Privacy in Social Networks:
Structural identity disclosure

Methods based on k-anonymity
= k-candidate
= k-degree
= k-neighborhood
= k-automorphism

k-candidate Anonymity

M Hay et al, Resisting Structural Re-identification in Anonymized Social
Networks VLDB 2008

G, the naive anonymization of G through an anonymization mapping f

(=]
i
<
B
m
-
=]
[T M
e S R

Jai”

An individual x € V called the target has a candidate set, denoted cand(x) which
consists of the nodes of G, that could possibly correspond to x

Given an uninformed adversary, each individual has the same risk of re-identification,
cand(x) =V,

In practice, background knowledge, examples:

Bob has three or more neighbors, cand(Bob) =?

Greg is connected to at least two nodes, each with degree 2, cand(Greg) =? 4

Focus on

= (background knowledge) structural re-identification where the information of the
adversary is about graph structure

= (utility) analysis about structural properties: finding communities, fitting power-law
graph models, enumerating motifs, measuring diffusion, accessing resiliency

Two factors

= descriptive power of the external information — background knowledge

= structural similarity of nodes — graph properties

Knowledge Acquisition in Practice

External information may be acquired through
= malicious actions by the adversary (active attacks) or

= through public information sources

An adversary may be a participant in the network with some innate
knowledge of entities and their relationships

Radius - neighborhood

(locality) Adversary knowledge about a targeted individual tends to be
local to the targeted nodes

Knowledge Acquisition in Practice

Closed-World vs Open-World Adversary

Assumption: External information sources are accurate, but not necessarily
complete

= Closed-world: absent facts are false

= Open-world: absent facts are simply unknown

Anonymity through Structural Similarity

[automorphic equivalence]. Two nodes x, y € V are

(denoted x = y) if there exists an isomorphism from the graph onto
itself that maps x to y.

Example: Fred and Harry, but not Bob and Ed

Automorphic equivalence induces a partitioning on V into sets whose members
have identical structural properties.

An adversary —even with exhaustive knowledge of the structural position of a
target node — cannot identify an individual beyond the set of entities to which it is
automorphically equivalent.

Anonymity through Structural Similarity

= Some special graphs have large automorphic equivalence classes.
= E.g., complete graph, a ring

= In general, an extremely strong notion of structural similarity.

Adversary Knowledge (model)

An adversary access a source that provides answers to a
restricted knowledge query Q evaluated for a single target node of the original graph G.

knowledge gathered by the adversary is accurate.

For target x, use Q(x) to refine the candidate set.

[CANDIDATE SET UNDER Q]. For a query Q over a graph, the candidate set of x

w.r.t Q is candQ(x) = {y €V, | Q(x) = Q(y)}.

10

Adversary Knowledge

1. Vertex Refinement Queries
2. Subgraph Queries
3. Hub Fingerprint Queries

1"

Vertex Refinement Queries

A class of queries of increasing power which report on the local structure of the
graph around a node.

= The weakest knowledge query, H,, simply returns the label of the node.
= H,(x) returns the degree of x,
= H,(x) returns the multiset of each neighbors’ degree,

= H,(x) returns the multiset of values which are the result of evaluating H, , on the
nodes adjacent to x

H;"_I:' = {H;—l'-::l::'- H;—l'izi::' Lo -Hi—ll.::?"-:']
wheara 21 .. . 2m are the nodes adjacent to x.

H* Iterative computation of H until no new vertices are distinguished.
12

Vertex Refinement Queries Il

) NodeID | Ho | Hi | Ha
Alice Bob Carol N . i Yy
Bab £ 4 {1, 1,4,4}
Carol e 1 {4}
Dave Ed Dave |¢ 4 {2.4,4,4}
Ed € 4 {2.4,4.4}
Frad € 2 {4, 4}
Fred Greg Harry Greg | ¢ 4 {2,2,4,4}
Hary | e 2 {4, 4}
(a) graph It} vertex refinements

13

Vertex Refinement Queries Il

DEFINITION 2 (RELATIVE EQUIVALENCE). Two nodes X, y in a graph are equivalent

relative to H,, denoted x =, y, if and only if H,(x) = H,(y).

Mica Bob Carol l\o:ing Ho | Hi | Ha
Alice [3 1 4
Boh £ 4 1,1,4,4}
Caral £ 1 4
Dave Ed Dave |¢ 4 2,4,4,4} Equivalence Relation Equivalence Clzsses
Ed £ 4 2,4,4.4} Sy {A,B.C.D,E,F.G,H}
Fred |e |2 {44} = {A.C] {B.D.E,G} {F H}
Fred Greg Harry Greg ¢ 4 2,2,4,4} Sz {ACHEHD. EHGHF, H}
Hary |e |2 | {a4) = [A.CH{BID.EHCHEH]
(2) graph) veriex refinements (€} equivalence classes

14

Subgraph Queries

Limitation of vertex refinement:

= always provide complete information about the nodes adjacent to the target
(closed-world).

= arbitrarily large subgraphs around a node if that node is highly connected
E.g.,, if Hy(x) =100 vs H,(y) = 2

class of queries about the existence of a subgraph around the target node.

Measure their descriptive power by counting edge facts (# edges in the subgraph).

15

Subgraph Queries

Example: Three subgraph queries centered around Bob.

Alice Bob Carol

Fred Greg Harry

may correspond to different strategies of knowledge acquisition by the adversary.
including breadth-first exploration, induced subgraphs of radius 1 and 2. etc -- For a given
number of edge facts, some queries are more effective at distinguishing individuals.

may be incomplete (open-world)

16

Hub Fingeprint Queries

A hub is a node with high degree and high betweenness centrality (the proportion of
shortest paths in the network that include the node)

A hub fingerprint for a target node x is a description of the connections of x to a set
of designated hubs in the network.

F.(x) hub fingerprint of x to a set of designated hubs, where i limit on the maximum

distance

17

Hubs: Dave and Ed
F,(Fred) = (1; 0)
F,(Fred) =(1; 2)

Hub Fingeprint Queries

Alice Bob Caro

Davea

Frad

Greg Harry

both an open and a closed

world.

Example:

open world, if the adversary knows F,(Fred) = (1; 0) then
nodes in the anonymized graph with F, fingerprints of (1; 0)
or (1; 1) are both candidates for Fred.

18

Comparison of the Knowledge Models

Expressiveness:

Vertex refinement queries provide complete information about node degree.

A subgraph query can never express H, because subgraph queries are existential and
cannot assert exact degree constraints or the absence of edges in a graph.

Complexity Computing:

H* is linear in the number of edges,

Subgraph queries can be NP-hard in the number of edge facts, (requires finding all
isomorphic subgraphs in the input graph)

Both have well-studied logical foundations:
H, knowledge corresponds to first order logic with counting quantifiers, restricted to i variables.

Subgraph queries can be expressed as conjunctive queries with inequalities. The number of edge
facts corresponds to the number of subgoals in the query

19
Disclosure in Real Networks
= Study three networked data sets, drawn from diverse domains.
= For each data set, consider each node in turn as a target.
= Assume the adversary computes a vertex refinement query, a subgraph
query, or a hub fingerprint query on that node, and then compute the
corresponding candidate set for that node.
= Report the distribution of candidate set sizes across the population of
nodes to characterize how many nodes are protected and how many are
identifiable.
20

10

Disclosure in Real Networks

Hep-Th database: papers and authors in theoretical high-energy physics, from the
arXiv archive, linked if at least two papers together.

Enron dataset: from a corpus of email sent to and from managers at Enron
Corporation -- Two individuals connected if they corresponded at least 5 times.

Net-trace dataset: from an IP-level network trace collected at a major university.
monitors traffic at the gateway; a bipartite graph between IP addresses internal to
the institution, and external IP addresses.

187 internal addresses from a single campus department and the 4026 external
addresses to which at least 20 packets were sent on port 80 (http traffic).

undirected edges, self-loops removed, eliminated a small percentage of
disconnected nodes.

21

Reidentification: Vertex Refinement

very low percentage of high-risk nodes under a reasonable assumption about
adversary knowledge.

Two datasets meet that requirement for H1 (Hep-Th and Net-trace), but no
datasets meet that requirement for H2.

significant variance across different datasets in their vulnerability to different
adversary knowledge.

the most significant change in re-identification is from H1 to H2,

Re-identification tends to stabilize after H3 — more information in the form of H4
does not lead to an observable increase in re-identification

a substantial number of nodes are not uniquely identified even with H4

22

11

Reidentification: Subgraph Queries

disclosure is substantially lower than for vertex refinement queries.
To select candidate sets of size less than 10 requires a subgraph query of size 24 for
Hep-Th, size 12 for Enron, and size 32 for Net-trace.

The smallest subgraph query resulting in a unique disclosure was size 36 for Hep-Th
and 20 for Enron. The smallest candidate set witnessed for Net-trace was size 2,
which resulted from a query consisting of 88 edge facts.

Breadth-first exploration led to selective queries across all three datasets.

asserts lower bounds on the degree of nodes.

In Enron, the most selective subgraph queries witnessed;

for Hep-Th and Net-trace, the more selective subgraph queries asserted the
existence of two nodes with a large set of common neighbors.

23

Reidentification: Hub Fingerprints

disclosure is low using hub fingerprints.

At distance 1, 54% of the nodes in Enron were not connected to any hub and
therefore hub fingerprints provide no information.

This was 90% for Hepth and 28% for Net-trace.

connectivity to hubs was fairly uniform across individuals.

For example, the space of possible fingerprints at distance 1 for Hepth and Net-
trace is 210= 1024.

Of these, only 23 distinct fingerprints were observed for Hepth and only 46 for Net-
trace.

hubs themselves stand out, but have high-degrees, thus connections to a hub are
shared by many.

24

12

Anonymization in Random Graphs

Erdos-Renyi (RE) random graphs
n nodes by sampling each edge independently with probability p
sparce p = ¢/n, dense = clogn/n, super-dense p = c (c is a constant)

c>1,

include a giant connected component of size ©(n), and a collection of smaller
components (sparse)

completed connected (dense)

25

Reindification in Random Graphs

THEOREM 1 [SPARSE ER RANDOM GRAPHS). Ler G ke an
ER random graph containing n nodes with edge probability given
by p=c/n for ¢ > L With probakility going lo one, the expecied
siges of the eguivalence closses induced by Hy i E;{n}. for any
iz0

THEOREM 2 (SUPER-DENSE ER RANDOM GRAPHS). Ler G
be an ER random graph on n onedes with edge probability p =
1 /2. The probability that there exist wo nodes 2,9 € V such thar
T Sy I O less than 275 for constant value ¢ > 1

For dense, nodes cannot be identified for H, for any c>0, but all nodes are re-
identifiable for H, for any c>1

26

13

Reindification in Random Graphs

w(G) the number of nodes in the largest clique

PROPOSITION 2. Ler G he any graph, and QQz) a subgraph

guery arund any node x. If Q1) contains fewer than w((G) nodes,
then |candg(z)| = wiG).

Any subgraph query matching fewer than w(G) nodes, will match any
node in the clique

27
Anonymization Algorithms
Partition/Cluster the nodes of Ga into disjoint sets
In the generalized graph,
supernodes: subsets of Va
edges with labels that report the density
Partitions of size at least k
DEFINITION 3 [GENERALIZATION OF GRAPH). Ler V be the
supernodes of Voo G i a generalization of Ga under Vi for all
XYevdX,Vi=|{lzwe E|lzeX,ye¥Y].
Extreme cases: a singe super-node with self-loop, Ga
Again: Privacy vs Utility
28

14

Anonymization Algorithms

Find a partition that best fits the input graph
Estimate fitness via a maximum likelihood approach

Uniform probability distribution over all possible worlds

Searches all possible partitions using simulated annealing

Each valid partitions (minimum partition of at least k nodes) is a valid state
Starting with a single partition with all nodes, propose a change of state:

= split a partition

= merge two partitions, or

= move a node to a different partition

Stop when fewer than 10% of the proposals are accepted

29
Anonymization Algorithms
Next, we see 3 concrete examples:
= Know the degree, and
= Neighborhood,
= Any structural query
30

15

k-degree Anonymity

K. Liu and E. Terzi, Towards Identity Anonymization on Graphs, SIGMOD 2008

31

|dentity anonymization on
graphs

* Question

— How to share a network in a manner that permits useful analysis
without disclosing the identity of the individuals involved?

* Observations

— Simply removing the identifying information of the nodes before
publishing the actual graph does not guarantee identity
anonymization.

L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou R3579X?: Anonymized social
netwoks, hidden patterns, and structural steganography,” In WWW 2007.

J. Kleinberg, “Challenges in Social Network Data: Processes, Privacy and Paradoxes, ” KDD
2007 Keynote Talk.

+ Can we borrow ideas from k-anonymity? "

16

What if you want to prevent the
following from happening

« Assume that adversary A knows that B
has 327 connections in a social network!

* If the graph is released by removing the
identity of the nodes
— A can find all nodes that have degree 327

— If there is only one node with degree 327, A
can identify this node as being B.

33

Privacy model

A graph is -degree

anonymous if every node in = has the same degree as
other nodes in

A(2) AQ2)

B(1
(/\,E & anonymization B (ZQA.E &

*r—0 *r—
c(1) D(1) C(1) D(1)

[] It prevents the re-identification of individuals

by adversaries with a priori knowledge of the degree of
certain nodes.

17

Degree-sequence anonymization

[1 A sequence of integers < is ‘-anonymous if

every distinct element value in - appears at least ' times.

[100,100, 100, 98, 98,15,15,15]

A graph G(V, E) is k-degree anonymous if its degree sequence is

k-anonymous

-————a

— '
——————=
L] -———a

Figura 1@ Examples of o 3-degres anonymous graph
{laft) nnd a 2-degres anonymous graph (right).

35

Problem Definition

Given a graph and an integer , modify G via a set of
operations to construct a new graph

graph G’ in which every node u has the same
degree with at least k-1 other nodes

Why not simply transform G to the complete graph?

Prop 1: If G is kl-degree anonymous, then it is also k2-degree
anonymous, for every k2 < k1

36

18

Problem Definition

Given a graph and an integer , modify via a set of

operations to construct a new graph
such that

1) is -degree anonymous;

2) ;

3) The of - and © is as small as possible

SymDiff(G',G) = (E\E)U(E\E')

Assumption: G: undirected, unlabeled, no self-loops or multiple-edges

Only edge additions -- SymDiff(G’, G) = |E’| - | E|

There is always a feasible solution (TT0I10;)

37

Degree-sequence anonymization

Increase/decrease of degrees correspond to additions/deletions of edges

[] Given degree sequence -,

and integer , construct -anonymous sequence - such that
(i.e., Ly(d"—=d))

[E'l-|E|="2L(d"—d)

Relax graph anonymization: E’ not a supergraph of E

38

19

Graph Anonymization algorithm

Two steps

Input: Graph G with degree sequence d, integer k
Output: k-degree anonymous graph G’

[STEP 1: Degree Sequence Anonymization]:

Construct an (optimal) k-anonymous degree sequence d’ from
the original degree sequence d

[STEP 2: Graph Construction]:

[Construct]: Given degree sequence d', construct a new graph
GO(V, EY) such that the degree sequence of G is d*

39

DP for degree-sequence
anonymization

d(1)=d(2)=..2d(i)2...=2d (n) : original degree sequence.

d’ (1)=d’(2)2..2d’ (i) 2..=2d’ (n) : k-anonymized degree sequence.
If we only add edges, d’(i) > d(i)
Observation 1, if d’(i) = d’(j) with i < j, then d’(i) = d’(i+1) = .. . d’(j-1) = d(j)

I(i, j): anonymization cost when all nodes i, i+1, ..., j are put in the same
anonymized group

1G,1)=3 (0 -d)

40

20

Algorithm for degree-sequence
anonymization

8 Original degree sequence
0
o0 Qo0 k=2
o 9Q
o
8 o
o
© 0 0 o
8 e
© o
@ 6 0 ©
©®

41

DP for degree-sequence
anonymization

DA(1, j): the optimal degree anonymization of subsequence d(1, j)
DA(1, n): the optimal degree-sequence anonymization cost

I(i, j): anonymization cost when all nodes i, i+1, ..., j are put in the same
anonymized group

For i < 2k (impossible to construct 2 different groups of size k)

DA i) =1 (L)
Fori> 2k

DA(Li)=min {kgrtngi?ik{DA(l,t)—i— (t+1i)}, 1Li)}

42

DP for degree-sequence

anonymization
DAL) = I (L)

DA(Li)=min { mn {DAQLt)+I(t+1i)} 1(Li)}

k<t<i—k
Can be improved, no anonymous groups should be of size larger than 2k-1

We do not have to consider all the combinations of [(i, j) pairs, but for every i, only
j'ssuchthatk<j—i+1<2k-1

0O(n?) -> (Onk)

DALi)= min {DA@Lt)+I(t+1i)}

max {k,i—2k+1}<t<i-k
Additional bookkeeping -> Dynamic Programming with O(nk)
Greedy

Form a group with the first k, for the k+1, consider
Crerge = (d(1) = d(k+1)) + I(k+2, 2k+1) = C,,,(k+1, 2k) 43

new(

GraphAnonymization algorithm

Input: Graph G with degree sequence d, integer k
Output: k-degree anonymous graph G’

[Degree Sequence Anonymization]:

Contruct an anonymized degree sequence d’ from the
original degree sequence d

[Graph Construction]:
[Construct]: Given degree sequence d', construct a new
graph G°(V, E°) such that the degree sequence of G° is d

[Transform]: Transform G°(V, E%) to G'(V, E) so that
SymDiff(G’,G) is minimized.

44

22

Are all degree sequences
realizable?

» A degree sequence d is realizable if there
exists a simple undirected graph with
nodes having degree sequence d.

* Not all vectors of integers are realizable
degree sequences

~d=1{4,2,2,2,1} ?

* How can we decide?

45

Realizability of degree sequences

[Erdds and Gallai] A degree sequence d with d(1) 2 d(2) 2... 2 d(i) 2... 2 d(n)
and Zd(i) even, is realizable if and only if

led(i) <I(I-)+ Zn: min{l,d(i)}, forevery1<l<n-1.

i=1 i=l+1

For each subset of the | highest degree nodes, the degrees of these nodes can be
“absorbed” within the nodes and the outside degrees

46

23

Realizability of degree sequences

Input: Degree sequence d’
Output: Graph G°(V, E?) with degree sequence d’ or NO!

General algorithm, create a graph with degree sequence d’

Algorithin 1 The ConstructGraph algorithm.

PR R

Input: A degree sequence d of length n.

Output: A graph G(V,E) with nodes having degree
sequence d or “No” if the input sequence is not realizable.
V—{ b E—@

it 37, d(é) is odd then

Halt and return “No”
while 1 do
if there exists d(7) such that d{#) < 0 then
Halt and return “No”
if the sequence d are all zeros then
Halt and return G(V, E)
Pick a random node v with d(v) > 0
Set div) =0
Vagwy — the d{e)-highest entries in d (other than v)
for each node w & Vyy do
E—EuU(w
diw) — d{w) —1

In each iteration,
pick an arbitrary node u

add edges from u to d(u)
nodes of highest residual
degree, where d(u) is the
residual degree of u

Is an oracle

We also need G’ such that
EEDE

Thus, we start with the
edges of E already in

Is not an oracle

47
Input: Degree sequence d’
Output: Graph G(V, E?) with degree sequence d’ or NO!
- If the degree sequence d’ is NOT realizable?
eConvert it into a realizable and k-anonymous degree sequence
Slightly increase some of the
entries in d via the addition of
Algorithm 2 The Probing scheme. i .
Toput: Tnput graph GV, E) with degree distribution d unirorm noise
and integer k. o i .
Ont.putA: Graph G(V, E) Awith E-anonymous degree se- In the |mp|ementat|0n,

quence d, such that E C E.
:d=DP(d) /¥ orGreedy(d) */
realizable, () = Supergraph(d)

: while realizable = “No” or “Unknown” do
d = d + random noise

d=DP(d) /*or Greedy(d) */
(rcalizahl-:. é) = Supergraph((nlj

: Return &

e

=

examine the nodes in
increasing order of their
degrees, and slightly increase
the degrees of a single node at
each iteration (in real graph,
few high degree nodes — rarely
any two of these exactly the

same degree) 48

24

GraphAnonymization algorithm

Input: Graph G with degree sequence d, integer k
Output: k-degree anonymous graph G’

[Degree Sequence Anonymization]:

Contruct an anonymized degree sequence d’ from the
original degree sequence d

[Graph Construction]:
[Construct]: Given degree sequence d', construct a new
graph G°(V, E®) such that the degree sequence of G° is d'
[Transform]: Transform GO(V, E°) to G'(V, E) so that
SymDiff(G’,G) is minimized. 49

Graph-transformation algorithm

GreedySwap transforms G? = (V, E%) into G’(V, E’) with the same degree
sequence d’, and min symmetric difference SymDiff(G’,G) .

GreedySwap is a greedy heuristic with several iterations.

At each step, GreedySwap swaps a pair of edges to make the graph more
similar to the original graph G, while leaving the nodes’ degrees intact.

50

25

Valid swappable pairs of

edges

A swap is valid if the resulting graph is simple

51

GreedySwap algorithm

Input: A pliable graph G°(V, EY) , fixed graph G(V,E)
Output: Graph G'(V, E’) with the same degree sequence as G°(V,E°)

i=0
Repeat

find the valid swap in G' that most reduces its symmetric difference
with G , and form graph Gi*!
i++

52

Experiments

Datasets:

Co-authors (7995 authors of papers in db and theory conference),

Enron emails (151 users, edge if at least 5 times),

powergrid (generators, transformers and substations in a powergrid network,
edges represent high-voltage transmission lines between them),

Erdos-Renyi (random graphs with nodes randomly connected to each other with
probability p),

small-world large clustering coefficient (average fraction of pair of neighbors of a
node that are also neighbors) and small average path length (average length of
the shortest path between all pairs of reachable nodes),

power-law or scale graphs (the probability that a node has degree d is
proportional to d”Y, y = 2, 3)

Goal (Utility): degree-anonymization does not destroy the structure of the
graph

Average path length
Clustering coefficient
Exponent of power-law distribution 53

Experiments: Clustering coefficient

and Avg Path Length

e Co-author dataset

e APL and CC do not change dramatically even for large values of k

0.6 i
kS =
g 0.6 27
£ — .
8 055 | ===0riginal £
o =©=SuperGraph 8
o == Priority o 5
E 0.5 -| —#=Greedy_Swap @)
g ‘ ‘ g
n ; : 0] = ==Qriginal
% 0.45 & 49" | “o-SuperGraph

' =9~ Priority

‘ : ‘ ‘ ‘ —4—Greedy_Swap j ‘
04 0 15 20 2 5 10 5 10 15 20 2 50
k
k

27

Experiments: Edge intersections

Edge intersection achieved
by the GreedySwap
algorithm for different
datasets.

Parenthesis value indicates
the original value of edge
intersection

Synthetic datasets

Small world graphs* | 0.99 (0.01)

Random graphs 0.99 (0.01)

Power law graphs** | 0.93 (0.04)

Real datasets

Enron 0.95 (0.16)
Powergrid 0.97 (0.01)
Co-authors 0.91(0.01)

(*) L. Barabasi and R. Albert: Emergence of scaling in random networks. Science 1999.

(**) Watts, D. J. Networks, dynamics, and the small-world phenomenon. American Journal of Sociology 1999 55
Experiments: Exponent of power
law distributions
Original 2.07
k=10 245 Co-author dataset
k=15 2.33
_ Exponent of the power-
k=20 2.28 law distribution as a
k=25 2.25 function of k
k=50 2.05
k=100 1.92
56

28

k-neighborhood Anonymity

B. Zhou and J. Pei, Preserving Privacy in Social Networks Against
Neighborhood Attacks, ICDE 2008

57

Motivation

d [s]

(c) the 1-neighborhood
graph of Ada

(d) a 2—anonymous network

An adversary knows that:

Ada has two friends who know each other, and has another two friends who do not know each
other (1-neighborhood graph)

Similarly, Bob can be identified if the adversary knows its 1-neighborhood graph

58

29

1-neighborhood attacks

The neighborhood of u € V(G) is the induced subgraph of the neighbors of u,
denoted by Neighbor,(U) = G(N,) where N, = {v | (u,v) € E(G)}.

59

Graph Model
Graph G=(V, E, L, F),
V is a set of vertices,
E < Vx Vis a set of edges,
Lis a set of labels, and
F a labeling function F: V —L assigns each vertex a label.

edges do not carry labels

Items in L form a hierarchy.

E.g., if occupations are used as labels of vertices, L contains not only the specific occupations
[such as dentist, general physician, optometrist, high school teacher, primary school teacher,
etc] but also general categories [such as, medical doctor, teacher, and professional}.

* € L-> most general category generalizing all labels.

60

30

Graph Model

Given a graph = (V,, E,,, L, F) and a social network G = (V, E, L, L), an instance of Hin
Gis atuple (H', f) where H' = (V,, ,E,, ,L, F) is a subgraph in G and f: V, >V, is a
bijection function such that

(1) for any u € V,,, F(f(u)) < F(u), /* the corresponding labels in H’ are more general */ and

(2) (u, v) € E if and only if (f (u), f(v)) € E,,.

61

G -> G’ through a bijection (isomorphism) A

A vertex u € V (G), u is k anonymous in G’ if
there are at least (k — 1) other vertices u,, . . ., u,_; € V (G) such that
Neighbor(A(u)), Neighborg(A(u,)), . . . Neighborg(A(u,_,)) are

isomorphic.

G’ is k-anonymous if every vertex in G’ is k-anonymous

Property 1 (k-anonymity) Let G be a social network and G' an anonymization of G.
If G' is k-anonymous, then with the neighborhood background knowledge, any
vertex in G cannot be re-identified in G’ with confidence larger than 1/k .

62

Given a social network G, the k-anonymity problem is to compute an
anonymization G’ such that

(1) G'is k-anonymous;

(2) each vertex in G is anonymized to a vertex in G' and G’ does not contain
any fake vertex; (no node addition)

(3) every edge in G is retained in G’; and (no node deletion)

(4) the number of edges to be added is minimized.

63

Utility

Aggregate queries:

compute the aggregate on some paths or subsgraphs satisfying
some given conditions

E.g., Average distance from a medical doctor to a teacher

Heuristically, when the number of edges added is as small as

possible, G' can be used to answer aggregate network queries
accurately

64

32

Anonymization Method

Two steps:

STEP 1

Extract the neighborhoods of all vertices in the network

Encode the neighborhood of each node (to facilitate the comparison between
neigborhoods)

STEP 2
Greedily, organize vertices into groups and anonymize the neighborhoods of
vertices in the same group

65
Step 1: Neighborhood Extraction and Coding

General problem of determining whether two graphs are isomorphic is NP-
complete
Goal: Find a coding technique for neighborhood subgraphs so that whether
two neighborhoods are isomorphic can be determined by the corresponding
encodings

66

33

Step 1: Neighborhood Extraction and Coding

A subgraph C of G is a neighborhood component of u € V (G), if C is a maximal
connected subgraph in Neighbor(u).

(e) £
‘—\/ _:”‘a < —
(o} s ()
i R e ('Ub) o
L)
Neighbor(x) Neighborhood components of u

= Divide the neighborhood of v into neighborhood components
=To code the whole neighborhood, first code each component.

67

Step 1: Neighborhood Extraction and Coding

Encode the edges and vertices in a graph based on its depth-first search tree (DFS-

tree).

All the vertices in G can be encoded in the pre-order of T.

Thick edges are those in the DFS-trees

(=) @™) v (forward edges),
/‘]] Thin edges are those not in the DFS-trees
.-”" -~ [At A (backward edges)
{ .\..'l / | \x j '\:Z:.'_
|I A‘ (. .
/ \ | /\ /\ vertices encoded u0 to u3 according to the
PN vy A~ U3 Ao pre-order of the corresponding DFS-trees.
\z (T INN)) \z) W)

z
(a) Graph & (b) DF5-tree Ty (c) DF5-tree Tn

The DFS-tree is generally not unique for a graph -> minimum DFS code (based on an
ordering of edges) — select the lexically minimum DFS code — DFS(G)

= Two graphs G and G’ are isomorphic, if and only if, DFS(G) = DFS(G’)
68

34

Step 1: Neighborhood Extraction and Coding

Combine the code of each component to produce a single code for the
neighborhood

The neighborhood component code of NeighborG(u) is a vector NCC(u) =
(DFS(C,)}.... DFS(C,)) where C,,...,.C

are the neighborhood components of NeighborG(U), where components are
ordered

Theorem (Neighborhood component code): For two vertices u, v € V(G) where
G is a social network, Neighbor(u) and Neighbor(v) are isomorphic if and only
if NCC(u) = NCC(v).

69

Step 2: Social Network Anonymization

Each vertex must be grouped with a least (k-1) other vertices such their
anonymized neighborhoods are isomorphic

For a group S with the same neighborhoods, all vertices in S have the same degree

Vary few nodes have high degrees, process them first to keep information loss for
them low

Many vertices of low degree, easier to anonymize

1. Define Quality Measures
2. Anonymize Two Neighborhoods
3. Anonymize a Social Network

70

35

Step 2: Quality Measures

Generalize vertex labels

I, (leaf level)-> more general |, (penalty or loss as ,-I'I..r 1"__-:' F{J?] — Et_—'{'g?-%'
JLEel

in relational) size(*)= #leafs

Add Edges
Total number of edges added +

Number of vertices that are not in the neighborhood of the target vertex
and are linked for anonymization

Costla,v) = o E‘L'EH" NCP{')

+8+ [{{v1, v} |(v1, 1) & E(H), (Aw1), Ava)) € E(H'}}|
by - {|V(H")| - [V{H)|)

7

Step 2: Anonymizing 2 neighborhoods

First, find all perfect matches of neighborhood components (perfectly match=same minimum DFS
code)

For unmatched, try to pair “similar” components and anonymize them

How: greedily, starting with two vertices with the same degree and label in the two components to
be matched (if ties, start from the one with the highest degreelf there are no such vertices: choose
the one with minimum cost

Then a BFS to match vertices one by one, if we need to add a vertex, consider vertices in V(G)

Label ierarchy

|)
(. 4y (1w, lg)
New neighbor nodes

o—0
Orfe) (i) |
LA

Cil=l
O—2—0

Anocymized nelghborhood 72

36

Step 2: Social Network Anonymization

Input: a social petwork & = (V)), the anonymizaton requirement
parameler &, the cost fonction parameters o, 3 and -;

Outpot: an anonymized graph G Maintain a list VertexList

Methal: . .

1: initialize G = ; of unanonymlzed vertices

20 mark w < V{(7} as “unanonymized™; . .

30 sort "((7) as VertexList in neighborhood size descending n descend'“g order of
order; . .

4; WHILE (VerteeList # fi} DO neighborhood size

5 ertexList head() and remove it

let SeedVertex
from Vertexk
& FCR each w; & VertexList DO
i caleulate CostfSeedVertex, w) nsing the anenymization
methad for two vertoes;
END FCR
8 IF (VerrexLisesize() = 2k — 1} DO
let CandicareSet contain the top k — 1 vertices with the
smallest Cost;

o ELSE
10 let CandidateSet contain the remaining vnanonymized
veriices;

11: supposc CandidateSet= {u1,. .., wm }, anonymize
Neighbon SeeqVertex) and Neighbor(u) as
discussed in Section HI-B.2;
12; FCR j=2towm DO
13 anonymize Neighbor(iw;) and { Neighbon SeeaVertex),
Neighbor(u,), .. . Neighbor(u;_;)} as discussed in
Section [11-B.2, mark them as “anonymired”;
14 update Vertexlis;
END FCR
END» WHILE

Fig. 5. Anonymizing a Social Network

73
Co-authorship data from KDD Cup 2003 (from arXiv, high-energy physics)
Edge — co-authored at least one paper in the data set.
57,448 vertices
120,640 edges
average number of vertex degrees about 4.
k| Eemoving labels | Genemhzing to afhbations |
5 1.3%: T2.7%
([EE 16.1%
H 1% T2.4%
30 12.0% T30%
TABLE I
THE PERCENTAGES OF VERTICES VIOLATING k-ANONYMITY IN THE
CO-AUTHORIHIF CATA,
74

37

3-level anonymization, author, affiliations-countries, *
Anonymized for different k

Aggregate queries: the average distance from vertex with level I1 to each nearest neighbor
with label 12

o0

500 e
4000 o
] e
wap —t
10

e

dumimy sdaes

+
Aunning time [=es]

For 10 random label pairs

Enror rabe (%)

Rg. 1. Cuery answering on the KDD Cap
2003 co-authorship data set

75

k-Automorphism

L. Zhu, L. Chen and M. Tamer Ozsu, k-automorphism: a general framework
for privacy preserving network publication, PVLDB 2009

76

38

K-Automorphism

Considers any subgraph query - any structural attack

At least k symmetric vertices no structural differences

Jenny O I»._:T- 1]
(&) Original Network o) Meve Anonymizad () Andther Andnymizad
G Newark (G Network (G

7

K-Automorphism

DeFxITION 2.1, Graph Isomorphism. Given two graphs () =
(Vg Eg) and G = { Vg, Eg), Qisisomorphic o G, i and only
if there exisis ar least one bijective fumction f: Vo — Vig such that
Sfar any edge (w.v) € Eg, there is an edge (flu). flv)) € Ec.

DeFiNiTION 220 Graph Automorphism. An automorphism of
a graph G = (V, £} i an automorphic function | of the vertex set
V such that for any edge e = (w,v), fle) = (flu). f(v)) isalso
an edge in G, Le, itiva graph automorphism from G w itself under
Junction f. If there exist k automorphisms in G, it means that there
exisis k-1 different auromarphic functions.

map each node of graph G to
(another) node of graph G

78

39

K-Automorphism

DerFINITION 3.1. K-automorphic Network. Given a network
G, (a) if there exist k-1 awomorphic functions Fy (a=1,...,k-1) in
G, and (b) for each vertex v in G, Fy (v) # Fo,(v) (1 € oy #
az < k — 1), then G s called a k-automorphic network.,

any k-1 automorphic functions?

79

K-Automorphism

DEFINITION 3.2. Different Matches. Given a sub-graph query
Q) and iwo maiches m1 and ma of Q in a social network G, where
ma and moy are isomorphic 1o Q under functions 1 and fa, respec-
wvely, if there exists no vertex v (in guery Q) whose maich veriices
inmy and me are identical, (le. fiiv) = f2(v)) we say that my
and mz are different matches,

DEFINITION 3.3, k-different match principle. Given a released
network G and any sub-graph guery O, if (a) there exist ar least
k matches of Q in GF, and (b) any two of the & maiches are dif-
ferent maiches according to Definition 3.2, then G7 is said 1o obey
k-different match principle.

80

40

K-Automorphism: Cost

DEFINITION 2.6. Anonyvmization Cost. Given an originagl net-
wark G and its anonymized version G*, the anonymization cost in
O™ is defined as

Cost(G,G*) = (E(G)U E(G*)) — (E{G) N E{G*))
where E((G) is the set of edges in G.

81
K-Automorphism: Algorithm
compare with Hay et al
{a) Maive Anonymization (b} Generalized
Network &7 Network
82

41

K-Match (KM) Algorithm

Block Alignment

Edge Copy
F.| B, !

7,

{a) Naive anonymization {h) Graph Partition and
Network G Alignment G

{c) Edgs Copy (3°

Step 1: Partition the original network into blocks
Step 2: Align the blocks to attain isomorphic blocks (add edge (2,4))

Step 3: Apply the "edge-copy" technique to handle matches that cross the
two blocks

83

K-Match (KM) Algorithm: Alignment

DEFINITION 4.1. Alignment Vertex Instance. Given a group
Us with blocks Pij, 7 = 1 ...,k assume that alignment blocks
By = (Vi}, Ei;) are the blacks obiained after graph alignment,
namely, V7 Figj is a sub-graph r;j'}’;j and all P;J- are ismmaorphic o
each other.

Due to graph isomorphism, given an aligiment block I-J;_,-, Jor
edcl vertex v in P;J-, there must exist k — 1 symmetric vertices in
the other k — 1 blocks respectively. The set containing v and v's
symmetric veriices form alignment vertex instance [where [[| =
k. All aligmment vertex nsiances are collected 1o form alignment
vertex table (AVT)

it

el
7
[

B
1]

it]]

P, B : ,
£, it Fs Alignment Vertex

Table (AVT)
()) able (&3

84

42

K-Match (KM) Algorithm: Alignment

Heuristic for finding a good alignment

Algorithm 3 constructAVT(L;) where j = 1,...,k: Built AVT for a
group with k blocks Py, wherej = 1,..., k

I: Set all vertices in each Fyy as “un-visited”, initialize AVT

2: Find v i each block Pjj, where all degree({vi;) = d. If there are
multiple choices for d, choose d with the largest value. If there are
no choices for d, choose vy with the largest degree from block Fyy
respectively

3: The set of all vy; form the initial alignment vertex [instance in AVT.

4: Perform breath-first search (BFS) starting from vy 5 in each Fyy in par-
allel.

5: During BFS, k vertices from k blocks with similar vertex degrees are
collected to form an alignment vertex instance in AVT,

6: Report AVT.

Find k vertices with the same vertex degree

If many, start with those with high degree

If none, choose the one with the largest degree
This set -> initial alignment
BFS in each block in parallel,

pairing nodes with similar degree (if there is no corresponding vertex, introduce
dummy with the same label as the corresponding)

85

K-Match (KM) Algorithm: Edge Copy

DEFINITION 4.4, Boundary Vertex and Crossing Edge. Given
avertex v in a block P, v is a boundary vertex if and only {f v has
af least one neighbor vertex that is outside of block P, An edge
e = (v, u) is called a crossing edge if and only if v and u are
boundary vertices in two different blocks.

Algorithm 4 Edge Copy Algorithm

Require: Input: The original network: &7; The netwaork after graph parti-
tion and block alignment: G'Y; Alignment Vertex Table: AVT
Output: The anonymized netwark G~

: Duplicate &' into G* and remove all crossing edges in G=.

: for each crossing edge (v, u) in the original network GG do

Add edge (v, u) and {Fy(v), Fa{u)) (a = 1,....,k — 1)into G*.

: Report 5% as release network.

o Lad b =

Duplicate all crossing edges using the AVT

86

43

K-Match (KM) Algorithm: Graph Partitioning

How many blocks to add a small number of edges?

Few -> fewer crossing edges, but larger groups (more edges for aligning)

NP complete -> heuristics

DEHNITION 4.5 Givena group Uy withblocks Py, =1, k
anomymization cost of group L, is defined as follows:

Costily) = AlCost(U)+ 0.5+ (k—1) *E:-i |Cross Edge(Py,]|
where AlCost(IN)is defined in Definirion4. 2 and |Croas Edge [Py |
is the mumber af crossing edges associated with block Iy,

DEFINITION 4.2 Alignment Cosi. Givena group U, with blocks
Fyy. 4 = 1.k assume that P:J are vhe blocks obrained afrer
biadk alignmens. The cast af bod alignment in growp U, is defined
as follows:

AlCast (L) = Ef_l Mién(EditDist{ Py, Py))
where Eda’zDisz(P,_,,l Py} is defined as the number of graph edit
operarions (inser vertex/edge delete vertex/edge) reguired to rans-
form Py, into P

87

K-Match (KM) Algorithm: Graph Partitioning

THEOREM 4.2 Assume thar a nework G is partitioned inta n
blocks thar are clustered inte m groups Uy, where each group U
has k blocks. Ler G* be an anonvmized nerwork produced by KM
algarithm. Then

Cost{G,G*) =T ™ Cost{);)
where Cost(G, G*) and Cost(Ly) are defined in Definitions 2.6
and 4. 5, respecrively

88

44

K-Match (KM) Algorithm: Graph Partitioning

Find all frequent subgraphs (first group!)

Try to expand them until the cost becomes worst, in which case start a new
group

Algorithm 5 Graph Partitioning and Block Clustering

Require: Input: The naive anonymized G’ and k.
Output: a set of groups 5 = {L;}. (i = 1,...,m), where each group
Ui has k blocks Py, (7 = 1,..., k).
l: repeat
2t Find frequent sub-graphs {gy} in @' by seting minimal support
min_sup = k. Find the frequent sub-graph g5 with the largest
number of edges. Each match of gf & extracted from &' as one
block Fij.
The set of all blocks Fy; from one group U],
repeat
set Uy = U/,
for each block Fijin U do
Expand block Fiy by one hop.
The set of expanded blocks form group Lf
until Cost{U;) < Cast{L])
&'=G" — U and insert U = { Py} into answer set S.
until E{G) =0
2: Report S = {U; },i=1,...,m.

Lok w

o —

89

Dynamic Releases

Example:

Individually satisfy 2-automorphism

Assume that an adversary knows that sub-graph Q4 exists around target Bob at both
time T1 and T2.

At time T1, an adversary knows that there are two candidates vertices (2, 7)
Similarly, at time T2, there are still two candidates (4, 7)

Since Bob exists at both T1 and T2, vertex 7 corresponds to Bob

Released - .
Metwarks:) =

90

45

Dynamic Releases

Remove all vertex IDs, or permute vertex IDs randomly (so, a given vertexID
does not correspond to the same entity in different publications).
Impossible to conduct proper data analysis.

Instead, vertex ID generalization

For simplicity, no vertex insertions or deletions in different releases (set
of all vertex IDs remains unchanged)

91
Vertex ID Generalization
Given a series of s publications, vertex v cannot be identified with a
probability higher than 1/k if:
- Res(v, Gi) M Res(v, C;‘é)l’“ . RES[L‘,‘ G:) = Res(v,G7)
where |Res(v. G7)| = k.
T T,
AVT A ar oA L
et
a7 [Z17] J
516 16
310 3110 X 10 SR - o e T
Generalized Yertex Ip G Res(7,G71) = {4, r}uand Res(7,G3) = {2,7}
table GIDT Res(7.G1) N Res(7,G3) = Res(7,G1) = {4.7}
OnlD | Genid | 1 2.GenlD = {2,4}
T 1T ’
2 24
: 31
4 2.4}
{3}
{6}
7 {1.8} —
8 781 G
(a) Vertex ID (b} Anonymized Network with
Generalization Generalized Vertex IDs
92

46

Vertex ID Generalization: Algorithm

Algorithm 6 Generalize Vertex ID For Released Network G}

Require: Input: AVT A; for the network G[. and AVT A for the net-
work G
OQutput: The anonymized network after vertex 1D generalization: CT‘
¢ Initialize table GIDT.
: Based on Ay, define & — 1 automorphic functions £} in Gl.a =
1., k=1,
3: Based on Aj;, define k — | automorphic functions FY in G5, t =
1., k=1,
: for each vertex v in G} do
fora=1,..k-=1do
if FL(v) # Fi(v) then
Insert 7} (v) into Ft(v).GenID.
: for each vertex v in G} do
Replace v.OriI D by its generalized vertex ID v.GenI D.
10: Report G}

b —

93

Vertex ID Generalization: Cost

DEFINITION 5.2. Given a released nerwork G_, produced by

GenlD algorithm, average generalized vertex 1D size, denoted by

Avgl D Size(G7), is defined as follows:

AvglDSize(Gy) = = T
bl

where V(G7) is the set of vertices in G},

94

47

Vertex Insertion and Deletion

(Deletion) There is a vertex ID v that exists in G'; but not in G',
Find an arbitrary vertex ID u that exists in both
Insert v in the generalized vertex ID of u

(Insertion) There is a vertex ID v that exists in G', but not in G';
Assume that instance | contains v in AVT A,
For each vertex u in |, insert v in the generalized vertex ID of u

95
Evaluation
Prefuse (129 nodes, 161 edges)
Co-author graph (7995 authors in database and theory, 10055 edges)
Synthetic
Erdos Renyi 1000 nodes
Scale free,2<y <3
All k = 10 degree anonymous, but no sub-graph anonymous
96

48

Questions?

97

49

