context state that is
the most similar to the query context belongs to the cluster
whose representative context state is the most similar to
the query, then the score that our approximation approach
computes for a tuple cannot be lower than the exact one.
That is, we may overrate a tuple, but we never underrate
it.

4. PREDICATE CLUSTERING
Context-based clustering groups together similar context

states. In this section, we consider an alternative approach
for clustering context states that aims at grouping together
context states that produce similar scores for most database
tuples. To this end, we introduce a bitmap representation
for the preferences applicable to a context state cs.

Let P be the set of all predicates that appear in P and
l be the number of all distinct scores. We define the pref-
erence matrix B(cs) for a context state cs as an l × |P|
two-dimensional array, where B(cs)[i, j] = 1, if and only if,
there is a preference that holds under context cs and gives
to tuples for which predicate j holds an interest score equal
to i. In particular:

Definition 9 (Preference matrix). A preference
matrix B(cs) for a context state cs is a bitmap l × |P| array,
where |P| is the number of all distinct predicates and l the
number of all distinct scores in P , such that, B(cs)[i, j] =
1, if and only if, there is a preference (cs, j, i) ∈ P .

Clearly, if the matrices B(cs1) and B(cs2) of two context
states cs1 and cs2 are the same, then all database tuples
have the same scores for context states cs1 and cs2. Since
these preference matrices can be very large, we define ap-
proximations of them as follows.

Definition 10 (Predicate representation). A pred-
icate representation of a context state cs and score s, BV (cs, s),
0 ≤ s ≤ 1, is a binary vector of size |P|, such that, BV (cs, s)[j]
= BORi≥sB(cs)[i, j], where BOR is the binary OR opera-
tion.

This means that if B(cs, s)[j] = 1, then the score of every
tuple t for which predicate j is true has score in context
state cs at least equal to s, that is,

Property 3. Let BV (cs, s) be the predicate representa-
tion for context state cs and score s. If BV (cs, s)[j] = 1 ⇒
∀ t ∈ r, for which predicate j holds, score(t, cs) ≥ s.

Proof: Assume that BV (cs, s)[j] = 1. From Definition 10,
this means that, for some i, i ≥ s, B(cs)[i, j] = 1. Thus,
from Definition 9, a preference (cs, j, i) belongs to P , thus
from the definition of contextual preferences, for each tuple

349

t for which preference j holds, score(t, cs) ≥ i, which proves
the property. �

Based on this property, the following properties relate the
predicate representations for two context states cs1 and cs2

with the interest scores they assign to tuples.

Property 4. Let BV (cs1, s) and BV (cs2, s) be the pred-
icate representations of two context states cs1 and cs2 for
score s.

(a) If ∀ j, BV (cs1, s)[j] = 1 ⇒ BV (cs2, s)[j] = 1, then
the set of tuples that have score larger than s in cs2

is a superset of the set of tuples that have score larger
than s in cs1.

(b) If ∀ j, BV (cs1, s)[j] = 1 ⇔ BV (cs2, s)[j] = 1, then
the set of tuples with scores larger or equal to s are the
same in both context states.

Proof: Proof of (a): Let t be a tuple that has score larger
than s in cs1, score(t, cs1) ≥ s. This means that there is at
least one preference (cs1, j, s

′) with s′ ≥ s that belongs to
profile P , for which predicate j holds in t. From Definition
10, this means that for this j, BV (cs1, s)[j] = 1. Thus,
BV (cs2, s)[j] = 1, and from Property 3, it holds score(t, cs2)
≥ s.
Proof of (b): This holds trivially from (a). �

The distance between two binary vectors depends on the
number of bits they differ at. In particular, let V1 and V2

be two binary vectors of size m, then diff =
Pm

i=1 |V1(i)
- V2(i)|. For computing the distance between two binary
vectors, we shall use the well known Jaccard coefficient that
ignores the negative matches, that is, the bits for which both
vectors have values equal to 0. Let pos be the number of
bits that are equal to 1 for both V1 and V2.

Definition 11 (Vector distance). The distance of
two vectors V1 and V2 of size m is equal to:
distV (V1, V2) = diff

diff+pos
, if diff +pos �= 0 and 1 otherwise.

It is clear that given two context states, the number of
bits that their predicate representations differ at is an in-
dication of the number of tuples that they rank differently.
Specifically, from Property 4(b), if for two context states cs1

and cs2, distV (BV (cs1, s), BV (cs2, s)) = 0, then the set of
tuples with score greater or equal to s associated with each
BV is the same.

Note that some predicates may hold for more tuples than
others. If such information regarding the selectivity of the
predicates is available or can be estimated, then it is possible
to consider a weighted version of diff as follows:

Pm
i=1 w(i)

|V1(i) - V2(i)|, where each w(i) is set to be proportional to
the selectivity of the predicate i.

Now, instead of storing bitmap representation vectors BV
for all distinct interest scores si, we create an overall bitmap
representation matrix BM with only b rows, one for each
score s1, s2, . . . , sb, with 0 ≤ s1 < s2 < . . . < sb ≤ 1. In
particular:

Definition 12 (Overall predicate representation).
An overall predicate representation matrix BM for a context
state cs and b scores s1, s2, . . . , sb, with 0 ≤ s1 < s2 < . . .
< sb ≤ 1 is a bitmap b × |P| array, where |P| is the number
of predicates in P , such that, BM(cs)[i, j] = BV (cs, si)[j],
1 ≤ i ≤ b, 1 ≤ j ≤ |P|.

Table 2: BM for friends
horror Hitscock Spielberg

0.8 1 0 0
0.7 1 1 0
0.6 1 1 0

Table 3: BM for alone
horror Hitscock Spielberg

0.8 0 0 0
0.7 1 0 0
0.6 1 0 1

Simple overall predicate representation matrices with b =
3 for the preferences: p1 = (friends, genre = horror, 0.8),
p2 = (friends, director = Hitscock, 0.7), p3 = (alone, genre
= horror, 0.7) and p4 = (alone, director = Spielberg, 0.6),
are depicted in Tables 2 and 3.

Next, we define the distance between two such predicate
representation matrices:

Definition 13 (Overall representation distance).
The distance between two overall predicate representation b
× |P| matrices BM(cs1) and BM(cs2) of two context states
cs1 and cs2, is defined as: distBM (BM(cs1), BM(cs2)) =
Pb

i=1 distV (BV (cs1,si),BV (cs2,si))

b
.

For instance, the distance between the matrices that are
shown in Tables 2 and 3 is equal to: 1+1/2+2/3

3
= 13

18
. Note

that the distance between overall representation matrices
takes values within the range [0, 1].

For the distance among any predicate representation ma-
trices BM1, BM2 and BM3, the following properties hold:

1. distBM (BM1, BM1) = 0 (reflexivity);

2. distBM (BM1, BM2) = distBM (BM2, BM1) (symme-
try);

3. distBM (BM1, BM2) ≤ distBM (BM1, BM3) +
distBM (BM3, BM1) triangle inequality).

Proof is omitted due to space limitations. Thus, the over-
all representation distance is a metric.

We could also consider weighted versions where rows that
correspond to higher scores influence the overall distance
more than rows that correspond to smaller scores. Also,
note that these matrices can still be very large, when the
number of predicates is large. One can consider reducing the
number of columns by grouping together similar predicates
or by ignoring predicates with small selectivity. We leave
this issue as future work.

Using distances among overall predicate matrices, we cre-
ate clusters of preferences that result in similar scorings of
database tuples. To do this, we use the d-max algorithm.
Again, initially, each preference with a specific context state
is placed in its own cluster. At each step, we merge the two
clusters with the smallest distance, computing the distance
as in Definition 13. The distance between two clusters is
defined as the maximum distance between any two overall
predicate representation matrices of context states that be-
long to these clusters. The algorithm terminates when the

350

closest two clusters have distance greater or equal to scl,
where scl is an input parameter.

Observe that we use the predicate matrices only to group
similar preferences and not for computing scores. After the
clusters have been created, we compute for each cluster an
aggregate score for the tuples. As in our contextual clus-
tering method, for each cluster cli, we maintain a scoring
table cliScores(tuple_id, score), where we store in decreas-
ing order only the scores of tuples that satisfy at least one of
the predicates in the preferences of the cluster (and not the
scores equal to 0). When a query is submitted, we search
for the most relevant cluster or clusters, that means, for the
clusters that contain the preference(s) with the same or the
most similar context state (or states in the case of ties) to
the query context state.

From the way an aggregate tuple score is computed within
a cluster, Property 2 holds. This means that, when using
the predicate clustering approach, the score of a tuple is no
less than the score computed using any preference of the
cluster. Therefore, as with contextual clustering, we may
overrate a tuple, but we never underrate it.

5. DISCUSSION
Since there is potentially one different score for each data-

base tuple per context state, the number of these scores and
thus database rankings can be very large. So far, we have
addressed the problem of reducing the number of precom-
puted database scores through clustering.

Next, we discuss further the issue of handling the inter-
esting rankings after they have been identified through our
clustering algorithms. We also consider how to maintain the
rankings in the presence of profile and database updates.

5.1 Online Phase
Once the interesting clusters and thus rankings are iden-

tified, there are many alternative ways to materialize them.
Since, our focus is on determining the interesting rankings,
rather than on their efficient realization, we have adopted
the following simple approach. We assume that the pro-
duced scores for each interesting cluster are stored in spe-
cial tables, called scoring tables, with two attributes the
tuple_id and the associated score. There is one scoring ta-
ble per interesting ranking, that is, per cluster. The scoring
tables are sorted by score.

When a contextual query q is submitted, the scoring table
that is associated with its context csq is used. In the case of
contextual clustering, this is the table that corresponds to
the cluster whose representative context state cs is the most
similar to csq. In the case of predicate clustering, we use
the table corresponding to the cluster that contains either
csq or if csq does not appear in the profile, the context state
that is the most similar to csq.

Locating the appropriate scoring table can be achieved by
maintaining an additional directory table (C1, C2, . . . , Cn,
table_id), where Ci, 1 ≤ i ≤ n, is a context attribute and
table_id is the scoring table associated with the respective
context state. The selection of the appropriate table can
be made more efficient by deploying indexes on the context
attributes that appear in the profile P . Such a prefix-based
data structure, termed profile tree, was introduced in [26].

Moreover, the physical storage of the precomputed results
can be improved. For instance, we can avoid computing the
scores for each tuple and storing them in the scoring table.

Instead, we could simply cluster preferences in the profile P
and build appropriate indexes on the database tuples based
on the predicates that appear in the preferences of each clus-
ter. For example, for each cluster, we can just index the tu-
ples that satisfy predicates associated with high scores. In
this case, again we first locate the appropriate cluster based
on the context query csq. Then, we use the associated pred-
icate indexes to find the tuples with the highest scores.

When more than one cluster are used to compute the re-
sults of a query, we can use a top − k algorithm (such as,
FA, TA or their variations [11, 12, 13, 21]) to combine the
ordered lists maintained in the scoring tables cliScores of
the related clusters.

Furthermore, we point out that in this paper, as in many
search engines and similar to [3], we rank tuples indepen-
dently of the specific query. Ranking the results of ad-hoc
SQL queries in a context state csq can be achieved by joining
their results with the scoring table applicable to the specific
context state.

As a final note, consider that the two clustering approaches
can be applied together. For example, we can apply predi-
cate clustering first. Then, we can apply contextual cluster-
ing to group the clusters produced based on the similarity
of their context states.

5.2 Handling Updates
Precomputing results increases the efficiency of queries

but introduces the overhead of maintaining the results in
the presence of updates. In this section, we discuss han-
dling insertions and deletions of contextual preferences and
database tuples. An update is considered as a delete fol-
lowed by an insert.

When a database tuple is added (deleted), we just need to
add (delete) its entries in all scoring functions. Clustering
is not affected.

In the case of profile updates, let us, first, consider the case
of adding or deleting a preference for a context state cs that
already exists, that is, for a context state for which other
preferences are already in the profile. In the case of contex-
tual clustering, the clustering itself is not affected, since it is
solely based on the context states. We just need to update
the scores in the scoring table of the cs cluster of all tuples
affected. This may be expensive, since in the absence of
indexes, this may require scanning the whole database. On
the other hand, in the case of predicate clustering, adding a
preference for an existing context state cs may affect clus-
tering. This happens when the addition of the preference
causes the distance of the predicate table for cs to exceed
the threshold distance scl from the other tables in its clus-
ter. This means that cs must be moved to another cluster.
Again, we need to update the scores in the associated scor-
ing table of the previous and the new cluster of cs. The
same holds for the deletion of a preference.

Let us now consider the addition of preferences for a new
context state, ncs. In the case of contextual clustering, this
requires finding an appropriate cluster for ncs and updating
the associated scoring table. Analogously, in the case of
predicate clustering, the predicate table for ncs is computed
and ncs enters the appropriate cluster based on its predicate
table. The scoring table of the cluster that received ncs must
be updated in both cases.

The above operations may be expensive. However, typ-
ically, updates, and especially profile updates, are not as

351

Table 4: Input Parameters
Parameters Synthetic Data Sets Real Data Sets
Database
Number of database tuples 100000 40000
Number of relation attributes 5 6
Preferences
Number of contextual preferences 10000 1000
Number of context attributes 3, 4 3
Number of non context attributes 2 1
Data distribution zipf - a = 1.5
Cardinality of context domains 100 3 - 15
Hierarchy levels 4 2, 3
Cardinality of non-context domains 50

frequent as queries. Furthermore, one can consider batch
variations, where updates are not applied immediately but
say periodically or when their number exceeds some thresh-
old. In between, the users get results that may be less ac-
curate. In such cases, various optimizations are possible by
aggregating the effects of a number of updates and applying
them collectively.

6. EVALUATION
Contextual clustering is based on the premise that prefer-

ences for similar context states produce similar scores. We
first run a related experiment to explore this. Then, we
evaluate both contextual and predicate clustering regarding
the number of representative rankings and the associated
accuracy using both real and synthetic datasets.

6.1 Context and Preference Similarity
The goal of this experiment is to show that often prefer-

ences for similar context states are also similar. Since there
are no real large profile data sets defined using our con-
textual preferences, we used a real dataset of movie ratings
that includes 1000 users, 4000 movies and 150000 ratings [2].
Ratings are of the form (user_id, movie_id, rating_value),
with rating_value in the range [1, 5]. For users, there is in-
formation available of the form (user_id, sex, age, occupa-
tion) that we use as our context environment. We con-
structed simple predicates that involve the genre of the
movies by averaging the rates assigned by each user to movies
of each genre. We consider five values for the genre at-
tribute namely, comedy, action, thriller, horror and drama.
Using the profile such constructed, we show how preferences
vary with context (i.e, user attributes). We compute the dis-
tance between two context states (users) using the distance
between two context states (Def. 7) with equal weights as-
signed to each of the four parameters user_id, sex, age, and
occupation. We compute the distance between two ratings
using the overall representation distance (Def. 13). The
ratings of each user are represented with an overall predi-
cate representation 5 × 5 matrix, where there is one row for
each rating (1 to 5) and one column for each movie genre.
As shown in Fig. 2, the distance between ratings increases
as the distance between users increases.

6.2 Contextual and Predicate Clustering
We run a set of experiments using both synthetic and real

data sets to evaluate both the contextual and the predicate

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

D
is

ta
n

ce
 b

e
tw

e
e

n
 r

a
tin

g
s

Distance between users

Figure 2: Distance of rankings as a function of dis-
tance between users.

clustering approaches. In both cases, we use a variation
of the d-max clustering algorithm, that uses as input the
number of clusters instead of the distance. This allows us
to directly relate the number of clusters with the quality of
the rankings.

Concerning the synthetic data sets, we use a database
with 100000 tuples. The database schema consists of a sin-
gle relation with 5 attributes. A synthetic profile consists
of 10000 contextual preferences, each involving 3 context at-
tributes and 2 database attributes. Context and non-context
(attribute) values are selected using a zipf data distribution
with a = 1.5 from context domains with 100 values and
4 hierarchy levels, and respectively, from domains with 50
values. We consider two cases for producing synthetic pro-
files. In the first case, there is no correlation between the
context values and the other part of the preferences. In
the second case, we construct correlated profiles, that is, we
produce preferences for which similar context states have
similar predicates and scores.

Regarding the real data sets, we use a real database with
information about movies from the Internet Movies Database
(IMDB) [1]. In particular, we extract from IMDB movies
with language English, French, Greek, German, Spanish
or Japanese. Our subset consists of nearly 40000 movies.
The database schema consists of a single relation: Movie(ti-
tle, year, director, genre, language, duration). We run our
prototype implementation for 10 users. Each user was asked
to express contextual preferences for movies. To express
such contextual preferences, users used the context parame-
ters that are depicted in Fig. 1 (namely, Accompanying_peo-
ple, Mood and Time_period) and 1 attribute of the movie
relation. Each user provided about 100 preferences. We use

352

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20
D

is
ta

n
ce

 w
ith

in
 c

lu
st

e
rs

Num of clusters

Contextual clustering

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

D
is

ta
n

ce
 w

ith
in

 c
lu

st
e

rs

Num of clusters

With correlation
Without correlation

Figure 3: Distance between context states within the produced clusters for the contextual clustering approach,
for real (left) and synthetic data sets (right).

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

D
is

ta
n

ce
 w

ith
in

 c
lu

st
e

rs

Num of clusters

Predicate clustering (4 rows)
Predicate clustering (5 rows)

Predicate clustering (5 rows with weights)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

D
is

ta
n

ce
 w

ith
in

 c
lu

st
e

rs

Num of clusters

With correlation (4 rows)
With correlation (5 rows)

With correlation (5 rows with weights)
Without correlation (4 rows)
Without correlation (5 rows)

Without correlation (5 rows with weights)

Figure 4: Distance between context states within the produced clusters for the predicate clustering approach,
for real (left) and synthetic data sets (right).

these preferences to construct a real profile having nearly
1000 preferences.

Our input parameters are summarized in Table 4.
We count the average distance within the produced clus-

ters using the d-max clustering algorithm for different num-
ber of produced clusters (Experiment I). This is an indica-
tion of the similarity of the preferences that belong to the
same cluster. Then, we evaluate the quality of the returned
results for a query (Experiment II).

Experiment I.
In this set of experiments, we vary the maximum number

of clusters (i.e., rankings) and report the average distance
between context states within each cluster for the contextual
clustering approach and the average overall representation
distance within each cluster for the predicate clustering ap-
proach.

Figure 3 reports the average distance among context states
within the produced clusters for the contextual clustering
approach for the real preferences (Fig. 3 (left)) and for the
synthetic ones (correlated and non-correlated case) (Fig. 3
(right)). As expected, the correlation between the contex-
tual and the non contextual part of a preference does not
affect the distance between the context states, since con-
textual clustering just uses the context part. For both the
synthetic and the real data sets, the distance decreases with
the number of clusters. Note that when using real prefer-
ences, the number of rankings (resp., clusters) is small be-
cause of the small cardinalities of context domains and the
high degree of similarity among user preferences.

Figure 4 depicts results for the predicate clustering ap-
proach for different values of b, where b is the number of
rows (scores) of the predicate matrix for the same real (Fig.
4 (left)) and synthetic (Fig. 4 (right)) profiles. We use ma-

trices with 4 and 5 rows. In addition, for the case of a 5
row matrix, we consider a weighted version for computing
the similarity between two matrices, where the 2 rows that
refer to the two highest scores are assigned larger weights.
Again, we report the distance among context states within
the produced clusters for different numbers of clusters. In
the case of predicate clustering, correlation reduces the dis-
tance among context states within a cluster at around 10%.
The above distance is reduced further by using more ac-
curate matrices, that is, matrices with more rows. The
weighted version achieves an additional reduction of around
5%.

Experiment II.
In this set of experiments, we evaluate the quality of

results. In particular, assume that Results(d-max) is the
set of the top-k tuples (that is, the k tuples having the
largest scores) computed using the d-max algorithm and
Results(opt) is the set of top-k tuples computed using the
contextual preferences that are most similar to the query
without pre-computation. We compare these two sets using
the Jaccard coefficient defined as:

|Results(d−max)∩Results(opt)|
|Results(d−max)∪Results(opt)| .

The Jaccard coefficient takes values between 0 and 1 and
the higher its value, the more similar the two top-k tuple
sets. We report the results for k = 20. When there are ties
in the ranking, we consider all results with the same score.

For all cases, we consider two kinds of queries: queries
whose context state is included in the profile and queries
whose context state is not in the profile, thus, a similar one
is used. In particular, Fig. 5 (left) depicts the results of the
contextual clustering approach (with and without correla-
tion). When the query states do not exist in the profile, the
Jaccard coefficient increases on average by 5%. Fig. 6 shows

353

the results of the predicate clustering approach, using pred-
icate matrices with 4 rows, 5 rows and 5 rows with weights,
when query states exist in the profile (left) or not (right),
for the same synthetic data set. The Jaccard coefficient in-
creases at around 10 to 15% for correlated preferences, and
on average 5% when a query does not exist in the profile.
Clearly, in general, there is a trade-off between the number
of produced rankings (i.e., the number of produced clus-
ters) and the quality of the interest scores. In general, the
predicate approach results in more accurate top-k rankings,
however, the number of scores we maintain for each tuple is
larger.

Fig. 5 (right) shows the results when we use real data
sets for both clustering approaches. Using the real data
sets, the Jaccard coefficient takes larger values because of
the high degree of similarity among user preferences. Again,
if a query state does not exist in the profile the results are
better, in this case, at around 17%.

Finally, note that when we randomly select a set of prefer-
ences to compute the top-20 results, the Jaccard coefficient
is nearly equal to zero.

7. RELATED WORK
The research literature on preferences is extensive. In

the context of database queries, there are two different ap-
proaches for expressing preferences: a quantitative and a
qualitative one. With the quantitative approach (i.e., [4,
15, 17, 18]), preferences are expressed indirectly by using
scoring functions that associate a numeric score with ev-
ery tuple of the query answer. In the qualitative approach
(i.e., [8, 16]), preferences between tuples in the answer of
a query are specified directly, typically using binary pref-
erence relations. The incremental refinement of preferences
and query results is exploited in [7, 6]. There is also recent
work on applying query personalization to XML search [5].
User profiles are modeled based on two kinds of preference
rules: scoping rules that change the scope of a query and
ordering rules that specify how to rank the answers. Query
personalization is achieved through the process of rewriting
a query and ranking its results using the preference rules.

Recently, context-aware preferences have also attracted
attention. In our previous research [25, 26], we have consid-
ered the problem of expressing contextual preferences. The
model used in [25] for defining preferences includes only a
single context attribute. Interest scores of preferences in-
volving more than one context attribute are computed by
a simple weighted sum of the preferences of single context
attributes. In [26], we allow contextual preferences that in-
volve more than one context attribute. Both [25] and [26]
focus on modeling issues and do not address how database
rankings are actually produced. A preliminary version of
the contextual clustering approach appears in [24]. Contex-
tual preferences, called situated preferences, are discussed
in [14]. In this approach, a context state is represented as
a situation. Situations are uniquely linked through an N:M
relationship with preferences expressed using the qualitative
approach. A knowledge-based context-aware query prefer-
ence model is also proposed in [27], where context attributes
are treated as normal attributes of relations. Context as a
set of dimensions (e.g., context attributes) is also considered
in [22], where the problem of representing context-dependent
semistructured data is studied, while in [23], an overview of
a Multidimensional Query Language is given, that may be

used to express context-driven queries. Recently, context
has been used in information filtering to define context-
aware filters which are filters that have attributes whose
values change frequently [10].

Perhaps the work that is mostly related to ours is [3] where
the authors consider ranking database results based on con-
textual preferences. The basic differences are in the model.
First, we consider quantitative preferences, that is we as-
sociate scores, whereas the work in [3] considers qualitative
preferences which results in relative rankings. Second, we
consider context attributes to be outside the database and
not part of the database schema. Furthermore, our con-
text attributes have a hierarchical nature that we explore in
contextual clustering. Consequently, the solutions we pro-
pose are different. An interesting problem, but outside the
scope of this paper, is a usability comparison of the two
approaches.

8. CONCLUSIONS
In this paper, we address the problem of finding interest-

ing data items based on contextual preferences that assign
interest scores to pieces of data based on context. Assuming
that the database is large and only a few tuples are of inter-
est at any given context, sorting the whole database for each
query and context will result in both wasting resources and
slow query responses. Thus, we introduced pre-processing
steps that can be used to reduce the online time for pro-
cessing each query. In particular, instead of pre-computing
scores for all data items under all context state, we have ex-
ploited the hierarchical nature of context attributes to iden-
tify representative context states. We have also presented a
complementary method for grouping contextual preferences
according to the similarity of the scores that they produce.
This is achieved through a bitmap representation of prefer-
ences. Finally, we evaluated our approach using both real
and synthetic data sets and presented experimental results
showing the quality of the scores attained using our meth-
ods.

The work reported in this paper can be extended in many
ways. An interesting topic for future research refers to pred-
icate indexing of the most interesting database tuples for
each representative context state. Another issue regards re-
fining the definitions of distances among context states and
extending them for non-hierarchical domains.

9. REFERENCES
[1] Internet Movies Database. Available at

www.imdb.com.
[2] MovieLens 2003. Available at

www.grouplens.org/data.
[3] R. Agrawal, R. Rantzau, and E. Terzi.

Context-sensitive ranking. In SIGMOD, pages
383–394, 2006.

[4] R. Agrawal and E. L. Wimmers. A framework for
expressing and combining preferences. SIGMOD Rec.,
29(2):297–306, 2000.

[5] S. Amer-Yahia, I. Fundulaki, and L. V. S.
Lakshmanan. Personalizing xml search in pimento. In
ICDE, pages 906–915, 2007.

[6] W.-T. Balke, U. Güntzer, and C. Lofi. Eliciting
matters - controlling skyline sizes by incremental

354

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000
Ja

cc
a

rd
 c

o
e

ff
ic

ie
n

t

Num of clusters

With correlation (query does not exist)
With correlation (query exists)

Without correlation (query does not exist)
Without correlation (query exists)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

Ja
cc

a
rd

 c
o

e
ff

ic
ie

n
t

Num of clusters

Contextual clustering (query exists)
Contextual clustering (query does not exist)
Predicate clustering (4 rows - query exists)

Predicate clustering (4 rows - query does not exist)
Predicate clustering (5 rows - query exists)

Predicate clustering (5 rows - query does not exist)
Predicate clustering (5 rows with weights - query exists)

Predicate clustering (5 rows with weights - query does not exist)

Figure 5: Result quality for different number of produced clusters for synthetic data sets for the contextual
clustering approach (left) and for real data sets for both approaches (right).

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

Ja
cc

a
rd

 c
o

e
ff

ic
ie

n
t

Num of clusters

With correlation (4 rows)
With correlation (5 rows)

With correlation (5 rows with weights)
Without correlation (4 rows)
Without correlation (5 rows)

Without correlation (5 rows with weights)
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

Ja
cc

a
rd

 c
o

e
ff

ic
ie

n
t

Num of clusters

With correlation (4 rows)
With correlation (5 rows)

With correlation (5 rows with weights)
Without correlation (4 rows)
Without correlation (5 rows)

Without correlation (5 rows with weights)

Figure 6: Result quality for different number of produced clusters, for the predicate clustering approach
when query states exist in the profile (left) or not (right).

integration of user preferences. In DASFAA, pages
551–562, 2007.

[7] W.-T. Balke, U. Güntzer, and C. Lofi. User interaction
support for incremental refinement of preference-based
queries. In RCIS, pages 209–220, 2007.

[8] J. Chomicki. Preference formulas in relational queries.
ACM Trans. Database Syst., 28(4):427–466, 2003.

[9] A. K. Dey. Understanding and using context. Personal
Ubiquitous Comput., 5(1):4–7, 2001.

[10] J.-P. Dittrich, P. M. Fischer, and D. Kossmann. Agile:
adaptive indexing for context-aware information
filters. In SIGMOD, pages 215–226, 2005.

[11] R. Fagin. Combining fuzzy information from multiple
systems. In PODS, pages 216–226, 1996.

[12] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In PODS,
2001.

[13] U. Güntzer, W.-T. Balke, and W. Kießling.
Optimizing multi-feature queries for image databases.
In VLDB, pages 419–428, 2000.

[14] S. Holland and W. Kießling. Situated preferences and
preference repositories for personalized database
applications. In ER, pages 511–523, 2004.

[15] V. Hristidis, N. Koudas, and Y. Papakonstantinou.
Prefer: A system for the efficient execution of
multi-parametric ranked queries. In SIGMOD, pages
259–270, 2001.

[16] W. Kießling. Foundations of preferences in database
systems. In VLDB, pages 311–322, 2002.

[17] G. Koutrika and Y. Ioannidis. Constrained
optimalities in query personalization. In SIGMOD,
pages 73–84, 2005.

[18] G. Koutrika and Y. Ioannidis. Personalized queries

under a generalized preference model. In ICDE, pages
841–852, 2005.

[19] Y. Li, Z. A. Bandar, and D. McLean. An approach for
measuring semantic similarity between words using
multiple information sources. IEEE TKDE,
15(4):871–882, 2003.

[20] G. A. Miller. Wordnet: a lexical database for english.
Commun. ACM, 38(11):39–41, 1995.

[21] S. Nepal and M. V. Ramakrishna. Query processing
issues in image (multimedia) databases. In ICDE,
pages 22–29, 1999.

[22] Y. Stavrakas and M. Gergatsoulis. Multidimensional
semistructured data: Representing context-dependent
information on the web. In CAiSE, pages 183–199,
2002.

[23] Y. Stavrakas, K. Pristouris, A. Efandis, and T. K.
Sellis. Implementing a query language for
context-dependent semistructured data. In ADBIS,
pages 173–188, 2004.

[24] K. Stefanidis and E. Pitoura. Approximate contextual
preference scoring in digital libraries. In PersDL,
pages 60–64, 2007.

[25] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Modeling
and storing context-aware preferences. In ADBIS,
pages 124–140, 2006.

[26] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding
context to preferences. In ICDE, pages 846–855, 2007.

[27] A. H. van Bunningen, L. Feng, and P. M. G. Apers. A
context-aware preference model for database querying
in an ambient intelligent environment. In DEXA,
pages 33–43, 2006.

355

